Putnam D.11

Po-Shen Loh

6 November 2011

1 Problems

- **Putnam 2000/B4.** Let f(x) be a continuous function such that $f(2x^2 1) = 2xf(x)$ for all x. Show that f(x) = 0 for $-1 \le x \le 1$.
- **Putnam 2000/B5.** Let S_0 be a finite set of positive integers. We define finite sets S_1, S_2, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of a-1 or a is in S_n . Show that there exist infinitely many integers N for which $S_N = S_0 \cup \{N + a : a \in S_0\}$.
- **Putnam 2000/B6.** Let *B* be a set of more than $2^{n+1}/n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in *n*-dimensional space with $n \ge 3$. Show that there are three distinct points in *B* which are the vertices of an equilateral triangle.