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Abstract

This paper introduces a method of moment estimator for the time-changed Lévy
processes proposed by Carr, Geman, Madan and Yor (2003). By establishing that
the returns sequence is strongly mixing with exponentially decreasing rate, we prove
consistency and asymptotic normality of the resulting estimators. In addition, we fit
parametrized versions of the model to real data and examine the quality of our esti-
mators by performing a simulation study. Finally, we also show how to estimate the
current level of volatility.

Key words: time-changed Lévy models, moment estimator, mixing property, volatil-
ity estimation

Mathematics Subject Classification (2010): 62M05, 62P05, 60G99

1 Introduction

Most financial time series exhibit certain distinct features, usually called stylized facts:

1. gain/loss asymmetry, i.e., returns are negatively skewed,

2. heavy tails of the returns compared to the normal distribution,

3. conditionally heavy tails, i.e., heavy tails even after correcting for volatility clustering,

4. absence of autocorrelation of asset returns, but volatility clustering, i.e., significant
autocorrelation of the squared returns,

5. leverage effect, i.e., negative crosscorrelation between returns and squared returns.
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Consequently, there exists a growing literature on different models trying to recapture these
empirical observations. In continuous time the first three characteristics are typically tackled
by allowing for jumps in the asset price, whereas the last two are usually accounted for by
introducing some kind of stochastic volatility (cf. [7, 26] for an overview).

For applications in Mathematical Finance, finding a suitable statistical model for the data
under consideration is of course only one part of the story. Indeed, one prefers models that
are able to explain at least some of the stylized facts, but at the same time one needs enough
mathematical structure to allow for the solution of financial problems. These requirements
are fit surprisingly well by the class of affine stochastic volatility models (cf. [19] for an
overview). Since the stochastic volatility y and the logarithmized asset priceX are modelled
as a bivariate affine process in these models, the joint conditional characteristic function can
be computed by solving some generalized Riccati equations, as shown in great generality by
[9]. This opens the door to explicit solutions of diverse financial problems dealing with, e.g.,
optimal investment (cf., e.g., [4, 21, 23]) and hedging of derivatives (see, e.g., [8, 15, 20,
23]). In this paper, we introduce an estimation algorithm for the subclass of time-changed
Lévy models introduced by [5]. In these the asset price is modelled as St = S0 exp(Xt)

with S0 > 0 and
Xt = µt+B∫ t

0 ysds
, (1.1)

where µ ∈ R and B denotes a Lévy process, whereas the activity process y is assumed to be
strictly positive, stationary and independent ofB. These models can capture several stylized
facts observed in the data, nevertheless they are quite tractable from an analytical point of
view.

When performing statistical estimation, it is typically assumed that the time series under
consideration is mean adjusted, i.e., µ is set equal to 0 and B is assumed to be a martingale
in Equation (1.1). By [3], it is straightforward to estimate µ from the mean adjustment if
B is a martingale, since different values for µ do not change any of the higher centered
moments or the second order dependence structure. If on the other hand, we do not require
B to be a martingale, the situation becomes more involved (cf. [3]).

For applications in Mathematical Finance, the situation is completely different though.
Here, many problems can only be solved if the parameter µ is set equal to zero, thus re-
quiring a non-martingale B to model the drift of the asset under consideration (cf., e.g.,
[20, 21, 23] for examples when this condition is necessary).

Statistical estimation of stochastic volatility models typically falls into one of the fol-
lowing two broad categories:

1. Simulation based techniques: See, e.g., [1, 6, 10] and the references therein for appli-
cations to affine jump-diffusion models, which correspond to choosing B in Equation
(1.1) to be the sum of a standard Brownian motion and a compound Poisson pro-
cess. These approaches could also be used in the more general setup considered here.
However, they require lengthy computations and are tedious to implement for the
non-specialist. Furthermore, consistency and asymptotic normality are typically only
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assured under regularity conditions that are not easily checked in concrete models (cf.
[12] for more details).

2. Approaches using exact formulas for moments of the model: [3] calculate the moments
and second order dependence structure of model (1.1), exactly in the case where B is
a martingale and approximately for frequent observations in the general case. They
proceed to construct a quasi-maximum likelihood (QML) estimator in the case where
B is a martingale with symmetric marginal distributions and note that it would also
be possible to argue approximately otherwise. Again easy-to-check regularity condi-
tions ensuring good asymptotic properties are missing. Furthermore, QML estimation
involves nonlinear minimization and is also not robust with respect to model misspec-
ification.

