Putnam D. 6

Po-Shen Loh

2 October 2011

1 Problems

Putnam 2002/B4. An integer n, unknown to you, has been randomly chosen in the interval [1, 2002] with uniform probability. Your objective is to select n in an odd number of guesses. After each incorrect guess, you are informed whether n is higher or lower, and you must guess an integer on your next turn among the numbers that are still feasibly correct. Show that you have a strategy so that the chance of winning is greater than $2 / 3$.

Putnam 2002/B5. A palindrome in base b is a positive integer whose base- b digits read the same backwards and forwards; for example, 2002 is a 4-digit palindrome in base 10 . Note that 200 is not a palindrome in base 10 , but it is the 3 -digit palindrome 242 in base 9 , and 404 in base 7 . Prove that there is an integer which is a 3-digit palindrome in base b for at least 2002 different values of b.

Putnam 2002/B6. Let p be a prime number. Prove that the determinant of the matrix

$$
\left(\begin{array}{ccc}
x & y & z \\
x^{p} & y^{p} & z^{p} \\
x^{p^{2}} & y^{p^{2}} & z^{p^{2}}
\end{array}\right)
$$

is congruent modulo p to a product of polynomials of the form $a x+b y+c z$, where a, b, c are integers. (We say two integer polynomials are congruent modulo p if corresponding coefficients are congruent modulo p.)

