Games

Po-Shen Loh

19 October 2010

1 Problems

- **Putnam 2008/A2.** Alan and Barbara play a game in which they take turns filling entries of an initially empty 2008×2008 array. Alan plays first. At each turn, a player chooses a real number and places it in a vacant entry. The game ends when all the entries are filled. Alan wins if the determinant of the resulting matrix is nonzero; Barbara wins if it is zero. Which player has a winning strategy?
- **VTRMC 2004/4.** A 9×9 chess board has two squares from opposite corners and its central square removed (so 3 squares on the same diagonal are removed, leaving 78 squares). Is it possible to cover the remaining squares using dominoes, where each domino covers two adjacent squares? Justify your answer.
- **Putnam 2008/A3.** Start with a finite sequence a_1, a_2, \ldots, a_n of positive integers. If possible, choose two indices j < k such that a_j does not divide a_k , and replace a_j and a_k by their GCD and LCM, respectively. Prove that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices made.
- **Classical.** Prove that the second player does not have a winning strategy for 3×3 tic-tac-toe. How about for $4 \times 4 \times 4$ tic-tac-toe?
- **Putnam 2002/B2.** Consider a polyhedron with at least five faces such that exactly three edges emerge from each of its vertices. Two players play the following game:

Each player, in turn, signs his or her name on a previously unsigned face. The winner is the player who first succeeds in signing three faces that share a common vertex.

Show that the player who signs first will always win by playing as well as possible.

2 Bonus problem

- **Putnam 2002/B4.** An integer n, unknown to you, has been randomly chosen in the interval [1, 2002] with uniform probability. Your objective is to select n in an **odd** number of guesses. After each incorrect guess, you are informed whether n is higher or lower, and you **must** guess an integer on your next turn among the numbers that are still feasibly correct. Show that you have a strategy so that the chance of winning is greater than 2/3.
- **Putnam 2002/A4.** In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3×3 matrix. Player 0 counters with a 0 in a vacant position, and play continues in turn until the 3×3 matrix is completed with five 1's and four 0's. Player 0 wins if the determinant is 0 and player 1 wins otherwise. Assuming both players pursue optimal strategies, who will win and how?