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1. Introduction

A large fraction of the theory of approximation algorithms, as we know it today,
is built around the theory of linear programming, which offers the two funda-
mental algorithm design techniques of rounding and the primal–dual schema (see
Vazirani [2001]). Interestingly enough, the LP-duality based analysis [Lovasz 1975;
Chvatal 1979] for perhaps the most central problem of this theory, the set cover
problem, did not use either of these techniques. Moreover, the analysis used for set
cover does not seem to have found use outside of this problem and its generaliza-
tions [Rajagopalan and Vazirani 1999], leading to a somewhat unsatisfactory state
of affairs.

In this article, we formalize the technique used for analyzing set cover as the
method of dual fitting, and we also introduce the idea of using a factor-revealing
LP. Using this combination we analyze two greedy algorithms for the metric un-
capacitated facility location problem. Their approximation factors are 1.861 and
1.61, with running times of O(m log m) and O(n3) respectively, where m and n
denote the total number of edges and vertices in the underlying complete bipartite
graph between cities and facilities. In other words, m = nc × n f and n = nc + n f ,
where nc is the number of cities and n f is the number of facilities.

1.1. DUAL FITTING WITH FACTOR-REVEALING LP. The set cover problem offers
a particularly simple setting for illustrating most of the dominant ideas in approx-
imation algorithms (see Vazirani [2001]). Perhaps the reason that the method of
dual fitting was not clear so far was that the set cover problem did not require its
full power. However, in retrospect, its salient features are best illustrated again in
the simple setting of the set cover problem— we do this in Section 9.

The method of dual fitting can be described as follows, assuming a minimization
problem: The basic algorithm is combinatorial— in the case of set cover it is in fact
a simple greedy algorithm. Using the linear programming relaxation of the problem
and its dual, one first interprets the combinatorial algorithm as a primal-dual-type
algorithm— an algorithm that is iteratively making primal and dual updates. Strictly
speaking, this is not a primal-dual algorithm, since the dual solution computed
is, in general, infeasible (see Section 9 for a discussion on this issue). However,
one shows that the primal integral solution found by the algorithm is fully paid
for by the dual computed. By fully paid for we mean that the objective function
value of the primal solution is bounded by that of the dual. The main step in the
analysis consists of dividing the dual by a suitable factor, say γ , and showing
that the shrunk dual is feasible, that is, it fits into the given instance. The shrunk
dual is then a lower bound on OPT, and γ is the approximation guarantee of
the algorithm.

Clearly, we need to find the minimum γ that suffices. Equivalently, this amounts
to finding the worst possible instance— one in which the dual solution needs to be
shrunk the most in order to be rendered feasible. For each value of nc, the number
of cities, we define a factor-revealing LP that encodes the problem of finding the
worst possible instance with nc cities as a linear program. This gives a family of
LP’s, one for each value of nc. The supremum of the optimal solutions to these
LP’s is then the best value for γ . In our case, we do not know how to compute
this supremum directly. Instead, we obtain a feasible solution to the dual of each of
these LP’s. An upper bound on the objective function values of these duals can be
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computed, and is an upper bound on the optimal γ . In our case, this upper bound is
1.861 for the first algorithm and 1.61 for the second one. In order to get a closely
matching tight example, we numerically solve the factor-revealing LP for a large
value of nc.

The technique of factor-revealing LPs is similar to the idea of LP bounds in
coding theory. LP bounds give the best known bounds on the minimum distance
of a code with a given rate by bounding the solution of a linear program (see
Mahdian et al. [1977]). In the context of approximation algorithms, [Goemans and
Kleinberg 1998] use a similar method in the analysis of their algorithm for the
minimum latency problem.

1.2. THE FACILITY LOCATION PROBLEM. In the (uncapacitated) facility loca-
tion problem, we have a set F of n f facilities and a set C of nc cities. For every
facility i ∈ F , a nonnegative number fi is given as the opening cost of facility i .
Furthermore, for every facility i ∈ F and city j ∈ C, we have a connection cost
(a.k.a. service cost) cij between facility i and city j . The objective is to open a
subset of the facilities in F , and connect each city to an open facility so that the
total cost is minimized. We will consider the metric version of this problem, that
is, the connection costs satisfy the triangle inequality.

This problem has occupied a central place in operations research since the
early 60’s [Balinski 1996; Kaufman et al. 1977; Kuehn and Hamburger 1963;
Stollsteimer 1961, 1963], and has been studied from the perspectives of worst case
analysis, probabilistic analysis, polyhedral combinatorics and empirical heuristics
(see Cornuejols et al. [1990] and Nemhauser and Wolsey [1990]). Although the first
approximation algorithm for this problem, a greedy algorithm achieving a guarantee
of O(log n) in the general (nonmetric) case due to [Hochbaum 1982], dates back to
almost 20 years ago, renewed interest in recent years has resulted in much progress.
Recently, the problem has found several new applications in network design prob-
lems such as placement of routers and caches [Guha et al. 2000a; Li et al. 1999],
agglomeration of traffic or data [Andrews and Zhang 1998; Guha et al. 2000b], and
web server replications in a content distribution network (CDN) [Jamin et al. 2000;
Qiu et al. 2001].

The first constant factor approximation algorithm for this problem was given by
Shmoys et al. [1997]. Later, the factor was improved by Chudak [1998] and Chudak
and Shmoys [1998] to 1 + 2/e. Both these algorithms were based on LP-rounding,
and therefore had high running times.

Jain and Vazirani [1999] gave a primal–dual algorithm, achieving a factor of 3,
and having the same running time as ours (we will refer to this as the JV algorithm).
Their algorithm was adapted for solving several related problems such as the fault-
tolerant and outlier versions, and the k-median problem [Jain and Vazirani 1999,
2000; Charikar et al. 2001]. Mettu and Plaxton [2000] simplified the JV algorithm
and improved its running time by a logarithmic factor.

Strategies based on local search and greedy improvement for facility location
problem have also been studied. The work of Korupolu et al. [1998] shows that a sim-
ple local search heuristic proposed by Kuehn and Hamburger [1963] yields a (5 + ε)-
approximation algorithm with a running time of O(n6 log n/ε), for any ε > 0.
Charikar and Guha [1999] improved the factor slightly to 1.728 by combining the JV
algorithm, greedy augmentation, and the LP-based algorithm [Chudak and Shmoys
1998]. They also combined greedy improvement and cost scaling to improve the
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factor of the JV algorithm to 1.853. For a metric defined by a sparse graph,
Thorup [2001] has obtained a (3 + o(1))-approximation algorithm with run-
ning time Õ(|E |). Regarding hardness results, Guha and Khuller [1999] showed
that the best approximation factor possible for this problem is 1.463, assuming
NP 6⊆ DTIME[nO(log log n)].

Since the publication of the first draft of this article, two new algorithms have been
proposed for the facility location problem. The first algorithm, due to Sviridenko
[2002], uses the LP-rounding method to achieve an approximation factor of 1.58.
The second algorithm, due to Mahdian et al. [2002], combines our second algorithm
with the idea of cost scaling to achieve an approximation factor of 1.52, which is
currently the best known factor for this problem.

1.3. OUR RESULTS. Our first algorithm is quite similar to the greedy set cover
algorithm: iteratively pick the most cost-effective choice at each step, where cost-
effectiveness is measured as the ratio of the cost incurred to the number of new
cities served. In order to use LP-duality to analyze this algorithm, we give an alter-
native description which can be seen as a modification of the JV algorithm— when
a city gets connected to an open facility, it withdraws whatever it has contributed
towards the opening cost of other facilities. This step of withdrawing contribu-
tion is important, since it ensures that the primal solution is fully paid for by
the dual.

The second algorithm has a minor difference with the first one: A city might
change the facility to which it is connected and connect to a closer facility. If so, it
offers this difference toward opening the latter facility.

The approximation factor of the algorithms are 1.861 and 1.61, with running
times of O(m log m) and O(n3) respectively where n is the total number of vertices
and m is the number of edges in the underlying complete bipartite graph between
cities and facilities.

We have experimented our algorithms on randomly generated instances as well
as instances obtained from the Operations Research library [Beasley 2002] and
GT-ITM Internet topology generator [Zegura et al. 1996]. The cost of the integral
solution found is compared against the solution of the LP-relaxation of the problem,
rather than OPT (computing which would be prohibitively time consuming). The
results are encouraging: The average error of our algorithms is about 3% and 1%
respectively, and is a significant improvement over the JV algorithm which has an
error of even 100% in some cases.

