Putnam C. 9

Po-Shen Loh

26 October 2011

1 Problems

Putnam 1990/A1. Let

$$
T_{0}=2, T_{1}=3, T_{2}=6,
$$

and for $n \geq 3$,

$$
T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3} .
$$

The first few terms are

$$
2,3,6,14,40,152,784,5168,40576 .
$$

Find, with proof, a formula for T_{n} of the form $T_{n}=A_{n}+B_{n}$, where $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are well-known sequences.

Putnam 1990/A2. Is $\sqrt{2}$ the limit of a sequence of numbers of the form $\sqrt[3]{n}-\sqrt[3]{m}(n, m=0,1,2, \ldots)$?
Putnam 1990/A3. Prove that any convex pentagon whose vertices (no three of which are collinear) have integer coordinates must have area greater than or equal to $5 / 2$.

