13.

(Just do it)
Po-Shen Loh
CMU Putnam Seminar, Fall 2011

1 Problems

VTRMC 2003/1. An investor buys stock worth $\$ 10,000$ and holds it for n business days. Each day he has an equal chance of either gaining 20% or losing 10%. However in the case he gains every day (i.e. n gains of 20%), he is deemed to have lost all his money, because he must have been involved with insider trading. Find a (simple) formula, with proof, of the amount of money he will have on average at the end of the n days.

VTRMC 2002/2. Find rational numbers a, b, c, d, e such that

$$
\sqrt{7+\sqrt{40}}=a+b \sqrt{2}+c \sqrt{5}+d \sqrt{7}+e \sqrt{10}
$$

VTRMC 2003/2. For $|x|<1$, find

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n(n+1)}=\frac{x}{1 \cdot 2}+\frac{x^{2}}{2 \cdot 3}+\frac{x^{3}}{3 \cdot 4}+\cdots
$$

VTRMC 2005/2. Find, and write out explicitly, a permutation $(p(1), p(2), \ldots, p(20))$ of $(1,2, \ldots, 20)$ such that $k+p(k)$ is a power of 2 for $k=1,2, \ldots, 20$, and prove that only one such permutation exists. (To illustrate, a permutation of $(1,2,3,4,5)$ such that $k+p(k)$ is a power of 2 for $k=1,2, \ldots, 5$ is clearly $(1,2,5,4,3)$, because $1+1=2,2+2=4,3+5=8,4+4=8$, and $5+3=8$.)

IMO 2003/1. Let A be a subset of the set $S=\{1,2, \ldots, 1000000\}$ containing exactly 101 elements. Prove that there exist numbers $t_{1}, t_{2}, \ldots, t_{100}$ in S such that the sets

$$
A_{j}=\left\{x+t_{j}: x \in A\right\} \quad \text { for } j=1,2, \ldots, 100
$$

are pairwise disjoint.

