Inequalities

Po-Shen Loh

11 October 2010

1 Problems

Putnam 2004/B2. Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \frac{n!}{n^{n}}
$$

Gelca and Andreescu 104. If $a_{1}+\cdots+a_{n}=n$, prove that $a_{1}^{4}+\cdots+a_{n}^{4} \geq n$.
Gelca and Andreescu 105. Let a_{1}, \ldots, a_{n} be distinct real numbers. Find the maximum of

$$
a_{1} a_{\sigma(1)}+a_{2} a_{\sigma(2)}+\cdots a_{n} a_{\sigma(n)}
$$

over all permutations of the set $\{1, \ldots, n\}$.
Gelca and Andreescu 109. Let $P(x)$ be a polynomial with positive real coefficients. Prove that

$$
\sqrt{P(a) P(b)} \geq P(\sqrt{a b})
$$

for all positive real numbers a, b.
Putnam 2003/A2. Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be nonnegative real numbers. Show that

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \cdots b_{n}\right)^{1 / n} \leq\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{n}+b_{n}\right)\right]^{1 / n}
$$

Putnam 2000/A1. Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that x_{0}, x_{1}, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_{j}=A$?

Putnam 2007/A2. Find the least possible area of a convex set in the plane which touches both branches of the hyperbola $x y=1$ and both branches of $x y=-1$.

Putnam 2002/B3. Show that for all integers $n>1$,

$$
\frac{1}{2 n e}<\frac{1}{e}-\left(1-\frac{1}{n}\right)^{n}<\frac{1}{n e}
$$

2 Bonus problem

Gelca and Andreescu 83. Prove that every polynomial $P(x)$ that takes only nonnegative values can be written as the sum of the squares of two polynomials.