This last drawback is avoided by performing a direct (generalized-) method of moment
estimation, matching theoretical moments of the model to the corresponding empirical
moments of the data. For affine jump-diffusions, this approach has been considered
by [18] in the case where B is a martingale. They use the first four moments of the
returns as well as some autocorrelations of the squared returns to exemplarily estimate
the Heston model. However, asymptotic results are once more only obtained subject
to regularity conditions (cf. [12]) that may be difficult to check in concrete models.
On the contrary, [14], who use a similar moment based approach for the COGARCH
model, only impose conditions on the parameters of the model that are easily verified
for a concrete specification.

The aim of the present study is fourfold. First, we extend the method of moments algo-
rithms used by [14, 18] to the setup considered here (which encompasses pure jump driving
processes of infinite activity like the Normal Inverse Gaussian (henceforth NIG) process,
for example), drawing on the results of [3]. In particular, we consider the case where B is
possibly skewed and not necessarily a martingale. No simulation is required and all estima-
tors are given explicitly, which makes straightforward implementation for diverse models
possible. Inspired by [14], we then present exact asymptotic results if B is assumed to be a
martingale and approximate asymptotic results if this assumption is dropped, only imposing
conditions that are easily verified in concrete models. Thirdly, we analyze the small sample
behavior of our estimation algorithms by fitting parametrized versions of the models to real
data and performing simulation studies with the parameters obtained in this way. Finally,
we also show how to estimate the current level of volatility by using a Kalman filter (if B is
a martingale) respectively an extended Kalman filter (for general B).

The remainder of this article is organized as follows. In Section 2, we introduce the
model and supply the formulas for its moments obtained by [3]. Subsequently, we deal with
estimation in the case where B is a martingale. In Section 4, we then turn to estimating the
model if the martingale assumption on B is dropped.

For a Lévy process B, we denote by ψB the corresponding Lévy exponent, i.e., the
continuous function ψB : iR → C such that E(exp(iuBt)) = exp(tψB(iu)) for t ≥ 0
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and u ∈ R. Moreover, we use the shorthand notations N∗ := {1, 2, 3, . . .} as well as
bxc := max{n ∈ N∗ : n ≤ x} for x ∈ R+, and R++ := (0,∞).

2 Moments and second-order dependence structure of time-
changed Lévy models

Denote by S = S0 exp(X) some asset price process with initial value S0 > 0. We consider
the time changed Lévy-models proposed by [5], where the return process X is modelled as

Xt = µt+B∫ t
0 ysds

. (2.2)

Here, µ ∈ R and B denotes a real-valued Lévy process, whereas the activity process y is
assumed to be strictly positive, stationary, and independent of B.

Example 2.1 If y is chosen to be a Lévy-driven OU process, i.e.,

dyt = −λyt−dt+ dZλt, y0 > 0,

for λ > 0 and an increasing Lévy process Z independent of B, Equation (2.2) leads to a
generalization of the model proposed by Barndorff-Nielsen and Shephard ([2], henceforth
BNS). Similarly, one obtains a generalization of the Heston model without correlation, if
one instead uses a strictly positive square-root process

dyt = λ(η − yt)dt+ σdZt, y0 > 0,

for a Wiener process Z and constants λ, η, σ > 0 satisfying 2λη > σ2. For these specifica-
tions, it is shown in [19] that the process (y,X) is affine in the sense of [9].

To use the generalized method of moments for parameter estimation, one needs to calcu-
late sufficiently many moments of the model under consideration. For time-changed Lévy
models this has been done by [3] by conditioning on the time-change

∫ ·
0
ysds. More specif-

ically, let ∆ > 0 be some grid size and define the discrete increments X(n) of the log-price
X as

X(n) := Xn∆ −X(n−1)∆, n ∈ N∗. (2.3)

[3] relate the moments and dependence structure of (X(n))n∈N∗ to the moments and depen-
dence structure of y as well as the cumulants of B, defined as

cn :=
∂n

∂un
ψB(u)

∣∣
u=0

, n ∈ N∗.

Summing up results from [3], the following holds.
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Theorem 2.2 Let B be a Lévy process with c4 < ∞ and suppose y is stationary with
E(y4

t ) < ∞, E(yt) =: ξ and Var(yt) =: ω2 for all t ∈ R+. Let ry be the autocorrelation
function of y and

r∗∗y (t) :=

∫ t

0

∫ v

0

ry(u)du dv.