The primal-dual algorithm of Jain and Vazirani [1999] is versatile in that it can
be used to obtain algorithms for many variants of the facility location problem,
such as k-median, a common generalization of k-median and facility location,
capacitated facility location with soft capacities [Jain and Vazirani 1999], and prize
collecting facility location and facility location with outliers [Charikar et al. 2001].
In Section 8, we apply our algorithms to several variants of the problem. First, we
consider a common generalization of the facility location and k-median problems.
In this problem, which we refer to as the k-facility location problem, an instance
of the facility location problem and an integer k are given and the objective is to
find the cheapest solution that opens at most k facilities. The k-median problem
is a special case of this problem in which all opening costs are 0. The k-median
problem is studied extensively [Arya et al. 2001; Charikar and Guha 1999; Charikar
et al. 1999; Jain and Vazirani 1999] and the best known approximation algorithm
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for this problem, due to Arya et al. [2001], achieves a factor of 3 + ε. The k-facility
location problem has also been studied in operations research [Cornuejols et al.
1990], and the best previously known approximation factor for this problem was
6 [Jain and Vazirani 1999].

Next, we show an application of our algorithm to the facility location game.
We also use our algorithm to improve recent results for some other variants of
the problem. In the facility location problem with outliers, we are not required to
connect all cities to open facilities. We consider two versions of this variant: In the
robust version, we are allowed to leave l cities unconnected. In facility location
with penalties, we can either connect a city to a facility, or pay a specified penalty.
Both versions were motivated by commercial applications, and were proposed by
Charikar et al. [2001]. In this article, we will modify our algorithm to obtain a factor
2 approximation algorithm for these versions, improving the best known result of
factor 3 [Charikar et al. 2001].

In the fault-tolerant variant, each city has a specified number of facilities it should
be connected to. This problem was proposed in [Jain and Vazirani 2000] and the
best factor known is 2.47 [Guha et al. 2001]. We can achieve a factor of 1.61 when
all cities have the same connectivity requirement. In addition, we introduce a new
variant which can be seen as a special case of the concave cost version of this
problem: the cost of opening a facility at a location is specified and it can serve
exactly one city. In addition, a setup cost is charged the very first time a facility is
opened at a given location.

2. Algorithm 1

In the following algorithm, we use a notion of cost effectiveness. Let us say that a
star consists of one facility and several cities. The cost of a star is the sum of the
opening cost of the facility and the connection costs between the facility and all the
cities in the star. More formally, the cost of the star (i, C ′), where i is a facility and
C ′ ⊆ C is a subset of cities, is fi +

∑

j∈C ′ cij. The cost effectiveness of the star (i, C ′)
is the ratio of the cost of the star to the size of C ′, that is, ( fi +

∑

j∈C ′ cij)/|C ′|.

Algorithm 1

(1) Let U be the set of unconnected cities. In the beginning, all cities are unconnected i.e. U := C
and all facilities are unopened.

(2) While U 6= ∅:

— Among all stars, find the most cost-effective one, (i, C ′), open facility i , if it is not already
open, and connect all cities in C ′ to i .

— Set fi := 0, U := U \ C ′.

Note that a facility can be chosen again after being opened, but its opening cost
is counted only once since we set fi to zero after the first time the facility is picked
by the algorithm. As far as cities are concerned, every city j is removed from C ,
when connected to an open facility, and is not taken into consideration again. Also,
notice that although the number of stars is exponentially large, in each iteration the
most cost-effective pair can be found in polynomial time. For each facility i , we
can sort the cities in increasing order of their connection cost to i . It can be easily
seen that the most cost-effective star will consist of a facility and a set, containing
the first k cities in this order, for some k.
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The idea of cost effectiveness essentially stems from a similar notion in the
greedy algorithm for the set cover problem. In that algorithm, the cost effective-
ness of a set S is defined to be the cost of S over the number of uncovered ele-
ments in S. In each iteration, the algorithm picks the most cost-effective set until
all elements are covered. The most cost-effective set can be found either by us-
ing direct computation, or by using the dual program of the linear programming
formulation for the problem. The dual program can also be used to prove the ap-
proximation factor of the algorithm. Similarly, we will use the LP-formulation
of facility location to analyze our algorithm. As we will see, the dual formu-
lation of the problem helps us to understand the nature of the problem and the
greedy algorithm.

The facility location problem can be captured by an integer program due to Balin-
ski [1996]. For the sake of convenience, we give another equivalent formulation
for the problem. Let S be the set of all stars. The facility location problem can
be thought of as picking a minimum cost set of stars such that each city is in at
least one star. This problem can be captured by the following integer program. In
this program, xS is an indicator variable denoting whether star S is picked and cS
denotes the cost of star S.

minimize
∑

S∈S

cSxS

subject to ∀ j ∈ C :
∑

S: j∈S

xS ≥ 1 (1)

∀S ∈ S : xS ∈ {0, 1}

The LP-relaxation of this program is:

minimize
∑

S∈S

cSxS

subject to ∀ j ∈ C :
∑

S: j∈S

xS ≥ 1 (2)

∀S ∈ S : xS ≥ 0

The dual program is:

maximize
∑

j∈C

α j

subject to ∀S ∈ S :
∑

j∈S∩C

α j ≤ cS (3)

∀ j ∈ C : α j ≥ 0

There is an intuitive way of interpreting the dual variables. We can think of α j
as the contribution of city j , or its share toward the total expenses. Note that the
first inequality of the dual can also be written as

∑

j∈C max(0, α j − cij) ≤ fi for
every facility i . We can now see how the dual variables can help us find the most
cost-effective star in each iteration of the greedy algorithm: if we start raising the
dual variables of all unconnected cities simultaneously, the most cost-effective
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star will be the first star (i, C ′) for which
∑

j∈C ′ max(0, α j − cij) = fi . Hence,
we can restate Algorithm 1 based on the above observation. This is in complete
analogy to the greedy algorithm and its restatement using LP-formulation for
set-cover.

Restatement of Algorithm 1

(1) We introduce a notion of time, so that each event can be associated with the time at which
it happened. The algorithm starts at time 0. Initially, each city is defined to be unconnected
(U := C), all facilities are unopened, and α j is set to 0 for every j.

(2) While U 6= ∅, increase the time, and simultaneously, for every city j ∈ U , increase the parameter
α j at the same rate, until one of the following events occurs (if two events occur at the same time,
we process them in arbitrary order).
(a) For some unconnected city j , and some open facility i , α j = cij. In this case, connect city j

to facility i and remove j from U .
(b) For some unopened facility i , we have

∑

j∈U max(0, α j − cij) = fi . This means that the total
contribution of the cities is sufficient to open facility i . In this case, open this facility, and for
every unconnected city j with α j ≥ cij, connect j to i , and remove it from U .

In each iteration of algorithm 1 the process of opening a facility and/or connecting
some cities will be defined as an event. It is easy to prove the following lemma by
induction.

LEMMA 2.1. The sequence of events executed by Algorithm 1 and its restate-
ment are identical.

PROOF. By induction.

This restatement can also be seen as a modification of JV algorithm [Jain and
Vazirani 1999]. The only difference is that in JV algorithm cities, when connected
to an open facility, are not excluded from U ; hence, they might contribute towards
opening several facilities. Due to this fact, they have a second cleanup phase in
which some of the already open facilities will be closed down.

Also, it is worth noting that despite the similarity between Algorithm 1 and
Hochbaum’s greedy algorithm for facility location (which is equivalent to the set
cover algorithm applied on the set of stars), they are not equivalent. This is be-
cause we set fi to zero after picking a set containing fi . As the following exam-
ple shows, the approximation factor of Hochbaum’s algorithm is Ä( log n

log log n ) on
instances with metric inequality: Consider k facilities with opening cost pk

located in the same place. Also k − 1 groups of cities S1, S2, . . . , Sk−1. The group
Si consists of pk−i+1 cities with distance

∑

j=1···i p j−1 from the facilities. Other
distances are obtained from the triangle inequality. Hochbaum’s algorithm opens
all facilities and therefore its solution costs more than kpk . The optimum solution
is pk +

∑

i=1···k−1

∑

j=1···i p j−1. It is easy to show that with a careful choice of
k, the ratio of these two expressions is Ä( log n

log log n ). We do not know whether the
approximation factor of Hochbaum’s algorithm on metric instances is strictly less
than log n.

3. Analysis of Algorithm 1

In this section, we will give an LP-based analysis of the algorithm. As stated
before, the contribution of each city goes towards opening at most one facility and
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connecting the city to an open facility. Therefore, the total cost of the solution
produced by our algorithm will be equal to the sum

∑

j α j of the contributions.
However, α is not a feasible dual solution as it was in JV algorithm. The reason
is that in every iteration of the restatement of Algorithm 1, we exclude a subset of
cities and withdraw their contribution from all facilities. So at the end, for some
facility i ,

∑

j max(α j − cij, 0) can be greater than fi and hence the corresponding
constraint of the dual program is violated.

