General strategy

Po-Shen Loh

2 December 2010

1 Problems

Putnam 2010/A0. When and where is the Putnam?

- **Putnam 2006/B4.** Let Z denote the set of points in \mathbb{R}^n whose coordinates are 0 or 1. (Thus Z has 2^n elements, which are the vertices of a unit hypercube in \mathbb{R}^n .) Let k be given, $0 \le k \le n$. Find the maximum, over all vector subspaces $V \subset \mathbb{R}^n$ of dimension k, of the number of points in $V \cap Z$.
- **Putnam 2006/A4.** Let $S = \{1, ..., n\}$ for some integer n > 1. Say a permutation π of S has a local maximum at $k \in S$ if
 - (i) $\pi(k) > \pi(k+1)$ for k = 1;
 - (ii) $\pi(k-1) < \pi(k)$ and $\pi(k) > \pi(k+1)$ for 1 < k < n;
 - (iii) $\pi(k-1) < \pi(k)$ for k = n.

For example, if n = 5 and π takes values at 1, 2, 3, 4, 5 of 2, 1, 4, 5, 3, then π has a local maximum of 2 at k = 1, and a local maximum of 5 at k = 4. What is the average number of local maxima of a permutation of S, averaging over all permutations of S?

Putnam 2008/B4. Let p be a prime number. Let h(x) be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h(p^2 - 1)$ are distinct modulo p^2 . Show that $h(0), \ldots, h(p^3 - 1)$ are distinct modulo p^3 .

Putnam 2008/A4. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x & \text{if } x \le e \\ xf(\ln x) & \text{if } x > e \end{cases}$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?

Putnam 2007/B4. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$(P(x))^{2} + (Q(x))^{2} = x^{2n} + 1,$$

and $\deg(P) > \deg(Q)$.

Putnam 2007/A4. A *repunit* is a positive integer whose digits in base 10 are all ones. Find all polynomials f with real coefficients such that if n is a repunit, then so is f(n).