Calculus

Po-Shen Loh

28 September 2010

1 Problems

Putnam 2007/B2. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right|
$$

Putnam 1998/A3. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$
f(a) \cdot f^{\prime}(a) \cdot f^{\prime \prime}(a) \cdot f^{\prime \prime \prime}(a) \geq 0
$$

Putnam 2006/A1. Find the volume of the region of points (x, y, z) such that

$$
\left(x^{2}+y^{2}+z^{2}+8\right)^{2} \leq 36\left(x^{2}+y^{2}\right)
$$

Putnam 1999/B2. Let $P(x)$ be a polynomial of degree n such that $P(x)=Q(x) P^{\prime \prime}(x)$, where $Q(x)$ is a quadratic polynomial and $P^{\prime \prime}(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have n distinct roots.

Putnam 2002/A1. Let k be a fixed positive integer. The n-th derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

Putnam 2008/B2. Let $F_{0}(x)=\ln x$. For $n \geq 0$ and $x>0$, let $F_{n+1}(x)=\int_{0}^{x} F_{n}(t) d t$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{n!F_{n}(1)}{\ln n}
$$

2 Bonus problems

Putnam 2008/A4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \leq e \\ x f(\ln x) & \text { if } x>e\end{cases}
$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?
Putnam 2005/A5. Evaluate

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
$$