However, if we find a γ for which α/γ is feasible,
∑

j α j/γ would be a lower
bound to the optimum and therefore the approximation factor of the algorithm
would be at most γ . This observation motivates the following definition.

Definition 3.1. Given α j ( j = 1, . . . , nc), a facility i is called at most γ -
overtight if and only if

∑

j

max

(

α j

γ
− cij, 0

)

≤ fi .

Using the above definition, it is trivial that α/γ is a feasible dual if and only if
each facility is at most γ -overtight. Now, we want to find such a γ . Note that in the
above sum we only need to consider the cities j for which α j ≥ γ cij. Let us assume
without loss of generality that this is the case only for the first k cities. Moreover,
assume without loss of generality that α1 ≤ α2 ≤ · · · ≤ αk . The next two lemmas
express the constraints on α imposed by the problem or our algorithm. The first
lemma mainly captures the metric property and the second one expresses the fact
that the total contribution offered to a facility at any time during the algorithm is
no more than its cost.

LEMMA 3.2. For every two cities j, j ′ and facility i , α j ≤ α j ′ + cij′ + cij.

PROOF. If α j ′ ≥ α j , the inequality obviously holds. Assume α j > α j ′ . Let i ′

be the facility that city j ′ is connected to by our algorithm. Thus, facility i ′ is open
at time α j ′ . The contribution α j cannot be greater than ci ′ j because in that case
city j could be connected to facility i ′ at some time t < α j . Hence, α j ≤ ci ′ j .
Furthermore, by the triangle inequality, ci ′ j ≤ ci ′ j ′ + cij′ + cij ≤ α j ′ + cij′ + cij.

LEMMA 3.3. For every city j and facility i ,
∑k

l= j max(α j − cil, 0) ≤ fi .

PROOF. Assume, for the sake of contradiction, that for some j and some i the
inequality does not hold, that is,

∑k
l= j max(α j − cil, 0) > fi . By the ordering on

cities, for l ≥ j , αl ≥ α j . Let time t = α j . By the assumption, facility i is fully
paid for before time t . For any city l, j ≤ l ≤ k for which α j − cil > 0 the edge
(i, l) is tight before time t . Moreover, there must be at least one such city. For this
city, αl < α j , since the algorithm will stop growing αl as soon as l has a tight edge
to a fully paid for facility. The contradiction establishes the lemma.

Subject to the constraints introduced by Lemmas 3.2 and 3.3, we want to
find the minimum γ for which

∑k
j=1(α j/γ − cij) ≤ fi . In other words, we want

to find the maximum of the ratio
∑k

j=1 α j/( f +
∑k

j=1 d j ). We can define vari-
ables f , d j , and α j , corresponding to facility cost, distances, and contributions,
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respectively, and write the following maximization program:

zk = maximize

∑k
j=1 α j

f +
∑k

j=1 d j

subject to α j ≤ α j+1 ∀ j ∈ {1, . . . , k − 1}

α j ≤ αl + d j + dl ∀ j, l ∈ {1, . . . , k}
∑k

l= j max(α j − dl, 0) ≤ f ∀ j ∈ {1, . . . , k}

α j , d j , f ≥ 0 ∀ j ∈ {1, . . . , k}

(4)

It is not difficult to prove that zk (the maximum value of the objective function of
program 4) is equal to the optimal solution of the following linear program, which
we call the factor-revealing LP.

zk = maximize
k
∑

j=1

α j

subject to f +
∑k

j=1 d j ≤ 1
α j ≤ α j+1 ∀ j ∈ {1, . . . , k − 1}

α j ≤ αl + d j + dl ∀ j, l ∈ {1, . . . , k}

x jl ≥ α j − dl ∀ j, l ∈ {1, . . . , k}
∑k

l= j x jl ≤ f ∀ j ∈ {1, . . . , k}

α j , d j , f ≥ 0 ∀ j ∈ {1, . . . , k}

(5)

LEMMA 3.4. Let γ = supk≥1{zk}. Every facility is at most γ -overtight

PROOF. Consider facility i . We want to show that
∑

j max(α j/γ −cij, 0) ≤ fi .
Suppose without loss of generality that the subset of cities j such that α j ≥ γ cij

is { j = 1, 2, . . . , k} for some k. Moreover α1 ≤ α2 ≤ · · · ≤ αk . Let d j = cij,
j = 1, . . . , k, and f = fi . By Lemmas 3.2 and 3.3, it follows immediately that
the constraints of program 4 are satisfied. Therefore, αi , di , f constitute a feasible
solution of program 4. Consequently,

∑k
j=1 α j

fi +
∑k

j=1 cij

≤ zk .

By what we said so far, we know that the approximation factor of our algorithm is
at most supk≥1{zk}. In the following theorem, we prove, by demonstrating an infinite
family of instances, that the approximation ratio of Algorithm 1 is not better than
supk≥1{zk}.

THEOREM 3.5. The approximation factor of our algorithm is precisely
supk≥1{zk}.

PROOF. Consider an optimum feasible solution of program 4. We construct an
instance of the facility location problem with k cities and k +1 facilities as follows:
The cost of opening facility i is

fi =

{

0 if 1 ≤ i ≤ k
f if i = k + 1
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The connection cost between a city j and a facility i is:

cij =







α j if 1 ≤ i = j ≤ k
d j if 1 ≤ j ≤ k, i = k + 1
di + d j + αi otherwise

It is easy to see that the connection costs satisfy the triangle inequality. On this
instance, our algorithm connects city 1 to facility 1, then it connects city 2 to
facility 2, and finally connects city k to facility k. (The inequality

∑k
l= j max(α j −

dl, 0) ≤ f guarantees that city i can get connected to facility i before facility
k +1). Therefore, the cost of the restatement of Algorithm 1 is equal to

∑k
j=1 c j j +

∑k
i=1 fi =

∑k
j=1 α j = zk .

On the other hand, the optimal solution for this instance is to connect all the
cities to facility k + 1. The cost of this solution is equal to

∑k
j=1 ck+1, j + fk+1 =

f +
∑k

j=1 d j ≤ 1.
Thus, our algorithm outputs a solution whose cost is at least zk times the cost of

the optimal solution.

The only thing that remains is to find an upper bound on supk≥1{zk}. By solving
the factor-revealing LP for any particular value of k, we get a lower bound on the
value of γ . In order to prove an upper bound on γ , we need to present a general
solution to the dual of the factor-revealing LP. Unfortunately, this is not an easy task
in general. (For example, performing a tight asymptotic analysis of the LP bound is
still an open question in coding theory). However, here empirical results can help
us: we can solve the dual of the factor-revealing LP for small values of k to get an
idea of how the general optimal solution looks. Using this, it is usually possible
(although sometimes tedious) to prove a close-to-optimal upper bound on the value
of zk . We have used this technique to prove an upper bound of 1.861 on γ .

LEMMA 3.6. For every k ≥ 1, zk ≤ 1.861.

PROOF. By doubling a feasible solution of (4) it is easy to show that zk ≤ z2k . So
we can assume, without loss of generality, that k is sufficiently large. Our objective
is to multiply the inequalities of the program (4) by appropriate coefficients and
add them up, to get an inequality of the form

k
∑

j=1

α j − 1.861
k
∑

j=1

d j ≤ 1.861 f. (6)

Notice that finding the right multipliers for inequalities is equivalent to finding a
feasible solution for the dual of the linear program.

