10. Linear Algebra

Misha Lavrov

CMU Putnam Seminar, Fall 2011

1 Determinants (and singularity)

Putnam 2008/A2. Alan and Barbara take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player places a real number in a vacant entry. When all entries are filled, Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?

VTRMC 2004/1. Let *I* denote the 2 × 2 identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$; let *A*, *B*, and *C* be arbitrary 2 × 2 real matrices; finally, define the 4 × 4 matrices *M* and *N* by $M = \begin{bmatrix} I & A \\ B & C \end{bmatrix}$ and $N = \begin{bmatrix} I & B \\ A & C \end{bmatrix}$. Is it possible that exactly one of *M* and *N* is invertible?

VTRMC 2007/6. Let A and B be symmetric real $n \times n$ matrices. Suppose there are $n \times n$ matrices X, Y such that $det(AX + BY) \neq 0$. Prove that $det(A^2 + B^2) \neq 0$.

2 Thinking in Matrices

Well-known result. A matrix A is symmetric if $A^T = A$ and skew-symmetric if $A^T = -A$. Prove that any matrix can be written as the sum of a symmetric matrix and a skew-symmetric matrix.

Putnam 1991/A2. Let A and B be distinct $n \times n$ real matrices. If $A^3 = B^3$ and $A^2B = B^2A$, can $A^2 + B^2$ be invertible?

VTRMC 2010/1, modified. Let A be a $n \times n$ integer matrix. Suppose

$$I + A + A^2 + \dots + A^{100} = 0.$$

Show that $A^k + A^{k+1} + \cdots + A^{100}$ has determinant ± 1 for every positive integer $k \leq 100$.

3 Cayley-Hamilton Theorem

Putnam 2010/B6. Let A be a $n \times n$ real matrix. For each integer $k \ge 0$, let $A^{[k]}$ be the matrix obtained by raising each entry of A to the k-th power. Show that if $A^k = A^{[k]}$ for k = 1, 2, ..., n + 1 then $A^k = A^{[k]}$ for all $k \ge 1$.

VTRMC 2009/5. Let A, B be 3×3 matrices with $B \neq 0$ and AB = 0. Prove that there exists a 3×3 matrix D such that AD = DA = 0.