Putnam C. 14

Po-Shen Loh

30 November 2011

1 Problems

Putnam 1988/B1. A composite (positive integer) is a product $a b$ with a and b not necessarily distinct integers in $\{2,3,4, \ldots\}$. Show that every composite is expressible as $x y+x z+y z+1$, with x, y, z positive integers.

Putnam 1988/B2. Prove or disprove: If x and y are real numbers with $y \geq 0$ and $y(y+1) \leq(x+1)^{2}$, then $y(y-1) \leq x^{2}$.

Putnam 1988/B3. For every n in the set $\mathbb{N}=\{1,2, \ldots\}$ of positive integers, let r_{n} be the minimum value of $|c-d \sqrt{3}|$ for all nonnegative integers c and d with $c+d=n$. Find, with proof, the smallest positive real number g with $r_{n} \leq g$ for all $n \in \mathbb{N}$.

Putnam 1988/B4. Prove that if $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^{\infty}\left(a_{n}\right)^{n /(n+1)}$.