We start by looking at the third inequality of program (4). This inequality implies
that for every j and every l j ≥ j , we have

l j
∑

i= j

(α j − di ) ≤ f. (7)

In fact, numerical computations for small values of k suggest that if for each j , we
pick the right l j , then replacing the third inequality of (4) by the above inequality
does not change the solution of the linear program considerably. Furthermore, such
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computations suggest that a step function of the following form is a reasonably
good choice for l j :

l j =

{

p2k if j ≤ p1k
k if j > p1k

Here p1 and p2 are constants that we will fix later in the proof, to get the best
possible bound. We now multiply Inequality 7 by a multiplier θi (that will be fixed
later), and add up these inequalities:

p1k
∑

j=1

p2k
∑

i= j

θ j (α j − di ) +

k
∑

j=p1k+1

k
∑

i= j

θ j (α j − di ) ≤

(

k
∑

j=1

θ j

)

f. (8)

We will pick θ j ’ s in such a way that

k
∑

j=1

θ j ≤ 1.861. (9)

This guarantees that the right-hand side of Inequality (8) is what we want in In-
equality (6). Let us denote the lefthand side of Inequality (8) by A. The coefficients
of α j and −d j in A are equal to

coeffA[α j ] =

{

(p2k − j + 1)θ j j ≤ p1k
(k − j + 1)θ j j > p1k

(10)

coeffA[−d j ] =

{

∑ j
i=1 θi j ≤ p2k

∑ j
i=p1k+1 θi j > p2k

(11)

We will pick θ j ’ s in such a way that the sum of coefficients of α j ’ s in A is at
least k. This means that we need θ j ’ s to satisfy the following inequality.

p1k
∑

j=1

(p2k − j + 1)θ j +

k
∑

j=p1k+1

(k − j + 1)θ j ≥ k. (12)

The above inequality guarantees that the average coefficient of α j ’ s on the left-
hand-side of Inequality (8) is at least one, which is what we want to get in Inequality
(6). However, some of these coefficients are less than one and others are greater than
one, while at the end, we want all of them to be greater than one. In order to increase
the coefficients that are less than one at the expense of decreasing the ones that are
greater than one, we use the inequality αi ≥ α j − d j − di . Since the sum of the
coefficients of α j ’ s in A is greater than k, using the above inequality, we can obtain
an expression B that is less than or equal to A, such that all α j ’ s have coefficient
at least one in B. However, every time we use the inequality αi ≥ α j − d j − di to
decrease the coefficient of αi and increase the coefficient of α j , the coefficients of
−di and −d j will also be increased by the same amount. Therefore, at the end, the
coefficient of −d j in B will be at most coeffA[−d j ]+|coeffA[α j ]−1|. Thus, using
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Eqs. (10) and (11), and making the assumption p1 < p2 (which will be satisfied by
our choice of p1 and p2), we can write the coefficient of −d j in B as follows:

coeffB[−d j ] =











∑ j
i=1 θi + |(p2k − j + 1)θ j − 1 | j ≤ p1k

∑ j
i=1 θi + |(k − j + 1)θ j − 1 | p1k < j ≤ p2k.

∑ j
i=p1k+1 θi + |(k − j + 1)θ j − 1 | j > p2k

(13)

Therefore, if we can find p1 < p2 and θ j ’ s such that they satisfy conditions (9)
and (12), and

coeffB[−d j ] ≤ 1.861 for all j, (14)

then we can get Inequality 6 by combining the inequalities in the linear program
(4), and hence we obtain zk ≤ 1.861.

In order to compute θ j ’ s for j ≤ p2k, we set the coefficients given in Eq. (13)
to 1.8609, and solve it as a recurrence (here we have 1.8609 instead of 1.861 to
allow room for numerical errors in the computation of p1 and p2). This suggests
the following values for θ j ’ s ( j ≤ p2k).

θ j =

{

2.8609
p2k if j ≤ p1k

2.8609(p2−p1)
p2(1−p1)k if p1k < j ≤ p2k

(15)

For j > p2k, numerical computations suggest that we can take θ j = 0. Now
that we have fixed the values of θ j , we only need to verify the conditions (9), (12),
and (14).

If p1 and p2 are such that (p2k− j+1)θ j ≥ 1 for j ≤ p1k and (k− j+1)θ j ≥ 1 for
p1k < j ≤ p2k, then it is easy to see that coeffB[−d j ] = 1.8609 + O( 1

k ) < 1.861
for j ≤ p2k. Therefore, in order to satisfy condition (14) for j ≤ p2k, it is enough
to pick p1 and p2 such that

(p2k − p1k + 1)
2.8609

p2k
≈

2.8609(p2 − p1)

p2
≥ 1, (16)

and

(k − p2k + 1)
2.8609(p2 − p1)

p2(1 − p1)k
≈

2.8609(p2 − p1)(1 − p2)

p2(1 − p1)
≥ 1. (17)

For j > p2k, by Eq. (13) and our choice of θ j ’ s, we have coeffB[−d j ] =
2.8609(p2−p1)

p2(1−p1)k (p2k − p1k) + 1. Thus, condition (14) for j > p2k is equivalent to the
following.

2.8609(p2 − p1)2

p2(1 − p1)
+ 1 ≤ 1.861. (18)

Also,

k
∑

j=1

θ j =
2.8609

p2k
p1k +

2.8609(p2 − p1)

p2(1 − p1)k
(p2k − p1k),
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FIG. 1. The approximation ratio of Algorithm 1 is at least 1.5.

and therefore condition (9) is equivalent to the following:

2.8609p1

p2
+

2.8609(p2 − p1)2

p2(1 − p1)
≤ 1.861. (19)

Similarly, straightforward calculations show that condition (12) is equivalent to the
following.

2.8609

(

p1 −
p2

1

2p2
+

(p2 − p1)2

p2(1 − p1)
−

(p2 − p1)2(p1 + p2)

2p2(1 − p1)

)

≥ 1. (20)

The only thing that remains is to find numeric values for p1 and p2 subject to the
constraints (16)–(20). It is easy to verify that (p1, p2) = (0.1991, 0.5696) satisfies
all these constraints. This completes the proof of the lemma.

Figure 1 shows a tight example for k = 2, for which the approximation factor of
the algorithm is 1.5. The cost of the missing edges is given by triangle inequality.
Numerical computations using the software CPLEX show that z300 ≈ 1.81. Thus,
the approximation factor of our algorithm is between 1.81 and 1.861. We do not
know the exact approximation ratio.

4. Algorithm 2

Algorithm 2 is similar to the restatement of Algorithm 1. The only difference is
that in Algorithm 1 cities stop offering money to facilities as soon as they get
connected to a facility, but here they still offer some money to other facilities. The
amount that an already-connected city offers to a facility j is equal to the amount
that it would save in connection cost by switching its facility to j . As we will see
in the next section, this change reduces the approximation factor of the algorithm
from 1.861 to 1.61.

Algorithm 2

(1) We introduce a notion of time. The algorithm starts at time 0. At this time, each city is defined to
be unconnected (U := C), all facilities are unopened, and α j is set to 0 for every j.

At every moment, each city j offers some money from its contribution to each unopened
facility i . The amount of this offer is computed as follows: If j is unconnected, the offer is equal
to max(α j − cij, 0) (i.e., if the contribution of j is more than the cost that it has to pay to get
connected to i , it offers to pay this extra amount to i); If j is already connected to some other
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facility i ′, then its offer to facility i is equal to max(ci ′ j − cij, 0) (i.e., the amount that j offers to
pay to i is equal to the amount j would save by switching its facility from i ′ to i).

(2) While U 6= ∅, increase the time, and simultaneously, for every city j ∈ U , increase the parameter
α j at the same rate, until one of the following events occurs (if two events occur at the same time,
we process them in an arbitrary order).

(a) For some unopened facility i , the total offer that it receives from cities is equal to the cost of
opening i . In this case, we open facility i , and for every city j (connected or unconnected)
which has a nonzero offer to i , we connect j to i . The amount that j had offered to i is now
called the contribution of j toward i , and j is no longer allowed to decrease this contribution.

(b) For some unconnected city j , and some open facility i , α j = cij. In this case, connect city j
to facility i and remove j from U .

Clearly, the main issue in the facility location problem is to decide which facilities
to open. Once this is done, each city should be connected to the closest open facility.
Observe that Algorithm 2 makes greedy choices in deciding which facilities to open
and once it opens a facility, it does not alter this decision. In this sense, it is also a
greedy algorithm.

5. Analysis of Algorithm 2

The following fact should be obvious from the description of Algorithm 2.

LEMMA 5.1. The total cost of the solution found by Algorithm 2 is equal to the
sum of the α j ’s.

Now, as in the analysis of Algorithm 1, we need to find a number γ , such that
for every star S,

∑

j∈S∩C α j ≤ γ cS . Such a γ will be an upper bound on the
approximation ratio of the algorithm, since if for every facility i that is opened in
the optimal solution and the collection A of cities that are connected to it, we write
the inequality

∑

j∈A α j ≤ γ ( fi +
∑

j∈A cij) and add up these inequalities, we find
that the cost of our solution is at most γ times the cost of the optimal solution.

5.1. DERIVING THE FACTOR-REVEALING LP. Our proof follows the methodol-
ogy of Section 3: express various constraints that are imposed by the problem or
by the structure of the algorithm as inequalities and get a bound on the value of γ
defined above by solving a series of linear programs.

