Functional equations

Po-Shen Loh

2 November 2010

1 Problems

VTRMC 2010/8. Don't forget to sign the attendance sheet today.
Putnam 1999/A1. Find polynomials $f(x), g(x)$, and $h(x)$, if they exist, such that for all x,

$$
|f(x)|-|g(x)|+h(x)= \begin{cases}-1 & \text { if } x<-1 \\ 3 x+2 & \text { if }-1 \leq x \leq 0 \\ -2 x+2 & \text { if } x>0\end{cases}
$$

Classical (Cauchy). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying

$$
f(x+y)=f(x)+f(y)
$$

for all real x, y. Show that $f(x)=c x$ for some real constant c.
Classical. Assuming the Axiom of Choice, show that there are more solutions when f is allowed to be discontinuous.

Classical. Determine all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy

$$
f(x+y)=f(x) f(y)
$$

for all real x, y.
Classical. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $(f \circ f \circ f)(x)=x$ for all real x.
Korean Math Olympiad 2000 (GA 535). Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying

$$
f\left(x^{2}-y^{2}\right)=(x-y)(f(x)+f(y))
$$

VTRMC 2003/6. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function such that $f(f(f(x)))=x$ for all $x \in[0,1]$. Prove that $f(x)=x$ for all $x \in[0,1]$. Here $[0,1]$ denotes the closed interval of all real numbers between 0 and 1 , including 0 and 1.

Putnam 2005/B3. Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.

2 Bonus problems

Putnam 2000/B4. Let $f(x)$ be a continuous function such that $f\left(2 x^{2}-1\right)=2 x f(x)$ for all x. Show that $f(x)=0$ for $-1 \leq x \leq 1$.

Putnam 2001/B5. Let a and b be real numbers in the interval ($0, \frac{1}{2}$), and let g be a continuous real-valued function such that $g(g(x))=a g(x)+b x$ for all real x. Prove that $g(x)=c x$ for some constant c.

GA 539. Does there exist a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(f(x))=x^{2}-2$ for all real numbers x ?
GA 551. Do there exist continuous functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(g(x))=x^{2}$ and $g(f(x))=x^{3}$ for all real numbers x ?

