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The Lebesgue Differentiation Theorem

Theorem (Lebesgue Differentiation Theorem)
Let m be the Lebesgue measure on [0,1]n. Let f : [0,1]n→ R be an
integrable (L1) function. Define the average

Ar f (x) =

∫
Br (x) f (x)dx

m (Br (x))
.

Then Ar f (x)→ f (x) as r → 0 for almost every x.

• “Almost every x” intuitively means if x is “random enough”
(relative to the parameters of the theorem) then the above
theorem is true for x .

• Algorithmic randomness attempts to make rigorous this notion
of “random”.



An Effective Lebesgue Differentiation
Theorem

Theorem (Lebesgue Differentiation Theorem)
Let m be the Lebesgue measure on [0,1]n. Let f : [0,1]n→ R be an
integrable (L1) function. Define the average

Ar f (x) =

∫
Br (x) f (x)dx

m (Br (x))
.

Then Ar f (x)→ f (x) as r → 0 for almost every x.

Theorem (Effective Lebesgue Differentiation Theorem, R.)
Let f : [0,1]n→ R be an L1-computable function. Then Ar f (x)
converges as r → 0 for all Schnorr randoms x.



Two Effective LDT’s

Pathak has already shown the following.

Theorem (Effective LDT for Martin-Löf Randoms, Pathak)
Let f : [0,1]n→ R be an L1-computable function. Then Ar f (x)
converges as r → 0 for all Martin-Löf randoms x.

Theorem (Effective LDT for Schnorr Randoms, R.)
Let f : [0,1]n→ R be an L1-computable function. Then Ar f (x)
converges as r → 0 for all Schnorr randoms x.

• Since ML randoms⊂ Schnorr randoms, the Schnorr result is
better.

• Is Schnorr randomness the best we can do? Yes.



Characterization of Schnorr Randomness

Theorem ("The Reversal", R.)
Let x ∈ [0,1]n be not Schnorr random. Then there is an
L1-computable function f such that Ar f (x) does not converge as
r → 0 .

Therefore the Effective LDT and the reversal, together characterize
Schnorr randomness by “differentiability”. This is closely related to
the field of Reverse Mathematics.



Related Work

• Pathak proved the Effective LDT for Martin-Löf randoms.
• Brattka, Miller, Nies characterize computable randomness,
Martin-Löf randomness, and Π0

2-randomness in terms of
differentiability of absolutely-continuous computable functions
on [0,1] (actually, functions of bounded variation). Martin-Löf
case based on work of Demuth.

• Pathak, Rojas, and Simpson have a different proof of the
Effective LDT for Schnorr randoms.

• Kenshi Miyabe also has a similar result.
• Freer, Kjos-Hanssen, Nies characterizes computable
randomness and Schnorr randomness in terms of computable
Lipschitz functions.

• The proof in this talk is based the tools of the Brattka, Miller,
Nies result.



L1-computable Functions
Any integrable function f can be approximated by a polynomial pi
with rational coefficients such that ‖f −pi‖1 =

∫
|f −pi | ≤ 2−i . In

other words, rational polynomials are dense in L1.

Definition
For any f ∈ L1, a code for f is a sequence of rational polynomials
(pi ) converging in the L1-norm to f that are fast Cauchy,
i.e. ‖pi+1−pi‖1 ≤ 2−i . We say f is L1-computable if there exists
such a computable code.

The following are all computable from (the codes for) f ,g ∈ L1 and
(the codes for) any other parameters:

f +g ,af ,max(f ,g),min(f ,g), f +, f −, |f |,‖f ‖1 ,
∫

f dx ,
∫ b1

a1

· · ·
∫ bn

an

f dx .

Note that on [0,1], if f is L1-computable then F (x) :=
∫ x
0 f dx is

computable, but the converse does not hold.



Functions of Absolute Continuity

Definitions
Take an a.e. differentiable, continuous function F : [0,1]→ R. We
say F is absolutely continuous if F (x) =

∫ x
0 f (t)dt +F (0) where f

is the derivative of F , i.e. F “satisfies the Fundamental Theorem of
Calculus”.
We say F is effectively absolutely continuous if its derivative f is
L1-computable.

effectively absolutely continuous
⇒ absolutely continuous and computable

But the converse doesn’t hold.



Translation Between L1 and Abs. Cont.
Schnorr randomness

Theorem (R.)
x ∈ [0,1] is Schnorr random ⇔
Ar f (x) converges for all L1-computable functions f .