Consider a star S consisting of a facility having opening cost f (with a slight
misuse of the notation, we call this facility f ), and k cities numbered 1 through k.
Let d j denote the connection cost between facility f and city j , and α j denote the
contribution of the city j at the end of Algorithm 2. We may assume without loss
of generality that

α1 ≤ α2 ≤ · · · ≤ αk . (21)

We need more variables to capture the execution of Algorithm 2. For every i
(1 ≤ i ≤ k), consider the situation of the algorithm at time t = αi − ε, where ε
is very small, that is, just a moment before city i gets connected for the first time.
At this time, each of the cities 1, 2, . . . , i − 1 might be connected to a facility. For
every j < i , if city j is connected to some facility at time t , let r j,i denote the
connection cost between this facility and city j ; otherwise, let r j,i := α j . The latter
case occurs if and only if αi = α j . It turns out that these variables ( f , d j ’ s, α j ’ s,
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and r j,i ’ s) are enough to write down some inequalities to bound the ratio of the sum
of α j ’ s to the cost of S (i.e., f +

∑k
j=1 d j ).

First, notice that once a city gets connected to a facility, its contribution remains
constant and it cannot revoke its contribution to a facility, so it can never get
connected to another facility with a higher connection cost. This implies that for
every j ,

r j, j+1 ≥ r j, j+2 ≥ · · · ≥ r j,k . (22)

Now, consider time t = αi − ε. At this time, the amount city j offers to facility
f is equal to

max(r j,i − d j , 0) if j < i, and
max(t − d j , 0) if j ≥ i.

Notice that by the definition of r j,i this holds even if j < i and αi = α j . It is
clear from Algorithm 2 that the total offer of cities to a facility can never become
larger than the opening cost of the facility. Therefore, for all i ,

i−1
∑

j=1

max(r j,i − d j , 0) +

k
∑

j=i

max(αi − d j , 0) ≤ f. (23)

We will also use the triangle inequality to derive the following constraint: for
every 1 ≤ j < i ≤ k,

αi ≤ r j,i + di + d j . (24)

In order to prove this, note that αi = α j implies r j,i = αi . That makes the
inequality trivial. For the case that α j < αi , consider cities i and j at time t = αi −ε.
Let f ′ be the facility that j is connected to at time t . By the triangle inequality and
the definition of r j,i , the connection cost c f ′i is at most r j,i + di + d j . Furthermore,
c f ′i cannot be less than t , since if it were, our algorithm would have connected city
i to the facility f ′ at a time earlier than t , which is a contradiction.

The above inequalities form the following factor-revealing LP.

maximize

∑k
i=1 αi

f +
∑k

i=1 di

subject to ∀ 1 ≤ i < k : αi ≤ αi+1

∀ 1 ≤ j < i < k : r j,i ≥ r j,i+1 (25)
∀ 1 ≤ j < i ≤ k : αi ≤ r j,i + di + d j

∀ 1 ≤ i ≤ k :
i−1
∑

j=1

max(r j,i − d j , 0) +

k
∑

j=i

max(αi − d j , 0) ≤ f

∀ 1 ≤ j ≤ i ≤ k : α j , d j , f, r j,i ≥ 0

Notice that although the above optimization program is not written in the form
of a linear program, it is easy to change it to a linear program by introducing new
variables and inequalities.
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TABLE I. SOLUTION OF THE

FACTOR-REVEALING LP

k maxi≤k zi

10 1.54147
20 1.57084
50 1.58839

100 1.59425
200 1.59721
300 1.59819
400 1.59868
500 1.59898

LEMMA 5.2. If zk denotes the solution of the factor-revealing LP, then for every
star S consisting of a facility and k cities, the sum of α j ’s of the cities in S in
Algorithm 2 is at most zkcS .

PROOF. Inequalities (21), (22), (23), and (24) derived above imply that the val-
ues α j , d j , f, r j,i that we get by running Algorithm 2 constitute a feasible solution
of the factor-revealing LP. Thus, the value of the objective function for this solution
is at most zk .

Lemmas 5.1 and 5.2 imply the following:

LEMMA 5.3. Let zk be the solution of the factor-revealing LP, and γ :=
supk{zk}. Then Algorithm 2 solves the metric facility location problem with an
approximation factor of γ .

5.2. SOLVING THE FACTOR-REVEALING LP. As mentioned earlier, the optimiza-
tion program (25) can be written as a linear program. This enables us to use an
LP-solver to solve the factor-revealing LP for small values of k, in order to com-
pute the numerical value of γ . Table I shows a summary of results that are obtained
by solving the factor-revealing LP using CPLEX. It seems from the experimental
results that zk is an increasing sequence that converges to some number close to 1.6
and hence γ ≈ 1.6.

We are using the same idea as Lemma 3.6 in Section 3 to prove the upper bound
of 1.61 on zk .

LEMMA 5.4. Let zk be the solution to the factor-revealing LP. Then, for every
k, zk ≤ 1.61.

PROOF. Using the same argument as in Lemma 3.6, we can assume, without
loss of generality, that k is sufficiently large. As in the proof of Lemma 3.6, our
objective is to multiply the inequalities of the factor-revealing LP (25) by appropriate
coefficients and add them up, to get an inequality of the form

k
∑

i=1

αi ≤ 1.61
k
∑

j=1

d j + 1.61 f. (26)
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Again, we notice that the fourth inequality of the program (25) implies that for
every i and every li ≥ i , we have

li
∑

j=i

(αi − d j ) ≤ f −

i−1
∑

j=1

max(r j,i − d j , 0). (27)

Let x j,i := max(r j,i − d j , 0). The above inequality can be written as follows.

αi ≤
1

li − i + 1

(

li
∑

j=i

d j + f −

i−1
∑

j=1

x j,i

)

. (28)

As in the proof of Lemma 3.6, numerical computations suggest that a step function
of the following form is a reasonably good choice for li . Here p1 and p2 are constants
that will be fixed later in the proof, to get the best possible bound

li =

{

p2k if i ≤ p1k
k if i > p1k.

Inequality (28) and the third inequality in the program (25) are two inequalities that
bound αi from above. In order to obtain the left hand side of Inequality (26), we add
Inequality (28) for some values of i , and the third inequality of the factor-revealing
LP for other values of i . Numerical computations suggest that one good choice is
to add Inequality (28) for i ≤ p2k and the third inequality of the program (25) for
i > p2k.

By the third inequality of the program (25) and the definition of x j,i , we have

αi ≤ x j,i + 2d j + di (29)

for every j ≤ p2k and i > p2k. Notice that the variables x j,i appear with a
positive coefficient in Inequality (29) and with a negative coefficient in the Inequal-
ity (28). Therefore, we can hope that after adding Inequality (28) for i ≤ p2k to
Inequality (29) for i > p2k, x j,i ’ s with positive coefficient get canceled out by the
ones with negative coefficient. By the second inequality of the program (25), for
every j , x j,i is a decreasing function of i . In particular, if we define y j := x j,p2k
for every j ≤ p2k, then we have x j,i ≥ y j for every j < i ≤ p2k and x j,i ≤ y j for
every i > p2k. Therefore, in both inequalities (28) and (29), we can estimate the
variable x j,i by y j . Thus,

αi ≤

li
∑

j=i

d j

li − i + 1
+

1

li − i + 1
f −

i−1
∑

j=1

y j

li − i + 1
(30)

for every i ≤ p2k, and

αi ≤ di + 2d j + y j (31)

for every i > p2k and j ≤ p2k.
We let ` ≤ p2k be the index for which 2d` + y` is at its minimum (i.e., for every

j ≤ p2k, 2d` + y` ≤ 2d j + y j ), and use Inequality (31) for j = ` in order to
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get the most out of this inequality. By adding up Inequality (30) for i ≤ p2k and
Inequality (31) for i > p2k and denoting ζ :=

∑p2k
i=1

1
li −i+1 , we obtain

k
∑

i=1

αi ≤

p2k
∑

i=1

li
∑

j=i

d j

li − i + 1
+ ζ f −

p2k
∑

i=1

i−1
∑

j=1

y j

li − i + 1

+

k
∑

i=p2k+1

di + (2d` + y`)(1 − p2) k =

p2k
∑

j=1

ζd j −

p2k
∑

j=1

p2k
∑

i= j+1

d j + y j

li − i + 1

+

k
∑

j=p2k+1

(

1 +

p2k
∑

i=p1k+1

1

k − i + 1

)

d j + (2d` + y`)(1 − p2) k + ζ f

≤

p2k
∑

j=1

ζd j +

k
∑

j=p2k+1

(

1 +

p2k
∑

i=p1k+1

1

k − i + 1

)

d j + ζ f

+ (2d` + y`)

(

(1 − p2)k −
1

2

p2k
∑

j=1

p2k
∑

i= j+1

1

li − i + 1

)

,

where the last inequality is a consequence of the inequality 2d` + y` ≤ 2d j + y j ≤

