Putnam C. 6

Po-Shen Loh

3 October 2011

1 Problems

Putnam 1992/B1. Let S be a set of n distinct real numbers. Let A_{S} be the set of numbers that occur as averages of two distinct elements of S. For a given $n \geq 2$, what is the smallest possible number of elements in A_{S} ?

Putnam 1992/B2. For nonnegative integers n and k, define $Q(n, k)$ to be the coefficient of x^{k} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{n}$. Prove that

$$
Q(n, k)=\sum_{j=0}^{k}\binom{n}{j}\binom{n}{k-2 j}
$$

Putnam 1992/B3. For any pair (x, y) of real numbers, a sequence $\left(a_{n}(x, y)\right)_{n \geq 0}$ is defined as follows:

$$
\begin{aligned}
a_{0}(x, y) & =x \\
a_{n+1}(x, y) & =\frac{\left(a_{n}(x, y)\right)^{2}+y^{2}}{2}, \quad \text { for } n \geq 0
\end{aligned}
$$

Find the area of the region $\left\{(x, y):\left(a_{n}(x, y)\right)_{n \geq 0}\right.$ converges $\}$.