Corollary
x ∈ [0,1] is Schnorr random ⇔
F ′(x) exists for all effectively absolutely continuous functions F .

Proof Sketch.
Let f be the derivative of F , hence F (x) =

∫ x
0f (x)dx . Then

F ′(x) = lim
r→0

F (x + r)−F (x− r)

2r
= lim

r→0

∫ x+r
x−r f (x)dx

2r
= Ar f (x).



Translation Between L1 and Abs. Cont.
Computable randomness and Martin-Löf randomness

Theorem (Brattka-Miller-Nies and Freer-Kjos-Hanssen-Nies)
x ∈ [0,1] is Martin-Löf random (resp. computably random) ⇔
F ′(x) exists for all absolutely continuous functions F s.t
• F is computable
• (and resp. nondecreasing or Lipschitz).

Corollary
x ∈ [0,1] is Martin-Löf random (resp. computably random) ⇔
Ar f (x) converges for all integrable functions f s.t.
•
∫ x
0 f (t)dt is computable

• (and resp. nonnegative or bounded).



Schnorr Random

Definitions
A set U ⊆ [0,1]n is Σ0

1 (effectively open) if it is a union of a
computable sequence of open cells (a1,b1)×·· ·× (an,bn) with
rational endpoints.
A Martin-Löf test is a uniformly computable sequence (Ui ) of Σ0

1
sets such that

m (Ui )≤ 2−i .

A Schnorr test is a uniformly computable sequence (Ui ) of Σ0
1 sets

such that
m (Ui ) = 2−i .

x ∈ [0,1]n is Martin-Löf random if x /∈
⋂
Ui for any ML test (Ui ).

x ∈ [0,1]n is Schnorr random if x /∈
⋂
Ui for any Schnorr test (Ui ).



Borel-Cantelli-Solovay Test

Theorem (Borel-Cantelli Lemma)
Let (Ak) be a sequence of sets such that ∑m (Ak) < ∞. Then for
almost every x, x is in at most finitely many Ak .

Theorem (Solovay Lemma for Martin-Löf Randoms)
Let (Uk) be a uniformly computable sequence of Σ0

1 sets such that
∑m (Uk) < ∞. (Call (Uk) a Solovay test for Martin-Löf
randomness.) Then for all Martin-Löf randoms x, x is in at most
finitely many Uk . Further, if x is not Martin-Löf random, there is a
Solovay test (Uk) such that x ∈ Uk for infinitely many k.



Borel-Cantelli-Solovay Test
for Schnorr Randomness

Theorem (Borel-Cantelli Lemma)
Let (Ak) be a sequence of sets such that ∑m (Ak) < ∞. Then for
almost every x, x is in at most finitely many Ak .

Theorem (Solovay Lemma for Schnorr Randoms,
Hoyrup-Rojas)
Let (Uk) be a uniformly computable sequence of Σ0

1 sets such that
∑m (Uk) is finite and computable. (Call (Uk) a Solovay test for
Schnorr randomness.) Then for all Schnorr randoms x, x is in at
most finitely many Uk . Further, if x is not Schnorr random, there is
a Solovay test (Uk) such that x ∈ Uk for infinitely many k.



The Main Theorems to Prove

Theorem (Effective LDT for Schnorr Randoms)
Let f : [0,1]n→ R be an L1-computable function. Then

Ar f (x) :=

∫
Br (x) f (x)dx

m (Br (x))

converges as r → 0 for all Schnorr randoms x.

Theorem (LDT Reversal)
Let x ∈ [0,1]n be not Schnorr random. Then there is an
L1-computable function f such that Ar f (x) does not converge as
r → 0 .



Structure of the Proof

Geometric part of Proof. Reduce the geometric complexity of the
problem.

Martingale part of Proof. Use theorems about martingales to
analyze the convergence.

Reversal. Construct a martingale that doesn’t converge on a
Schnorr test and read off an L1-computable function.
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Geometric Part

• The LDT is a very geometric theorem.
• For example, if the balls were replaced with arbitrary
rectangles or ellipse, it would not be true. (But cubes are OK.)

• One approach is to replace overlapping balls with disjoint
balls/cubes.

• Classical proofs use the Vitali Covering Theorem to do this.
• Brattka, Miller, Nies use a different approach, which this talk
follows.