2d j + 2y j for j ≤ p2k. Now, let ζ ′ := 1 +
∑p2k

i=p1k+1
1

k−i+1 and δ := (1 − p2) −
1

2k

∑p2k
j=1

∑p2k
i= j+1

1
li −i+1 . Therefore, the above inequality can be written as

k
∑

i=1

αi ≤

p2k
∑

j=1

ζd j +

k
∑

j=p2k+1

ζ ′d j + ζ f + δ(2d` + y`) k, (32)

where

ζ =

p2k
∑

i=1

1

li − i + 1
= ln

p2(1 − p1)

(p2 − p1)(1 − p2)
+ o(1), (33)

ζ ′ = 1 +

p2k
∑

i=p1k+1

1

k − i + 1
= 1 + ln

1 − p1

1 − p2
+ o(1), and (34)

δ = 1 − p2 −
1

2k

p2k
∑

j=1

p2k
∑

i= j+1

1

li − i + 1

=
1

2

(

2 − p2 − p2 ln
p2

p2 − p1
− ln

1 − p1

1 − p2

)

+ o(1). (35)

Now if we choose p1 and p2 such that δ < 0, and let γ := max(ζ, ζ ′), then
inequality (32) implies that

k
∑

i=1

αi ≤ (γ + o(1))

(

f +

k
∑

i=1

d j

)

.
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Using Eqs. (33), (34), and (35), it is easy to see that subject to the condition
δ < 0, the value of γ is minimized when p1 ≈ 0.439 and p2 ≈ 0.695, which gives
us γ < 1.61.

Also, as in the proof of Theorem 3.5, we can use the optimal solution of the factor-
revealing LP that is computed numerically (see Table I) to construct an example
on which our algorithm performs at least zk times worse than the optimum. These
results imply the following.

THEOREM 5.5. Algorithm 2 solves the facility location problem in time O(n3),
where n = max(n f , nc), with an approximation ratio between 1.598 and 1.61.

6. The Tradeoff between Facility and Connection Costs

We defined the cost of a solution in the facility location problem as the sum of
the facility cost (i.e., total cost of opening facilities) and the connection cost.
We proved in the previous section that Algorithm 2 achieves an overall perfor-
mance guarantee of 1.61. However, sometimes it is useful to get different approxi-
mation guarantees for facility and connection costs. The following theorem gives
such a guarantee. The proof is similar to the proof of Lemma 5.3.

THEOREM 6.1. Let γ f ≥ 1 and γc := supk{zk}, where zk is the solution of the
following optimization program.

maximize

∑k
i=1 αi − γ f f
∑k

i=1 di

subject to ∀ 1 ≤ i < k : αi ≤ αi+1

∀ 1 ≤ j < i < k : r j,i ≥ r j,i+1 (36)
∀ 1 ≤ j < i ≤ k : αi ≤ r j,i + di + d j

∀ 1 ≤ i ≤ k :
i−1
∑

j=1

max(r j,i − d j , 0) +

k
∑

j=i

max(αi − d j , 0) ≤ f

∀ 1 ≤ j ≤ i ≤ k : α j , d j , f, r j,i ≥ 0

Then for every instance I of the facility location problem, and for every solution
SOL for I with facility cost FSOL and connection cost CSOL, the cost of the solution
found by Algorithm 2 is at most γ f FSOL + γcCSOL.

We have computed the solution of the optimization program (36) for k = 100,
and several values of γ f between 1 and 3, to get an estimate of the corresponding
γc ’ s. The result is shown in the diagram in Figure 2. Every point (γ f , γ

′
c) on the

thick line in this diagram represents a value of γ f , and the corresponding estimate
for the value of γc. The dashed line shows the following lower bound, which can
be proved easily by adapting the proof of Guha and Khuller [1999] for hardness of
the facility location problem.

THEOREM 6.2. Let γ f and γc be constants with γc < 1 + 2 exp(−γ f ). Assume
there is an algorithm A such that for every instance I of the metric facility location
problem, A finds a solution whose cost is not more than γ f FSOL + γcCSOL for
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FIG. 2. The tradeoff between γ f and γc.

every solution SOL for I with facility and connection costs FSOL and CSOL. Then
NP ⊆ DTIME[nO(log log n)].

Similar tradeoff problems are considered by Charikar and Guha [1999]. However,
an important advantage that we get here is that all the inequalities ALG ≤ γ f FSOL +
γcCSOL are satisfied by a single algorithm. In Section 8, we will use the point
γ f = 1 of this tradeoff to design algorithms for other variants of the facility
location problem. Other points of this tradeoff can also be useful in designing other
algorithms based on our algorithm. For example, Mahdian et al. [2002] use the
point γ f = 1.1 of this tradeoff to obtain a 1.52-approximation algorithm for the
metric facility location problem.

7. Experimental Results

We have implemented our algorithms, as well as the JV algorithm, using the pro-
gramming language C. We have made four kinds of experiments. In all cases, the
solution of the algorithms is compared to the optimal solution of the LP-relaxation,
computed using the package CPLEX to obtain an upper bound on the approximation
factor of the algorithms.

The test bed of our first set of experiments consists of randomly generated in-
stances on a 10,000 × 10,000 grid: In each instance, cities and facilities are points,
drawn randomly from the grid. The connection cost between a city and a facility is
set to be equal to the Euclidean distance of the corresponding points. Furthermore,
the opening cost of each facility is drawn uniformly at random from the integers
between 0 and 9999.

For the second set of experiments, we have generated random graphs (according
to the distribution G(n, p)) and assigned uniform random weights on the edges.
Cities and facilities correspond to the nodes of this graph, and the connection
cost between a city and a facility is defined to be the shortest path between the
corresponding nodes. The opening costs of facilities are generated at random.

The instance sizes in both of the above types vary from 50 cities and 20 facilities
to 400 cities and 150 facilities. For each size, 15 instances are generated and the
average error of the algorithm (compared to the LP lower bound) is computed. The
results of these experiments are shown in Table II.
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TABLE II. RANDOM GRAPHS AND RANDOM POINTS ON A GRID

Random Points on a Grid Random Graphs
nc n f JV ALG 1 ALG 2 JV ALG 1 ALG 2
50 20 1.0927 1.0083 1.0004 1.0021 1.0007 1.0001

100 20 1.0769 1.0082 1.0004 1.0014 1.0022 1.0
100 50 1.2112 1.0105 1.0013 1.0225 1.0056 1.0005
200 50 1.159 1.0095 1.001 1.0106 1.0094 1.0002
200 100 1.301 1.0105 1.0016 1.0753 1.0178 1.0018
300 50 1.1151 1.0091 1.0011 1.0068 1.0102 1.0002
300 80 1.1787 1.0116 1.001 1.0259 1.0171 1.0004
300 100 1.2387 1.0118 1.0014 1.0455 1.0185 1.0009
300 150 1.327 1.0143 1.0015 1.1365 1.0249 1.0018
400 50 1.0905 1.0092 1.0005 1.0044 1.012 1.0
400 100 1.8513 1.0301 1.0026 1.0313 1.0203 1.0003
400 150 1.8112 1.0299 1.0023 1.1008 1.0234 1.0009

TABLE III. GT-ITM MODEL

nc n f JV ALG 1 ALG 2
100 20 1.004 1.0047 1.0001
160 20 1.5116 1.0612 1.0009
160 40 1.065 1.0063 1.0
208 52 2.2537 1.074 1.019
240 60 1.0083 1.0045 1.0001
300 75 1.8088 1.0478 1.0006
312 52 1.7593 1.0475 1.0008
320 32 1.0972 1.0015 1.0
400 100 1.0058 1.0048 1.0
416 52 1.0031 1.0048 1.0

An Internet topology generator software, namely GT-ITM, is used to generate
the third set of instances. GT-ITM is a software package for generating graphs that
have a structure modeling the topology of the Internet [Zegura et al. 1996]. This
model is used because of the applications of facility location problems in network
applications such as placing web server replicas [Qiu et al. 2001]. In this model we
consider transit nodes as potential facilities and stub nodes as cities. The connection
cost is the distance produced by the generator. The opening costs are again random
numbers. We have generated 10 instances for each of the 10 different instance sizes.
The results are shown in Table III.

We also tested all algorithms on 15 instances from Beasley [2002], which is a
library of test data sets for several operations research problems. Our results are
shown in Table IV.