Then, if µ = 0, the following holds:

E(X(n)) = c1∆ξ,

E(X2
(n)) = c2∆ξ + c2

1

(
2ω2r∗∗y (∆) + (∆ξ)2

)
,

E(X3
(n)) = c3∆ξ + 3c1c2

(
2ω2r∗∗y (∆) + (∆ξ)2

)
+ c3

1E(Y 3
∆),

E(X4
(n)) = c4∆ξ + (4c1c3 + 3c2

2)
(
2ω2r∗∗y (∆) + (∆ξ)2

)
+ 6c2

1c2E(Y 3
∆) + c4

1E(Y 4
∆),

where Y =
∫ ·

0
ysds and, for s ∈ N∗,

Cov(X(n), X(n+s)) =c2
1Cov(yn∆, y(n+s)∆),

Cov(X(n), X
2
(n+s)) =c1c2Cov(yn∆, y(n+s)∆) + c3

1Cov(yn∆, y
2
(n+s)∆),

Cov(X2
(n), X

2
(n+s)) =c2

2Cov(yn∆, y(n+s)∆) + c2
1c2Cov(y2

n∆, y(n+s)∆)

+ c2c
2
1Cov(yn∆, y

2
(n+s)∆) + c4

1Cov(y2
n∆, y

2
(n+s)∆).

Moreover,

Cov(yn∆, y(n+s)∆) = ω2(r∗∗y ((s+ 1)∆)− 2r∗∗y (s∆) + r∗∗y ((s− 1)∆)).

PROOF. See [3, Propositions 2 and 5]. �

Example 2.3 If y is either a stationary OU process or a stationary square-root process, it
follows from [7, Chapter 15] that the autocorrelation function ry of y is given by

ry(u) = e−λu, u ∈ R+.

Consequently, by [2, Example 4], we have

r∗∗y (u) =
1

λ2

(
e−λu − 1 + λu

)
, u ∈ R+.

3 Moment estimation if B is a martingale

We now use Theorem 2.2 to set up a generalized method of moments estimator, extending
similar approaches used by [18] and [14] to estimate affine jump diffusion models and the
COGARCH(1,1) model, respectively. This is done subject to the following assumptions:

(A1) For time horizon T > 0 and grid size ∆ > 0, we have equally spaced observations
Xj∆, j = 0, ..., bT/∆c and returns X(j) = Xj∆ −X(j−1)∆, j = 1, ..., bT/∆c.

(A2) The cumulants cj of B satisfy c1 = 0, c2 = 1 and c4 <∞.
(A3) y is a stationary OU or square-root process with mean reversion λ > 0,

mean ξ > 0 and variance ω2 ∈ (0,∞).
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Remark 3.1 c4 < ∞ holds for most Lévy processes used in the literature, e.g., Variance
Gamma (VG) and Normal Inverse Gaussian (NIG) processes. The normalization c2 = 1

just leads to a rescaling of the time change and therefore can be assumed without leading to
a loss of generality in the model. The final parameter restriction c1 = 0 is equivalent to B
being a martingale. It is commonly made in the literature (see, e.g., [2, 14, 24]), because it
drastically simplifies the moment and dependence structure of the model (cf. Theorem 2.2).
We will discuss the case c1 6= 0 in Section 4 below.

For given ∆ > 0, denote by mi,∆ and µi,∆, i ∈ N∗, the i-th uncentered and centered
moments of X(n), respectively. Furthermore, let γ∆(s) := Cov(X2

(n), X
2
(n+s)) for n, s ∈ N∗

and define γ∆,d := (γ∆(1), . . . , γ∆(d)) for d ∈ N∗. Given (A1)-(A3), Theorem 2.2 then
reads as follows.

Corollary 3.2 Assume (A1)-(A3) hold. Then we have m1,∆ = µ∆ as well as

µ2,∆ = ∆ξ, µ3,∆ = c3∆ξ, µ4,∆ = c4∆ξ + 6
ω2

λ2
(e−λ∆ − 1 + λ∆) + 3(∆ξ)2,

γ∆(s) = ω2

(
1− e−λ∆

)2

λ2
e−λ∆(s−1), s ∈ N∗.

3.1 The estimation procedure

We begin by showing that the unknown model parameters µ, c3, c4, λ, ξ, ω
2 are uniquely

determined as a continuously differentiable function of the first four moments of the returns
as well as the autocovariance function of the squared returns.

