Pigeonhole Principle

Po-Shen Loh

14 September 2010

1 Problems

Classical. Given n integers, prove that some nonempty subset of them has sum divisible by n.

- **Paul Erdős.** Let A be a set of n + 1 integers from $\{1, ..., 2n\}$. Prove that some element of A divides another.
- **Putnam 2002/A2.** Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.
- **Putnam 2006/B2.** Prove that, for every set $X = \{x_1, x_2, ..., x_n\}$ of *n* real numbers, there exists a nonempty subset *S* of *X* and an integer *m* such that

$$\left| m + \sum_{s \in S} s \right| \le \frac{1}{n+1}.$$

- **Putnam 2000/B1.** Let a_j, b_j, c_j be integers for $1 \le j \le N$. Assume for each j, at least one of a_j, b_j, c_j is odd. Show that there exist integers r, s, t such that $ra_j + sb_j + tc_j$ is odd for at least $\frac{4}{7}N$ values of j, $1 \le j \le N$.
- **VTRMC 2002/3.** Let A and B be nonempty subsets of $S = \{1, 2, ..., 99\}$ (integers from 1 to 99 inclusive). Let a and b denote the number of elements in A and B respectively, and suppose a + b = 100. Prove that for each integer s in S, there are integers x in A and y in B such that x + y is either s or s + 99.
- **Erdős-Szekeres.** Prove that every sequence of n^2 distinct numbers contains a subsequence of length n which is monotone (i.e. either always increasing or always decreasing).
- MOP 2007/7/1. A 100×100 array is filled with numbers from $\{1, \ldots, 100\}$, such that each number appears exactly 100 times. Prove that there is some row or column which contains at least 10 different numbers.

2 Bonus problems

- **Putnam 2006/A3.** Let 1, 2, 3, ..., 2005, 2006, 2007, 2009, 2012, 2016, ... be a sequence defined by $x_k = k$ for k = 1, 2, ..., 2006 and $x_{k+1} = x_k + x_{k2005}$ for $k \ge 2006$. Show that the sequence has 2005 consecutive terms each divisible by 2006.
- **MOP 2004.** A set S of numbers is called a *Sidon set* if it has the property that for every distinct $a, b, c, d \in S$, the sums a + b and c + d are distinct. (There are no repeated pairwise sums between elements of S.) A natural question is to ask how large a Sidon set can be, if, say, the numbers must be integers in $\{1, \ldots, 100\}$. Prove that there is no such Sidon set of size 16.
- **Putnam 1993/A4.** Let x_1, \ldots, x_{19} be positive integers less than or equal to 93. Let y_1, \ldots, y_{93} be positive integers less than or equal to 19. Prove that there exists a (nonempty) sum of some x_i 's equal to a sum of some y_i 's.