8. Convergence

Po-Shen Loh

CMU Putnam Seminar, Fall 2011

1 Classical results

Harmonic series. Without using Calculus, show that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Alternating series. Let (a_n) be a monotonic decreasing sequence of positive real numbers. Then the series $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent.

2 Problems

- **VTRMC 2002/7.** Let $(a_n)_{n>1}$ be an infinite sequence with $a_n > 0$ for all n. For n > 1, let b_n denote the geometric mean of a_1, \ldots, a_n , that is, $\sqrt[n]{a_1 \cdots a_n}$. Suppose $\sum_{n=1}^{\infty} a_n$ is convergent. Prove that $\sum_{n=1}^{\infty} b_n^2$ is also convergent.
- **VTRMC 2006/5.** Let (a_n) be a monotonic decreasing sequence of positive real numbers with limit 0 (so $a_1 \ge a_2 \ge \cdots \ge 0$). Let (b_n) be a rearrangement of the sequence such that for every non-negative integer m, the terms b_{3m+1} , b_{3m+2} , b_{3m+3} are a rearrangement of the terms a_{3m+1} , a_{3m+2} , a_{3m+3} (thus, for example, the first 6 terms of the sequence (b_n) could be $a_3, a_2, a_1, a_4, a_6, a_5$). Prove or give a counterexample to the following statement: the series $\sum_{n=1}^{\infty} (-1)^n b_n$ is convergent.
- **Putnam 2001/B6.** Assume that $(a_n)_{n\geq 1}$ is an increasing sequence of positive real numbers such that $\lim_{n \to \infty} \frac{a_n}{n} = 0$. Must there exist infinitely many positive integers n such that $a_{n-i} + a_{n+i} < 2a_n$ for i = 1, 2, ..., n 1?
- **VTRMC 2004/7.** Let (a_n) be a sequence of positive real numbers such that $\lim_{n\to\infty} a_n = 0$. Prove that $\sum_{n=1}^{\infty} \left| 1 \frac{a_{n+1}}{a_n} \right|$ is divergent.