Proposition 3.3 Suppose (A1)-(A3) are satisfied and let k∆, p > 0 such that, for s ∈ N∗,

γ∆(s) = k∆e
−p∆(s−1).

Then µ, c3, c4, λ, ξ, ω
2 are uniquely determined by m1,∆, µ2,∆, µ3,∆, µ4,∆, k∆, p as

(µ, c3, c4, λ, ξ, ω
2) = H∆(m1,∆, µ2,∆, µ3,∆, µ4,∆, k∆, p)

with H∆ : R× R++ × R3 × R++ → R6 defined as

H∆(m1, µ2,µ3, µ4, k, p))

:=

(
m1

∆
,
µ3

µ2

,
µ4

µ2

− 3µ2 −
6k∆(e−p∆ − 1 + p∆)

µ2(1− e−p∆)2
, p,

µ2

∆
,

p2k

(1− e−p∆)2

)
.

Furthermore, H∆ is continuously differentiable in (m1,∆, µ2,∆, µ3,∆, µ4,∆, k∆, p).

PROOF. This follows immediately from Theorem 2.2 and Corollary 3.2 above. �

Proposition 3.3 motivates the following estimation algorithm, which estimates µ, c3, c4,
λ, ξ, ω2 by matching the first four moments of the model to the corresponding empirical
moments and fitting the logarithmized autocovariance function of the model to its empirical
counterpart via linear regression.
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Algorithm 3.4 1. Calculate the moment estimators

m̂1,∆,T :=
1

bT/∆c

bT/∆c∑
j=1

X(j),

µ̂i,∆,T :=
1

bT/∆c

bT/∆c∑
j=1

(X(j) − m̂1,∆,T )i, i = 2, 3, 4,

and for d ≥ 2 the empirical autocovariances γ̂∆,T,d := (γ̂∆,T (1), . . . , γ̂∆,T (d)) as

γ̂∆,T (s) :=
1

bT/∆c

bT/∆c−s∑
j=1

(
X2

(j) − µ̂2,∆,T

) (
X2

(j+s) − µ̂2,∆,T

)
,

for s = 1, . . . , d.

2. For fixed d ≥ 2 define the mapping K∆ : Rd
++ × R2 → R by

K∆((γ1, . . . , γd), k, p) :=
d∑
s=1

(log(γs)− log(k) + p∆s)2 ,

and compute the least squares estimator

(k̂∆(γ̂∆,T,d), p̂∆(γ̂∆,T,d)) := arg min
(k,p)∈R2

K∆(γ̂∆,T,d, k, p),

which is given by

p̂∆(γ̂∆,T,d) = −

∑d
s=1

(
log(γ̂∆,T,d(s))− log(γ̂∆,T,d)

)
(s− d+1

2
)

∆
∑d

s=1(s− d+1
2

)2
,

k̂∆(γ̂∆,T,d) = exp

(
log(γ̂∆,T,d) + ∆

d+ 1

2
p̂∆(γ̂∆,T,d)

)
,

with log(γ̂∆,T,d) := 1
d

∑d
s=1 log(γ̂∆,T,d(s)).

3. Define the mapping J∆ : Rd+4 → R6 by

J∆(m1, µ2, µ3, µ4, γ)

:=

{
H∆(m1, µ2, µ3, µ4, k̂∆(γ), p̂∆(γ)) if µ2, γ, p̂∆(γ) > 0,

(0, 0, 0, 0, 0, 0) otherwise,

and compute the estimator

(µ̂∆,T , ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T , ω̂2
∆,T )

:= J∆(m̂1,∆,T , µ̂2,∆,T , µ̂3,∆,T , µ̂4,∆,T , γ̂∆,T,d).

7



Remark 3.5 By 3.2 and Assumption (A3), we have µ2,∆ > 0 as well as p > 0 and γ∆(s) >

0 for all s ∈ N∗. However, the corresponding estimators are not necessarily strictly positive.
But we will show in Corollary 3.10 below that all estimators are strongly consistent, which
implies that all estimators will be almost surely well defined for sufficiently large samples.

Similarly, ĉ4,∆,T < 0 is possible depending on the data. On the other hand, we have
c4 = 0 if B is chosen as a Brownian motion as well as c4 > 0 for all other Lévy process B
with jumps. Hence we take ĉ4,∆,T < 0 as a strong indication that the data is too light tailed
to be suitably modeled by the class of (semi-) heavy tailed models considered here.