Work with Cubic Cells Instead
Work with cells instead of balls.

Definition
A closed cell Q on [0,1]n is a set of the form
Q = [a1,b1]×·· ·× [an,bn] . A cubic cell is a cell with equal lengths
in all dimensions.
It is enough to approximate the balls with cubic cells. We wish to
prove this equivalent version of the LDT.

Theorem
Let f : [0,1]n→ R be an L1-computable function. Let x be a
Schnorr random. Let (Qk)k∈N be a decreasing sequence of cubes
which converge to x. (x need not be center of Qk ’s.) Then∫

Qk
f (x)dx

m (Qk)

converges as k → ∞.



Filtrations

Technically, a filtration is an increasing sequence of σ -algebras

F0 ⊆F1 ⊆F2 ⊆ . . .

For our purposes, we care only about filtrations made-up of finite
partitions of [0,1]n into cells, e.g.

Call such a filtration of cells computable if it is “uniformly codable”.
Define F∞ to be the minimal σ -algebra containing

⋃
i Fi . So (Fi )

“converges to” F∞.



Conditional Expectation

Let f be an L1-function. Let F be a finite partition of [0,1]n into
cells Q1, . . . ,Qk . Then the conditional expectation E [f |F ] is a
function from [0,1]n→ R such that for x ∈ Qi

E [f |F ] (x) :=

∫
Qi
f dx

m (Qi )
.

Further, E [f |F ] is L1-computable from (codes for) f ,F , and∫
Qi

f dx
m(Qi )

is computable from f ,F , i .



Key Geometric Lemma
Extracting a Filtration

The LDT talks about simultaneous convergence over a “net of
filtrations”. We extract one filtration to work with.

Theorem (Insipred by Brattka-Miller-Nies)
Let f : [0,1]n→ R be a non-negative L1-computable function. For
any x, if for some decreasing sequence of cubic cells (Qi ) (not
necessarily “computable”) converging to x,∫

Qi
f (x)dx

m (Qi )

diverges, then there is some computable filtration (Fk) (made up of
finite partitions of cells) such that F∞ = B (Borel σ -algebra) and

E [f |Fk ] (x)

diverges as k → ∞.



f +, f − are L1-computable

The requirement that f be non-negative in the previous lemma is
OK, since the decomposition

f = f +− f −

is computable from (the L1 code for) f .
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Levy 0-1 Law

By the Key Lemma, it is enough to show E [f |Fk ] (x) converges
when x is Schnorr random and f is L1-computable.

Theorem (Levy 0-1 Law)
Given a filtration (Fk) and an L1-function f , then

E [f |Fk ]→ E [f |F∞]

both in L1-norm and pointwise almost-everywhere.
Therefore, if f is F∞-measurable, then

E [f |Fk ]→ f

both in L1-norm and pointwise almost-everywhere.



Effective Levy 0-1 Law

Theorem (Effective Levy 0-1 Law, R.)
Given a computable filtration (Fk) such that F∞ = B and an
L1-computable f , then

E [f |Fk ]

converges effectively in the L1-norm, and converges pointwise on
Schnorr randoms.



Outline of Proof
Effective Levy 0-1 Law

Step 1: Notice Mk := E [f |Fk ] is a martingale.
Step 2: Approximate Mk to be rational-valued.
Step 3: Extract fast converging subsequence from Mk .
Step 4: Create Solovay test of points that don’t converge

“fast enough”.



Step 1: Notice Mk is a Martingale

A martingale on a filtration (Fk) is a sequence of functions (Mk)
such that Mk is Fk -measurable and

E [Mk+1 |Fk ] = Mk .

Let
Mk := E [f |Fk ] .

It is well known that Mk is a martingale, by

E [Mk+1 |Fk ] = E [E [f |Fk+1] |Fk ] = E [f |Fk ] = Mk .

Martingales have very nice convergence properties!



Step 2: Approximate Mk to Be Rational
Valued

By a straight-forward approximation argument, Mk can be assumed
to be rational-valued. (Not entirely accurate, but close enough.)



Step 3: Extract Fast Converging
Subsequence

Since Mk → f in the L1-norm (Levy’s 0-1 Law) and f is
L1-computable we can find a subsequence

(
Mkj

)
such that∥∥Mkj − f

∥∥
1 ≤ 2−(2j+1).

Therefore ∥∥Mkj+1−Mkj

∥∥
1 ≤ 2−2j .

