Putnam C. 3

Po-Shen Loh

14 September 2011

1 Problems

Putnam 1993/A1. The horizontal line $y=c$ intersects the curve $y=2 x-3 x^{3}$ twice in the first quadrant. Let A be the region bounded by the y-axis, the line $y=c$, and the curve. Let B be the region between the line $y=c$ and the curve, above the segment of $y=c$ that goes between the two intersection points mentioned above. Find c so that the area of region A equals the area of region B.

Putnam 1993/A2. Let $\left(x_{n}\right)_{n \geq 0}$ be a sequence of nonzero real numbers such that

$$
x_{n}^{2}-x_{n-1} x_{n+1}=1 \quad \text { for } n=1,2,3, \ldots
$$

Prove that there exists a real number a such that $x_{n+1}=a x_{n}-x_{n-1}$ for all $n \geq 1$.
Putnam 1993/A3. Let \mathcal{P}_{n} be the set of subsets of $\{1,2, \ldots, n\}$. Let $c(n, m)$ be the number of functions $f: \mathcal{P}_{n} \rightarrow\{1,2, \ldots, m\}$ such that $f(A \cap B)=\min \{f(A), f(B)\}$. Prove that

$$
c(n, m)=\sum_{j=1}^{m} j^{n} .
$$

