Putnam C.8

Po-Shen Loh

17 October 2011

1 Problems

Putnam 1991/B1. For each integer $n \ge 0$, let $S(n) = n - m^2$, where m is the greatest integer with $m^2 \le n$. Define a sequence $(a_k)_{k=0}^{\infty}$ by $a_0 = A$ and $a_{k+1} = a_k + S(a_k)$ for $k \ge 0$. For what positive integers A is this sequence eventually constant?

Putnam 1991/B2. Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$f(x+y) = f(x)f(y) - g(x)g(y),$$

$$g(x+y) = f(x)g(y) + g(x)f(y).$$

If
$$f'(0) = 0$$
, prove that $(f(x))^2 + (g(x))^2 = 1$ for all x.

Putnam 1991/B3. Does there exist a real number L such that, if m and n are integers greater than L, then an $m \times n$ rectangle may be expressed as a union of 4×6 and 5×7 rectangles, any two of which intersect at most along their boundaries?