General strategy

Po-Shen Loh

2 December 2010

1 Problems

Putnam 2010/A0. When and where is the Putnam?
Putnam 2006/B4. Let Z denote the set of points in \mathbb{R}^{n} whose coordinates are 0 or 1 . (Thus Z has 2^{n} elements, which are the vertices of a unit hypercube in \mathbb{R}^{n}.) Let k be given, $0 \leq k \leq n$. Find the maximum, over all vector subspaces $V \subset \mathbb{R}^{n}$ of dimension k, of the number of points in $V \cap Z$.

Putnam 2006/A4. Let $S=\{1, \ldots, n\}$ for some integer $n>1$. Say a permutation π of S has a local maximum at $k \in S$ if
(i) $\pi(k)>\pi(k+1)$ for $k=1$;
(ii) $\pi(k-1)<\pi(k)$ and $\pi(k)>\pi(k+1)$ for $1<k<n$;
(iii) $\pi(k-1)<\pi(k)$ for $k=n$.

For example, if $n=5$ and π takes values at $1,2,3,4,5$ of $2,1,4,5,3$, then π has a local maximum of 2 at $k=1$, and a local maximum of 5 at $k=4$. What is the average number of local maxima of a permutation of S, averaging over all permutations of S ?

Putnam 2008/B4. Let p be a prime number. Let $h(x)$ be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h\left(p^{2}-1\right)$ are distinct modulo p^{2}. Show that $h(0), \ldots, h\left(p^{3}-1\right)$ are distinct modulo p^{3} 。

Putnam 2008/A4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \leq e \\ x f(\ln x) & \text { if } x>e\end{cases}
$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?
Putnam 2007/B4. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(x))^{2}+(Q(x))^{2}=x^{2 n}+1
$$

and $\operatorname{deg}(P)>\operatorname{deg}(Q)$.
Putnam 2007/A4. A repunit is a positive integer whose digits in base 10 are all ones. Find all polynomials f with real coefficients such that if n is a repunit, then so is $f(n)$.

