4. Polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2011

1 Classical results

Well-known fact. Let $P(n)$ be a polynomial with integer coefficients, and let a and b be integers. Show that $P(a)-P(b)$ is divisible by $a-b$.

Lagrange Interpolation. Show that there is a degree-4 polynomial which takes values $P(0)=0, P(1)=0$, $P(2)=0, P(3)=1$, and $P(4)=1$.

Eisenstein. Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial, such that there is a prime p for which
(i) p divides each of $a_{0}, a_{1}, \ldots, a_{n-1}$,
(ii) p does not divide a_{n}, and
(iii) p^{2} does not divide a_{0}.

Then $P(x)$ cannot be expressed as the product of two non-constant polynomials with integer coefficients.

2 Problems

GA 173. Let a_{1}, \ldots, a_{n} be positive real numbers. Prove that the polynomial $P(x)=x^{n}-a_{1} x^{n-1}-a_{2} x^{n-2}-$ $\cdots-a_{n}$ has a unique positive zero.

IMO 1993/1. Let $P(x)=x^{n}+5 x^{n-1}+3$, where $n>1$ is an integer. Prove that $P(x)$ cannot be expressed as the product of two non-constant polynomials with integer coefficients.

GA 183 (Classical). Prove that for every prime number p, the polynomial

$$
P(x)=x^{p-1}+x^{p-2}+\cdots+x+1
$$

cannot be expressed as the product of two non-constant polynomials with integer coefficients.
USAMO 1995/4, modified. Suppose $q_{0}, q_{1}, q_{2}, \ldots$ is an infinite sequence of integers statisfying the following two conditions:
(i) $m-n$ divides $q_{m}-q_{n}$ for $m>n \geq 0$,
(ii) there is a polynomial P and an integer Δ such that $\left|q_{n}-P(n)\right|<\Delta$ for all n.

Prove that there is a polynomial Q such that $q_{n}=Q(n)$ for all n.
Lucas. The zeros of the derivative $P^{\prime}(z)$ of any polynomial lie in the convex hull of the zeros of the polynomial $P(z)$.

