12. Functional Equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2011

1 Classical results

Cauchy. Linear functions through the origin are the only continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy

$$
f(x+y)=f(x)+f(y)
$$

for all $x, y \in \mathbb{R}$.

2 Problems

GA 386. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(x)=f\left(x^{2}\right)$ for all $x \in \mathbb{R}$. Prove that f is constant.

GA 396. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous decreasing function. Prove that the system

$$
\begin{aligned}
x & =f(y), \\
y & =f(z), \\
z & =f(x)
\end{aligned}
$$

has a unique solution.
IMO Compendium 17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying $f(0)=0, f(1)=1$, and $f(f(f(f(x))))=x$ for every $x \in[0,1]$. Prove that $f(x)=x$ for each $x \in[0,1]$.
GA 546. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f(x+y)=f(x)+f(y)+f(x) f(y)
$$

for all real $x, y \in \mathbb{R}$.
IMO 1987/4. Prove that there is no function f from the set of non-negative integers into itself such that $f(f(n))=n+1987$ for all n.

IMO 1993/5. Does there exist a function f from the positive integers to the positive integers such that $f(1)=2, f(f(n))=f(n)+n$ for all n, and $f(n)<f(n+1)$ for all $n ?$

From current research. Define the recursion:

$$
\begin{aligned}
\ell_{0}(s) & =e^{-s} \\
\ell_{t+1}(s) & =\frac{1}{1+\ell_{t}\left(\frac{1}{2}\right)}\left[\begin{array}{l}
\ell_{t}\left(s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right)^{2}-\ell_{t}\left(s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right) \ell_{t}\left(\frac{1}{2}+s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right) \\
+\ell_{t}\left(\frac{1}{2}+s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right)+\ell_{t}\left(\frac{1}{2}\right) \ell_{t}\left(s \cdot \frac{1+\ell_{t}\left(\frac{1}{2}\right)}{2}\right)
\end{array}\right]
\end{aligned}
$$

Prove that $\ell_{t}\left(\frac{1}{2}\right) \rightarrow 1$ as $t \rightarrow \infty .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ P. Loh and E. Lubetzky, Stochastic coalescence in logarithmic time, Annals of Applied Probability, to appear.

