Putnam C.3

Po-Shen Loh

14 September 2011

1 Problems

Putnam 1993/A1. The horizontal line y=c intersects the curve $y=2x-3x^3$ twice in the first quadrant. Let A be the region bounded by the y-axis, the line y=c, and the curve. Let B be the region between the line y=c and the curve, above the segment of y=c that goes between the two intersection points mentioned above. Find c so that the area of region A equals the area of region B.

Putnam 1993/A2. Let $(x_n)_{n\geq 0}$ be a sequence of nonzero real numbers such that

$$x_n^2 - x_{n-1}x_{n+1} = 1$$
 for $n = 1, 2, 3, \dots$

Prove that there exists a real number a such that $x_{n+1} = ax_n - x_{n-1}$ for all $n \ge 1$.

Putnam 1993/A3. Let \mathcal{P}_n be the set of subsets of $\{1, 2, ..., n\}$. Let c(n, m) be the number of functions $f: \mathcal{P}_n \to \{1, 2, ..., m\}$ such that $f(A \cap B) = \min\{f(A), f(B)\}$. Prove that

$$c(n,m) = \sum_{j=1}^{m} j^{n}.$$