Pigeonhole Principle

Po-Shen Loh

14 September 2010

1 Problems

Classical. Given n integers, prove that some nonempty subset of them has sum divisible by n.
Paul Erdős. Let A be a set of $n+1$ integers from $\{1, \ldots, 2 n\}$. Prove that some element of A divides another.

Putnam 2002/A2. Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.

Putnam 2006/B2. Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n real numbers, there exists a nonempty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

Putnam 2000/B1. Let a_{j}, b_{j}, c_{j} be integers for $1 \leq j \leq N$. Assume for each j, at least one of a_{j}, b_{j}, c_{j} is odd. Show that there exist integers r, s, t such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $\frac{4}{7} N$ values of j, $1 \leq j \leq N$.

VTRMC 2002/3. Let A and B be nonempty subsets of $S=\{1,2, \ldots, 99\}$ (integers from 1 to 99 inclusive). Let a and b denote the number of elements in A and B respectively, and suppose $a+b=100$. Prove that for each integer s in S, there are integers x in A and y in B such that $x+y$ is either s or $s+99$.

Erdős-Szekeres. Prove that every sequence of n^{2} distinct numbers contains a subsequence of length n which is monotone (i.e. either always increasing or always decreasing).

MOP 2007/7/1. A 100×100 array is filled with numbers from $\{1, \ldots, 100\}$, such that each number appears exactly 100 times. Prove that there is some row or column which contains at least 10 different numbers.

2 Bonus problems

Putnam 2006/A3. Let $1,2,3, \ldots, 2005,2006,2007,2009,2012,2016, \ldots$ be a sequence defined by $x_{k}=k$ for $k=1,2, \ldots, 2006$ and $x_{k+1}=x_{k}+x_{k 2005}$ for $k \geq 2006$. Show that the sequence has 2005 consecutive terms each divisible by 2006 .

MOP 2004. A set S of numbers is called a Sidon set if it has the property that for every distinct $a, b, c, d \in S$, the sums $a+b$ and $c+d$ are distinct. (There are no repeated pairwise sums between elements of S.) A natural question is to ask how large a Sidon set can be, if, say, the numbers must be integers in $\{1, \ldots, 100\}$. Prove that there is no such Sidon set of size 16 .

Putnam 1993/A4. Let x_{1}, \ldots, x_{19} be positive integers less than or equal to 93 . Let y_{1}, \ldots, y_{93} be positive integers less than or equal to 19. Prove that there exists a (nonempty) sum of some x_{i} 's equal to a sum of some y_{i} 's.

