Putnam C. 5

Po-Shen Loh

28 September 2011

1 Problems

Putnam 1992/A1. Prove that $f(n)=1-n$ is the only integer-valued function defined on the integers that satisfies the following conditions.

- $f(f(n))=n$, for all integers n;
- $f(f(n+2)+2)=n$, for all integers n;
- $f(0)=1$.

Putnam 1992/A2. Define $C(\alpha)$ to be the coefficient of x^{1992} in the power series about $x=0$ of $(1+x)^{\alpha}$. Evaluate

$$
\int_{0}^{1}\left(C(-y-1) \sum_{k=1}^{1992} \frac{1}{y+k}\right) d y
$$

Putnam 1992/A3. For a given positive integer m, find all triples (n, x, y) of positive integers, with n relatively prime to m, which satisfy

$$
\left(x^{2}+y^{2}\right)^{m}=(x y)^{n}
$$

