Polynomials

Po-Shen Loh

21 September 2010

1 Problems

Gelca and Andreescu 155. Let a, b, c be real numbers. Show that $a, b, c \geq 0$ if and only if $a+b+c \geq 0$, $a b+b c+c a \geq 0$, and $a b c \geq 0$.

Euler. Prove that there is no polynomial $P(x)$ with integer coefficients and degree at least 1 , such that $P(0), P(1), P(2), \ldots$ are all prime.

Putnam 2005/B1. Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a.
Putnam 2007/B1. Let f be a nonconstant polynomial with positive integer coefficients. Prove that if k is a positive integer, then $f(k)$ divides $f(f(k)+1)$ if and only if $k=1$.

Russia 2002 (GA 147). Let $P(x)$ be a polynomial of odd degree with real coefficients. Show that the polynomial $P(P(x))=0$ has at least as many real roots as the equation $P(x)=0$, counted without multiplicities.

Romania 1979 (GA 153). Let $P(z)$ be a polynomial with complex coefficients. Prove that $P(z)$ is an even function if and only if there exists a polynomial $Q(z)$ with complex coefficients satisfying $P(z)=$ $Q(z) Q(-z)$.

Putnam 2004/B1. Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers $c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+$ $c_{n-1} r^{2}+c_{n-2} r, \ldots, c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots c_{1} r$ are integers.

2 Bonus problems

Putnam 2001/A3. For each integer m, consider the polynomial

$$
P_{m}(x)=x^{4}-(2 m+4) x^{2}+(m-2)^{2} .
$$

For what values of m is $P_{m}(x)$ the product of two nonconstant polynomials with integer coefficients?
Putnam 2003/B4. Let

$$
\begin{aligned}
f(z) & =a z^{4}+b z^{3}+c z^{2}+d z+e \\
& =a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)
\end{aligned}
$$

where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.

Putnam 2007/B5. Let k be a positive integer. Prove that there exist polynomials $P_{0}(n), P_{1}(n), \ldots$, $P_{k-1}(n)$ (which may depend on k) such that for any integer n,

$$
\left\lfloor\frac{n}{k}\right\rfloor^{k}=P_{0}(n)+P_{1}(n)\left\lfloor\frac{n}{k}\right\rfloor+\cdots+P_{k-1}(n)\left\lfloor\frac{n}{k}\right\rfloor^{k-1} .
$$

