10. Linear Algebra

Misha Lavrov

CMU Putnam Seminar, Fall 2011

1 Determinants (and singularity)

Putnam 2008/A2. Alan and Barbara take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player places a real number in a vacant entry. When all entries are filled, Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

VTRMC 2004/1. Let I denote the 2×2 identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$; let A, B, and C be arbitrary 2×2 real matrices; finally, define the 4×4 matrices M and N by $M=\left[\begin{array}{cc}I & A \\ B & C\end{array}\right]$ and $N=\left[\begin{array}{cc}I & B \\ A & C\end{array}\right]$. Is it possible that exactly one of M and N is invertible?

VTRMC 2007/6. Let A and B be symmetric real $n \times n$ matrices. Suppose there are $n \times n$ matrices X, Y such that $\operatorname{det}(A X+B Y) \neq 0$. Prove that $\operatorname{det}\left(A^{2}+B^{2}\right) \neq 0$.

2 Thinking in Matrices

Well-known result. A matrix A is symmetric if $A^{T}=A$ and skew-symmetric if $A^{T}=-A$. Prove that any matrix can be written as the sum of a symmetric matrix and a skew-symmetric matrix.

Putnam 1991/A2. Let A and B be distinct $n \times n$ real matrices. If $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$, can $A^{2}+B^{2}$ be invertible?

VTRMC 2010/1, modified. Let A be a $n \times n$ integer matrix. Suppose

$$
I+A+A^{2}+\cdot+A^{100}=0
$$

Show that $A^{k}+A^{k+1}+\cdots+A^{100}$ has determinant ± 1 for every positive integer $k \leq 100$.

3 Rank and dimension

Putnam 2003/B1. Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that, for all x and y,

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y) ?
$$

VTRMC 2005/7. Let A be a 5×10 real matrix. Suppose every 5×1 real matrix (i.e. column vector in 5 dimensions) can be written in the form $A u$, where u is a 10×1 real matrix. Prove that every 5×1 real matrix can be written in the form $A A^{T} v$ where v is a 5×1 real matrix.

Putnam 2009/B4. Say that a polynomial with real coefficients in two variables, x, y, is balanced if the average value of the polynomial on each circle centered at the origin is 0 . The balanced polynomials of degree at most 2009 form a vector space V over \mathbb{R}. Find the dimension of V.