Actually, we can show Mk → f effectively in L1-norm.



Step 4: Create Solovay Test

First notice that by Markov’s Inequality we have

m
{
x :
∣∣Mkj+1(x)−Mkj (x)

∣∣≥ 2−j}≤ ∥∥Mkj+1−Mkj

∥∥
1

2−j ≤ 2−2j

2−j = 2−j .

But we need something stronger. Since (Mk) is a martingale, we
have this stronger inequality (Ville’s Inequality/Doob’s
Submartingale Inequality).

m
{
x : max

kj≤k≤kj+1

∣∣Mk(x)−Mkj (x)
∣∣≥ 2−j

}
≤
∥∥Mkj+1−Mkj

∥∥
1

2−j ≤ 2−j .



Step 4: Create Solovay Test
Let

Uj =

{
x : max

kj≤k≤kj+1

∣∣Mk(x)−Mkj (x)
∣∣≥ 2−j

}
.

Then
• (Uj) is uniformly Σ0

1 (ignoring the boundaries of the cells).
• m (Uj)≤ 2−j so ∑m (Uj)≤ 2.
• m (Uj) is computable (since Uj is a finite union of cells from
the filtration and (Mk) is rational valued).

It follows that (Uj) is a Solovay test for Schnorr randomness.

If x is a Schnorr random, then x is in only finitely-many Uk . So,
Mk(x) is Cauchy.

Further, the rate of convergence is computable from x ’s
“randomness deficiency”, i.e. the highest k such that x ∈ Uk .



End of Proofs

This ends the proof of the Effective Levy 0-1 Law,
and hence the proof of the Effective Lebesgue Differentiation
Theorem.
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Construction of L1 Function

Remains to prove the reversal.

Let Fk be the partition of dyadic cubes on [0,1]n.

It is enough for each non-Schnorr x to find an L1-computable f
such that E [f |Fk ] (x) diverges.



Uniformly Integrable Martingales

Theorem
A martingale Mk is of the form E [f |Fk ] if and only if it is
uniformly integrable, i.e.

sup
n

∫
{x :|Mk(x)|>C}

|Mk |dx → 0 as C → ∞.

This is the property that assures Mk converges in the L1-norm.



Sketch of Construction

• Construct martingale Mk .
• Show Mk is uniformly integrable, hence Mk = E [f |Fk ] for
some L1 function f .

• Show f is L1-computable.



The Martingale

Martingales correspond to betting strategies. Bet as follows:
• Take Solovay test (Ui ) for Schnorr randomness.
• Separate Ui into disjoint union of dyadic cubes.
• For every dyadic cube Q ∈Fk , ask if Q is in disjoint union of
some Ui . (Pick disjoint unions such that this is decidable.)

• If so, bet 1 (doesn’t matter if win or lose)
• If not, bet nothing.

Easy to see that the following are equivalent
• Mk(x) does not converge
• Mk(x) bets infinitely often
• x is in infinitely many Ui

• x passes the Schnorr test (Ui ) (so x is not Schnorr random).



Uniformly Integrable

The martingale is uniformly integrable since ∑m (Ui ) < ∞. (Hence
same construction works for Martin-Löf randomness.)

The martingale converges to an L1-computable function f since
∑m (Ui ) is computable.

Let f be the L1 limit of the martingale. If in [0,1] let F be the
corresponding absolutely continuous function. F is a “saw-tooth
function. (Hence this construction is similar to the one of Brattka,
Miller, Nies.)
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Measures v.s. L1 functions

An extension of Lebesgue Differentiation theorem is as follows.

Theorem
Let ν be a finite signed measure on [0,1]n. Then

ν (Br (x))

m (Br (x))
→ dν

dm

where dν/dm is the Radon-Nikodym derivative.

On [0,1],
• F (x) =

∫ x
0 f dx +F (0) is an absolutely continuous function.

• G (x) = ν ((0,x ]) +G (0) is a function of bounded variation. (ν
is Lebesgue–Stieltjes measure of G .)

Hence this theorem is equivalent to the fact that a function of
bounded variation is differentiable almost-everywhere.



Computable Signed Measures and
Functions of Effective Bounded Variation

Define computable finite signed measure and computable finite
measure using the Riesz representation theorem (signed measures
are isomorphic to bounded linear operators on continuous
functions). This gives a computable description in the weak∗
topology.