As we can see from the tables, Algorithm 2 behaves extremely well, giving almost
no error in many cases. Algorithm 1 has an error of 7% on the worst instance and an
average error of 2–3%. On the other hand, the JV algorithm has much larger error,
sometimes as high as 100%. We should also note that the running times of the three
algorithms did not vary significantly. In the biggest instances of 1000 cities and 100
facilities all the algorithms ran in approximately 1–2 seconds. The implementation
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TABLE IV. INSTANCES FROM OPERATIONS

RESEARCH LIBRARY

nc n f JV ALG 1 ALG 2
50 16 1.0642 1.0156 1.0
50 16 1.127 1.0363 1.0
50 16 1.1968 1.0258 1.0
50 16 1.2649 1.0258 1.0022
50 25 1.1167 1.006 1.0028
50 25 1.2206 1.0393 1.0
50 25 1.3246 1.0277 1.0
50 25 1.4535 1.0318 1.0049
50 50 1.3566 1.0101 1.0017
50 50 1.5762 1.0348 1.0061
50 50 1.7648 1.0378 1.0022
50 50 2.0543 1.0494 1.0075

1000 100 1.0453 1.0542 1.0023
1000 100 1.0155 1.0226 1.0
1000 100 1.0055 1.0101 1.0

of the algorithms as well as all the data sets are available upon request. For other
experimental results, see Cameron et al. [2002].

8. Variants of the Problem

In this section, we show that our algorithms can also be applied to several variants
of the metric facility location problem.

8.1. THE k-MEDIAN PROBLEM. The k-median problem differs from the facility
location problem in two respects: there is no cost for opening facilities, and there
is an upper bound k, that is supplied as part of the input, on the number of facilities
that can be opened. The k-facility location problem is a common generalization
of k-median and the facility location problem. In this problem, we have an upper
bound k on the number of facilities that can be opened, as well as costs for opening
facilities. The k-median problem is studied extensively [Arya et al. 2001; Charikar
and Guha 1999; Charikar et al. 1999; Jain and Vazirani 1999] and the best known
approximation algorithm for this problem, due to Arya et al. [2001], achieves a
factor of 3 + ε. It is also straightforward to adapt the proof of hardness of the facility
location problem [Guha and Khuller 1999] to show that there is no (1 + 2

e − ε)-
approximation algorithm for k-median, unless NP ⊆ DTIME[nO(log log n)]. Notice
that this proves that k-median is a strictly harder problem to approximate than the
facility location problem because the latter can be approximated within a factor
of 1.61.

Jain and Vazirani [1999] reduced the k-median problem to the facility location
problem in the following sense: Suppose A is an approximation algorithm for the
facility location problem. Consider an instance I of the problem with optimum cost
OPT, and let F and C be the facility and connection costs of the solution found by
A. We call algorithm A a Lagrangian Multiplier Preserving α-approximation (or
LMP α-approximation for short) if for every instance I, C ≤ α(OPT − F). Jain
and Vazirani [1999] show that an LMP α-approximation algorithm for the metric
facility location problem gives rise to a 2α-approximation algorithm for the metric
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k-median problem. They have noted that this result also holds for the k-facility
location problem.

LEMMA 8.1 [JAIN AND VAZIRANI 1999]. An LMP α-approximation algorithm
for the facility location problem gives a 2α-approximation algorithm for the k-
facility location problem.

Here we use Theorem 6.1 together with the scaling technique of Charikar and
Guha [1999] to give an LMP 2-approximation algorithm for the metric facility
location problem based on Algorithm 2. This will result in a 4-approximation
algorithm for the metric k-facility location problem, whereas the best previously
known was 6 Jain and Vazirani [1999].

LEMMA 8.2. Assume there is an algorithm A for the metric facility location
problem such that for every instance I and every solution SOL for I, A finds a
solution of cost at most FSOL +αCSOL, where FSOL and CSOL are facility and connec-
tion costs of SOL, and α is a fixed number. Then there is an LMP α-approximation
algorithm for the metric facility location problem.

PROOF. Consider the following algorithm: The algorithm constructs another
instance I ′ of the problem by multiplying the facility opening costs by α, runs
A on this modified instance I ′, and outputs its answer. It is easy to see that this
algorithm is an LMP α-approximation.

Now we only need to prove the following: The proof of this theorem follows the
general scheme that is explained in Section 9.

THEOREM 8.3. For every instance I and every solution SOL for I, Algorithm 2
finds a solution of cost at most FSOL + 2CSOL, where FSOL and CSOL are facility and
connection costs of SOL.

PROOF. By Theorem 6.1 we only need to prove that the solution of the factor-
revealing LP 36 with γ f = 1 is at most 2. We first write the maximization program
36 as the following equivalent linear program.

maximize
k
∑

i=1

αi − f

subject to
k
∑

i=1

di = 1

∀ 1 ≤ i < k : αi − αi+1 ≤ 0

∀ 1 ≤ j < i < k : r j,i+1 − r j,i ≤ 0

∀ 1 ≤ j < i ≤ k : αi − r j,i − di − d j ≤ 0 (37)

∀ 1 ≤ j < i ≤ k : r j,i − di − gi, j ≤ 0

∀ 1 ≤ i ≤ j ≤ k : αi − d j − hi, j ≤ 0

∀ 1 ≤ i ≤ k :
i−1
∑

j=1

gi, j +

k
∑

j=i

hi, j − f ≤ 0

∀ i, j : α j , d j , f, r j,i , gi, j , hi, j ≥ 0
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We need to prove an upper bound of 2 on the solution of the above LP. Since
this program is a maximization program, it is enough to prove the upper bound
for any relaxation of the above program. Numerical results (for a fixed value of
k, say k = 100) suggest that removing the second, third, and seventh inequalities
of the above program does not change its solution. Therefore, we can relax the
above program by removing these inequalities. Now, it is a simple exercise to write
down the dual of the relaxed linear program and compute its optimal solution. This
solution corresponds to multiplying the third, fourth, fifth, and sixth inequalities of
the linear program (37) by 1/k, and the first one by 2 − 1/k, and adding up these
inequalities. This gives an upper bound of 2 − 1/k on the value of the objective
function. Thus, for γ f = 1, we have γc ≤ 2. In fact, γc is precisely equal to 2, as
shown by the following solution for the program (36):

αi =

{

2 − 1
k i = 1

2 2 ≤ i ≤ k

di =

{

1 i = 1
0 2 ≤ i ≤ k

r j,i =

{

1 j = 1
2 2 ≤ j ≤ k

f = 2(k − 1).

This example shows that the above analysis of the factor-revealing LP is tight.

Lemma 8.2 and Theorem 8.3 provide an LMP 2-approximation algorithm for
the metric facility location problem. This result improves all the results in Jain
and Vazirani [1999], and gives straightforward algorithms for some other problems
considered by Charikar et al. [2001].

Notice that Theorem 6.2 shows that finding an LMP (1 + 2
e − ε)-approximation

for the metric facility location problem is hard. Also, the integrality gap examples
found by Guha [2000] show that Lemma 8.1 is tight. This shows that one cannot
use Lemma 8.1 as a black box to obtain a smaller factor than 2+ 4

e for the k-median
problem. Note that a (3+ ε)-approximation is already known [Arya et al. 2001] for
the problem. Hence, if one wants to beat this factor using the Lagrangian relaxation
technique, then it will be necessary to look into the underlying LMP algorithm as
has already been done by Charikar and Guha [1999].

8.2. FACILITY LOCATION GAME. An important consideration, in cooperative
game theory, while distributing the cost of a shared utility, is that the cost shares
should satisfy the coalition participation constraint, that is, the total cost share of
any subset of the users shall not be larger than their stand-alone cost of receiving
the service, so as to prevent this subset from seceding. In general, this turns out to
be a stringent condition to satisfy. For the facility location problem, Goemans and
Skutella [2000] showed that such a cost allocation is only possible for a very special
case. Furthermore, intractability sets in as well, for instance, in the case of the facility
location problem, computing the optimal cost of serving a set of users is NP-hard.

Jain and Vazirani [2001] relax this notion: for a constant k, ensure that the cost
share of any subset is no more than k times its stand-alone cost. They also observe
that LP-based approximation algorithms directly yield a cost sharing method
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compatible with this relaxed notion. However, this involves solving an LP, as in the
case of LP-rounding. We observe that our facility location algorithms automatically
yield such a cost sharing method, with k = 1.861 and k = 1.61, respectively, by
defining the cost share of city j to be α j .

8.3. ARBITRARY DEMANDS. In this version, for each city j , a nonnegative in-
teger demand d j , is specified. An open facility i can serve this demand at the cost
of cijd j . One way to look at this modification is to reduce it to the unit demand case
by making d j copies of city j . This reduction suggests that we need to change our
algorithms, so that each city j raises its contribution α j at rate d j . It is not difficult
to see that the modified algorithms still have the same running time even in more
general cases, where d j is fractional or exponentially large, and achieve the same
approximation ratio.

