Functional equations

Po-Shen Loh

2 November 2010

1 Problems

VTRMC 2010/8. Don't forget to sign the attendance sheet today.

Putnam 1999/A1. Find polynomials f(x), g(x), and h(x), if they exist, such that for all x,

$$|f(x)| - |g(x)| + h(x) = \begin{cases} -1 & \text{if } x < -1\\ 3x + 2 & \text{if } -1 \le x \le 0\\ -2x + 2 & \text{if } x > 0. \end{cases}$$

Classical (Cauchy). Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying

$$f(x+y) = f(x) + f(y)$$

for all real x, y. Show that f(x) = cx for some real constant c.

Classical. Assuming the Axiom of Choice, show that there are more solutions when f is allowed to be discontinuous.

Classical. Determine all continuous functions $f : \mathbb{R} \to \mathbb{R}$ which satisfy

$$f(x+y) = f(x)f(y)$$

for all real x, y.

Classical. Find all continuous functions $f : \mathbb{R} \to \mathbb{R}$ satisfying $(f \circ f \circ f)(x) = x$ for all real x.

Korean Math Olympiad 2000 (GA 535). Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x^{2} - y^{2}) = (x - y)(f(x) + f(y))$$

- **VTRMC 2003/6.** Let $f : [0,1] \to [0,1]$ be a continuous function such that f(f(f(x))) = x for all $x \in [0,1]$. Prove that f(x) = x for all $x \in [0,1]$. Here [0,1] denotes the closed interval of all real numbers between 0 and 1, including 0 and 1.
- **Putnam 2005/B3.** Find all differentiable functions $f: (0, \infty) \to (0, \infty)$ for which there is a positive real number *a* such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0.

2 Bonus problems

- **Putnam 2000/B4.** Let f(x) be a continuous function such that $f(2x^2 1) = 2xf(x)$ for all x. Show that f(x) = 0 for $-1 \le x \le 1$.
- **Putnam 2001/B5.** Let a and b be real numbers in the interval $(0, \frac{1}{2})$, and let g be a continuous real-valued function such that g(g(x)) = ag(x) + bx for all real x. Prove that g(x) = cx for some constant c.
- **GA 539.** Does there exist a function $f : \mathbb{R} \to \mathbb{R}$ such that $f(f(x)) = x^2 2$ for all real numbers x?
- **GA 551.** Do there exist continuous functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f(g(x)) = x^2$ and $g(f(x)) = x^3$ for all real numbers x?