8. Convergence

Po-Shen Loh

CMU Putnam Seminar, Fall 2011

1 Classical results

Harmonic series. Without using Calculus, show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
Alternating series. Let $\left(a_{n}\right)$ be a monotonic decreasing sequence of positive real numbers. Then the series $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ is convergent.

2 Problems

VTRMC 2002/7. Let $\left(a_{n}\right)_{n>1}$ be an infinite sequence with $a_{n}>0$ for all n. For $n>1$, let b_{n} denote the geometric mean of a_{1}, \ldots, a_{n}, that is, $\sqrt[n]{a_{1} \cdots a_{n}}$. Suppose $\sum_{n=1}^{\infty} a_{n}$ is convergent. Prove that $\sum_{n=1}^{\infty} b_{n}^{2}$ is also convergent.

VTRMC 2006/5. Let $\left(a_{n}\right)$ be a monotonic decreasing sequence of positive real numbers with limit 0 (so $\left.a_{1} \geq a_{2} \geq \cdots \geq 0\right)$. Let $\left(b_{n}\right)$ be a rearrangement of the sequence such that for every non-negative integer m, the terms $b_{3 m+1}, b_{3 m+2}, b_{3 m+3}$ are a rearrangement of the terms $a_{3 m+1}, a_{3 m+2}, a_{3 m+3}$ (thus, for example, the first 6 terms of the sequence $\left(b_{n}\right)$ could be $\left.a_{3}, a_{2}, a_{1}, a_{4}, a_{6}, a_{5}\right)$. Prove or give a counterexample to the following statement: the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ is convergent.

Putnam 2001/B6. Assume that $\left(a_{n}\right)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim \frac{a_{n}}{n}=0$. Must there exist infinitely many positive integers n such that $a_{n-i}+a_{n+i}<2 a_{n}$ for $i=1,2, \ldots, n-1$?

VTRMC 2004/7. Let $\left(a_{n}\right)$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. Prove that $\sum_{n=1}^{\infty}\left|1-\frac{a_{n+1}}{a_{n}}\right|$ is divergent.

