Putnam C.14

Po-Shen Loh

30 November 2011

1 Problems

- **Putnam 1988/B1.** A composite (positive integer) is a product ab with a and b not necessarily distinct integers in $\{2, 3, 4, ...\}$. Show that every composite is expressible as xy + xz + yz + 1, with x, y, z positive integers.
- **Putnam 1988/B2.** Prove or disprove: If x and y are real numbers with $y \ge 0$ and $y(y+1) \le (x+1)^2$, then $y(y-1) \le x^2$.
- **Putnam 1988/B3.** For every n in the set $\mathbb{N} = \{1, 2, ...\}$ of positive integers, let r_n be the minimum value of $|c d\sqrt{3}|$ for all nonnegative integers c and d with c + d = n. Find, with proof, the smallest positive real number g with $r_n \leq g$ for all $n \in \mathbb{N}$.
- **Putnam 1988/B4.** Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^{\infty} (a_n)^{n/(n+1)}$.