8.4. FAULT-TOLERANT FACILITY LOCATION WITH UNIFORM CONNECTIVITY
REQUIREMENTS. We are given a connectivity requirement r j for each city j , which
specifies the number of open facilities to which city j should be connected. We
can see that this problem is closely related to the set multicover problem with the
additional restriction that every set can be picked at most once [Rajagopalan and
Vazirani 1999]. The greedy algorithm for set-cover can be adapted for this variant
of the multi-cover problem achieving the same approximation factor. We can use
the same approach to deal with fault tolerant facility location: The mechanism of
raising dual variables and opening facilities is the same as in our initial algorithms.
The only difference is that city j stops raising its dual variable, and withdraws its
contribution from other facilities, when it is connected to r j open facilities. We can
show that when all r j ’ s are equal, our algorithms still achieve the approximation
factors of 1.861 and 1.61.

8.5. FACILITY LOCATION WITH PENALTIES. In this version we are not required
to connect every city to an open facility; however, for each city j , there is a specified
penalty, p j , which we have to pay, if it is not connected to any open facility. We
can modify our algorithms for this problem as follows: If α j reaches p j before
j is connected to any open facility, the city j stops raising its dual variable and
keeps its contribution equal to its penalty until it is either connected to an open
facility or all remaining cities stop raising their dual variables. At this point, the
algorithm terminates and unconnected cities remain unconnected. Using the linear
programming formulation introduced in Charikar et al. [2001, inequalities (4.6)–
(4.10)], we can show that the approximation ratio and running time of our modified
algorithms have not changed.

8.6. ROBUST FACILITY LOCATION. In this variant, we are given a number l and
we are only required to connect nc − l cities to open facilities. This problem can
be reduced to the previous one via Lagrangian relaxation. Very recently, Charikar
et al. [2001] proposed a primal-dual algorithm, based on the JV algorithm, which
achieves an approximation ratio of 3. As they showed, the linear programming
formulation of this variant has an unbounded integrality gap. In order to fix this
problem, they use the technique of parametric pruning, in which they guess the
most expensive facility in the optimal solution. After that, they run the JV algorithm
on the pruned instance, where the only allowable facilities are those that are not
more expensive than the guessed facility. Here we can use the same idea, using
Algorithm 1 rather than the JV algorithm. Using a proof similar to the proof of the
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Theorem 3.2 in Charikar et al. [2001], we can prove that this algorithm solves the
robust facility location problem with an approximation factor of 2.

8.7. DEALING WITH CAPACITIES. In real applications, it is not usually the case
that the cost of opening a facility is independent of the number of cities it will serve.
But we can assume that we have economy of scales, that is, the cost of serving each
city decreases when the number of cities increases (since publication of the first
draft of this article, this problem has also been studied in Hajiaghayi et al. [2003]).
In order to capture this property, we define the following variant of the capacitated
metric facility location problem. For each facility i , there is an initial opening cost
fi . After facility i is opened, it will cost si to serve each city. This variant can be
solved using the metric uncapacitated facility location problem: We just have to
change the metric such that for each city j and facility i , c′

ij = cij + si . Clearly, c′ is
also a metric and the solution of the metric uncapacitated version of this problem
can be interpreted as a solution to the original problem with the same cost.

We can reduce the variant of the capacitated facility location problem in which
each facility can be opened many times [Jain and Vazirani 1999] to this problem
by defining si = fi/ui . If in the solution to this problem k cities are connected
to facility i , we open this facility dk/uie times. The cost of the solution will be
at most two times the original cost so any α-approximation for the uncapacitated
facility location problem can be turned into a 2α-approximation for this variant of
the capacitated version. We can also use the same technique as in Jain and Vazirani
[1999] to give a factor 3-approximation algorithm for this problem based on the
LMP 2-approximation algorithm for uncapacitated facility location problem.

9. Discussion

The method of dual fitting can be seen as an implementation of the primal-dual
schema in which, instead of relaxing complementary slackness conditions (which
is the most common way of implementing the schema), we relax feasibility of
the dual. However, we prefer to reserve the term, primal-dual, for algorithms that
produce feasible primal and dual solutions.

Let us show how the combination of dual fitting with factor-revealing LP applies
to the set cover problem. The duality-based restatement of the greedy algorithm
(see Vazirani [2001]) is: All elements in the universal set U increase their dual
variables uniformly. Each element contributes its dual towards paying for the cost
of each of the sets it is contained in. When the total contribution offered to a set
equals its cost, the set is picked. At this point, the newly covered elements freeze
their dual variables and withdraw their contributions from all other sets. As stated
in the introduction, the latter (important) step ensures that the primal is fully paid
for by the dual. However, we might not get a feasible dual solution. To make the
dual solution feasible we look for the smallest positive number Z , so that when
the dual solution is shrunk by a factor of Z , it becomes feasible. An upper bound
on the approximation factor of the algorithm is obtained by maximizing Z over all
possible instances.

Clearly Z is also the maximum factor by which any set is over-tight. Consider
any set S. We want to see what is the worst factor, over all sets and over all possible
instances of the problem, by which a set S is over-tight. Let the elements in S be
1, 2, . . . , k. Let xi be the dual variable corresponding to the element i at the end of
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the algorithm. Without loss of generality we may assume that x1 ≤ x2 ≤ · · · ≤ xk .
It is easy to see that at time t = x−

i , total duals offered to S is at least (k − i + 1) xi .
Therefore, this value cannot be greater than the cost of the set S (denoted by cS).
So, the optimum solution of the following mathematical program gives an upper
bound on the value of Z . (Note that cS is a variable not a constant).

maximize

∑k
i=1 xi

cS

subject to ∀1 ≤ i < k : xi ≤ xi+1

∀1 ≤ i ≤ k : (k − i + 1) xi ≤ cS (38)

∀1 ≤ i ≤ k : xi ≥ 0

cS ≥ 1

The above optimization program can be turned into a linear program by add-
ing the constraint cS = 1 and changing the objective function to

∑k
i=1 xi . We call

this linear program the factor-revealing LP. Notice that the factor-revealing LP has
nothing to do with the LP formulation of the set cover problem; it is only used in
order to analyze this particular algorithm. This is the important distinction between
the factor-revealing LP technique, and other LP-based techniques in approxima-
tion algorithms.

Formulating the analysis of the algorithm as a factor-revealing LP can be very
useful because it can help us to empirically compute the upper bound given by the
factor-revealing LP on the approximation ratio of the algorithm. We can also use
the empirical results to decide if we need to add more constraints or if we can relax
some of them in such a way that the factor does not change drastically. We can also
solve its dual for a couple hundred values to observe its trend which will help us to
introduce a general dual solution in order to find an upper bound on the solution of
the factor-revealing LP and therefore the approximation factor of the algorithm.

One may even get a tight example from a feasible solution of the factor-revealing
LP. For example, from any feasible solution x of the factor-revealing LP 38, one can
construct the following instance: There are k elements 1, . . . , k, a set S = {1, . . . , k}
of cost 1 + ε which is the optimal solution, and sets Si = {i} of cost xi for
i = 1, . . . , k. It is easy to verify that our algorithm works

∑

xi times worst than the
optimal on this instance. This means that the approximation ratio of the set cover
algorithm is precisely equal to the solution of the factor-revealing LP, which is Hn .

This seems to be a useful tool for analyzing approximation algorithms. For many
algorithms, the proof of the approximation ratio is mainly based on combining
several inequalities (usually linear inequalities) to derive a bound on the approx-
imation ratio. It might be possible to “automatize” such proofs using a method
similar to the one used in this article. Proving the results in this article would have
been very difficult without using these techniques. It would be interesting to find
other examples that apply this method.

Algorithms obtained using the method of dual fitting for facility location and set
cover problems have additional interesting properties which have been exploited in
Devanur et al. [2003] to yield approximate budget balanced strategy-proof mecha-
nisms for the corresponding games.

Finally, in terms of practical impact, what is the significance of improving the ap-
proximation guarantee for facility location from 3 to 1.81 or 1.61 when practitioners
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are seeking algorithms that come within 2% to 5% of the optimal? The superior
experimental results of our algorithms, as compared with the JV algorithm, seem to
provide the answer and to support the argument made in Vazirani [2001, Preface,
page IX] that the approximation factor should be viewed as a “measure that forces
us to explore deeper into the combinatorial structure of the problem and discover
more powerful tools for exploiting this structure” and the observation that “sophis-
ticated algorithms do have the error bounds of the desired magnitude, 2% to 5%,
on typical instances, even though their worst-case error bounds are much higher.”
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