Putnam D. 8

Po-Shen Loh

16 October 2011

1 Problems

Putnam 2001/B4. Let S denote the set of rational numbers different from $\{-1,0,1\}$. Define $f: S \rightarrow S$ by $f(x)=x-1 / x$. Prove or disprove that

$$
\bigcap_{n=1}^{\infty} f^{(n)}(S)=\emptyset
$$

where $f^{(n)}$ denotes f composed with itself n times.
Putnam 2001/B5. Let a and b be real numbers in the interval $(0,1 / 2)$, and let g be a continuous realvalued function such that $g(g(x))=a g(x)+b x$ for all real x. Prove that $g(x)=c x$ for some constant c.

Putnam 2001/B6. Assume that $\left(a_{n}\right)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_{n} / n=0$. Must there exist infinitely many positive integers n such that $a_{n-i}+a_{n+i}<2 a_{n}$ for $i=1,2, \ldots, n-1$?

