Polynomials

Po-Shen Loh

21 September 2010

1 Problems

- **Gelca and Andreescu 155.** Let a, b, c be real numbers. Show that $a, b, c \ge 0$ if and only if $a + b + c \ge 0$, $ab + bc + ca \ge 0$, and $abc \ge 0$.
- **Euler.** Prove that there is no polynomial P(x) with integer coefficients and degree at least 1, such that $P(0), P(1), P(2), \ldots$ are all prime.
- **Putnam 2005/B1.** Find a nonzero polynomial P(x, y) such that P(|a|, |2a|) = 0 for all real numbers a.
- **Putnam 2007/B1.** Let f be a nonconstant polynomial with positive integer coefficients. Prove that if k is a positive integer, then f(k) divides f(f(k) + 1) if and only if k = 1.
- **Russia 2002 (GA 147).** Let P(x) be a polynomial of odd degree with real coefficients. Show that the polynomial P(P(x)) = 0 has at least as many real roots as the equation P(x) = 0, counted without multiplicities.
- **Romania 1979 (GA 153).** Let P(z) be a polynomial with complex coefficients. Prove that P(z) is an even function if and only if there exists a polynomial Q(z) with complex coefficients satisfying P(z) = Q(z)Q(-z).
- **Putnam 2004/B1.** Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \cdots + c_0$ be a polynomial with integer coefficients. Suppose that r is a rational number such that P(r) = 0. Show that the n numbers $c_n r$, $c_n r^2 + c_{n-1} r$, $c_n r^3 + c_{n-1} r^2 + c_{n-2} r$, \ldots , $c_n r^n + c_{n-1} r^{n-1} + \cdots + c_1 r$ are integers.

2 Bonus problems

Putnam 2001/A3. For each integer m, consider the polynomial

$$P_m(x) = x^4 - (2m+4)x^2 + (m-2)^2$$

For what values of m is $P_m(x)$ the product of two nonconstant polynomials with integer coefficients?

Putnam 2003/B4. Let

$$f(z) = az^4 + bz^3 + cz^2 + dz + e$$

= $a(z - r_1)(z - r_2)(z - r_3)(z - r_4),$

where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_1 + r_2$ is a rational number and $r_1 + r_2 \neq r_3 + r_4$, then r_1r_2 is a rational number.

Putnam 2007/B5. Let k be a positive integer. Prove that there exist polynomials $P_0(n)$, $P_1(n)$, ..., $P_{k-1}(n)$ (which may depend on k) such that for any integer n,

$$\left\lfloor \frac{n}{k} \right\rfloor^k = P_0(n) + P_1(n) \left\lfloor \frac{n}{k} \right\rfloor + \dots + P_{k-1}(n) \left\lfloor \frac{n}{k} \right\rfloor^{k-1}$$