4. Polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2011

1 Classical results

- Well-known fact. Let P(n) be a polynomial with integer coefficients, and let a and b be integers. Show that P(a) P(b) is divisible by a b.
- **Lagrange Interpolation.** Show that there is a degree-4 polynomial which takes values P(0) = 0, P(1) = 0, P(2) = 0, P(3) = 1, and P(4) = 1.

Eisenstein. Let $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ be a polynomial, such that there is a prime p for which

- (i) p divides each of $a_0, a_1, \ldots, a_{n-1}$,
- (ii) p does not divide a_n , and
- (iii) p^2 does not divide a_0 .

Then P(x) cannot be expressed as the product of two non-constant polynomials with integer coefficients.

2 Problems

- **GA 173.** Let a_1, \ldots, a_n be positive real numbers. Prove that the polynomial $P(x) = x^n a_1 x^{n-1} a_2 x^{n-2} \cdots a_n$ has a unique positive zero.
- **IMO 1993/1.** Let $P(x) = x^n + 5x^{n-1} + 3$, where n > 1 is an integer. Prove that P(x) cannot be expressed as the product of two non-constant polynomials with integer coefficients.
- **GA 183 (Classical).** Prove that for every prime number *p*, the polynomial

$$P(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$

cannot be expressed as the product of two non-constant polynomials with integer coefficients.

- **USAMO 1995/4, modified.** Suppose q_0, q_1, q_2, \ldots is an infinite sequence of integers statisfying the following two conditions:
 - (i) m-n divides q_m-q_n for $m>n\geq 0$,
 - (ii) there is a polynomial P and an integer Δ such that $|q_n P(n)| < \Delta$ for all n.

Prove that there is a polynomial Q such that $q_n = Q(n)$ for all n.

Lucas. The zeros of the derivative P'(z) of any polynomial lie in the convex hull of the zeros of the polynomial P(z).