Define a function of effective bounded variation as one which
corresponds to a computable signed measure.
• The term “effective bounded variation” is a bit misleading,
since the total variation norm is not in general computable.
Any suggestions for a different term?

• Computable functions of bounded variation are of effective
bounded variation.



Measures v.s. L1 functions

Theorem (R.)
Let ν be a finite signed measure (resp. measure) which is
computable on [0,1]n. Then

ν (Br (x))

m (Br (x))

converges for Martin-Löf randoms x (resp. computable randoms x).

Corollary (R. extending Brattka-Miller-Nies)
If F : [0,1]→ R is a function (resp. a nondecreasing function) with
effective bounded variation. Then

F ′(x)

exists for Martin-Löf randoms x (resp. computable randoms x).



Decomposing a Measure

There are two decompositions for signed measures:
Han-Jordan Decomposition ν = ν+−ν− (split into two positive
measures).

Lebesgue Decomposition
ν ⊥m (ν is mutually singular wrt m) if dν/dm = 0.
ν �m (ν is absolutely continuous wrt m) if

ν(E ) =
∫
E

dν

dm
.

ν = ν1 + ν2 where ν1 ⊥m and ν2�m.



Decomposition of Bounded Variation
Function

On [0,1]:

If ν is absolutely continuous with respect to m, then

F (x) := ν((0,x ]) =
∫ x

0

dν

dm
and F is absolutely continuous. (We have already investigated this
case.)

If ν is mutually singular with respect to m, then G (x) := ν((0,x ])
has

G ′(x) =
dν

dm
= 0 a.e.

Call G singular.

Any function of bounded variation can be decomposed into
absolutely continuous and singular functions.



Mutually Singular Results

Theorem (R.)
If ν is mutually singular (wrt m) computable measure (resp.
computable signed measure), then

lim
r→0

ν (Br (x))

m (Br (x))
= 0

for Schnorr randoms (resp. ML randoms) x.

Corollary (R.)
If F : [0,1]→ R is a singular nondecreasing function (resp. a
function) of effective bounded variation, then

F ′(x) = 0

for Schnorr randoms (resp. ML randoms) x.
The reversals also hold.



Table of Results

For effective bounded variation functions on [0,1]:

Singular Eff. Abs. Cont. Abs. Cont. No Decomp.
Nonneg. Sch. Sch. Comp. Comp.
Bdd Var. ML Sch. ML ML

For measures: Replace “Nonneg” and “Bdd Var.” with “Measure”
and “Signed Measure”.

There are even further decompositions and results.



Convergence of Martingales

Levy’s 0-1 law is related to Doob’s Martingale Convergence
Theorem.

Theorem (Doob’s Martingale Convergence Theorem)
If (Mk) is an L1-bounded martingale, then Mk converges almost
everywhere as k → ∞.

Effective versions of this have been given by Takahashi and Dean
for Martin-Löf randomness and Brattka, Miller, Nies for computable
randomness.

The techniques in this talk can be applied to get more
effectivizations of Doob’s Martingale Convergence Theorem.



What is the derivative?
Take f L1-computable. Let

f̂ := limsup
k

∫
Br (x) f dx

m (Br (x))
.

This is a unique (up to Schnorr randoms) representative for f .

Similarly, take a computable signed measure ν . Let

d̂ν

dm
:= limsup

r→0

ν (Br (x))

m (Br (x))
.

Again this is unique (up to randoms).

Can these “effective” representatives of the L1-class be
characterized?

This is related to layerwise computable functions of Hoyrup and
Rojas (based on Lusin’s Theorem), as well as previous work of
Pathak (based on polynomial definition of L1-computable).



Summary

• The standard randomness notions allow one to prove effective
versions of “almost everywhere” convergence theorems in
Analysis and Probability.

• These effectivizations can be reversed (similar to Reverse
Mathematics) to characterize known (or new?) types of
randomness.

• Martingales are a useful tool for the study of randomness, even
outside their usual form in the computability community.
What other tools from modern probability and analysis can be
used to study randomness?

• A better understanding of the computable aspects of Measure
Theory, Probability Theory, and Ergodic Theory may lead to a
better understanding of randomness.

• And vice-versa.



Thank You!

These slides are available on my webpage:

math.cmu.edu/~jrute.

Or just Google me, “Jason Rute”.

math.cmu.edu/~jrute
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