Remark 3.6 If one considers the special case where B is chosen to be a Brownian motion,
i.e., in the BNS or Heston model, we have c3 = c4 = 0. Hence one can still use Algorithm
3.4 above by simply neglecting the moments of order 3 and 4 and setting ĉ3,∆,T = ĉ4,∆,T =

0. All asymptotic considerations in Section 3.2 below remain true.

Remark 3.7 As in [14], we fit the model to the logarithms of the empirical autocovariances
rather than the covariances themselves, because this leads to a linear regression and allows to
compute the least squares estimator explicitly. Using the empirical covariances as proposed
by [2], one is lead to a nonlinear least squares problem. Consequently, the existence of a
unique solution, which depends on the model parameters in a continuously differentiable
way, is no longer obvious and can only be guaranteed under additional assumptions (cf.
[12]). Nevertheless, this approach seems to work fine in practice and is the natural choice
when considering superpositions of OU processes of the form y =

∑m
j=1 y

(j), where y(j),
j = 1, . . . ,m denote independent stationary OU processes. If each y(j) has mean reversion
λj and IG(wja, b) or Γ(wja, b) marginals with

∑m
j=1wj = 1, we have

γ∆(s) = ω2

m∑
j=1

wj
λ2
j

(
1− e−λj∆

)2
e−λj∆(s−1), s ∈ N∗,

which can be used to fit the parameters λj, wj , j = 1, . . . ,m to the empirical autocovariances
via a nonlinear least squares regression.

3.2 Asymptotic properties of the estimator

Since all estimators in Algorithm 3.4 are continuously differentiable functions of empiri-
cal moments, strong consistency and asymptotic normality will follow from ergodicity of
the process (X(n))n∈N∗ . For stochastic volatility models with stock prices driven by Brow-
nian motion, it has been shown independently by [11] and [28] that the return sequence
(X(n))n∈N∗ is α-mixing (and hence ergodic), if y is α-mixing and further that the mixing co-
efficents for returns are smaller than or equal to the mixing coefficients of y. An inspection
of the arguments in [11] shows that this remains true for time-changed Lévy models.
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Theorem 3.8 Suppose the process y is strictly stationary and α-mixing with mixing coef-
ficients (αy(k))k∈R+ . Then (X(n))n∈N∗ is also strictly stationary and α-mixing with mixing
coefficients (αX(n))n∈N∗ satisfying

αX(n) ≤ αy(n), ∀n ∈ N∗.

In particular, (X(n))n∈N∗ is ergodic and if y is α-mixing with exponentially decreasing rate,
then (X(n))n∈N∗ is α-mixing with exponentially decreasing rate, too.

PROOF. We generalize the arguments of [11, Sections 3.1, 3.2] to time-changed Lévy mod-
els. In view of [11, Proposition 3.1] it is enough to check the prerequisites of [11, Definition
3.1]. The first property of [11, Definition 3.1] follows as in [11, Theorem 3.1] if the space
of continuous functions and its Borel σ-algebra associated with the uniform topology are
replaced with the Skorokhod space D and its Borel σ-algebra D associated with the Sko-
rokhod topology (cf. [17, Chapter VI and in particular VI.1.14] for more details), because
the mapping

T : D→ R2; (f(t))t∈R+ 7→
(∫ ∆

0

f(s)ds, f(∆)

)
is D-B(R) measurable. The other two properties of [11, Definition 3.1] follow literally as
in [11, Theorem 3.1] by applying [17, II.4.15], because X has independent increments on
[[0, n∆]] conditional on σ(ys, s ≤ n∆). �

Theorem 3.8 is often applicable due to the following well known result.

Lemma 3.9 Let y be a strictly positive square-root process or an OU process such that
E(|yt|p) <∞ for some p > 0. Then y is α-mixing with exponentially decreasing rate.

PROOF. The first part of the assertion can be found, e.g., in [11, Section 2.6]. The second
follows from [22, Theorem 4.3]. �

By Birkhoff’s ergodic theorem (cf. [27, Theorem V.3.1]) all moments estimators in Al-
gorithm 3.4 are strongly consistent.

Corollary 3.10 Assuming that (A1)-(A3) hold, we have, for T →∞,

m̂1,∆,T
a.s.→ m1,∆, µ̂i,∆,T

a.s.→ µi,∆, i = 2, 3, 4, γ̂∆,T (s)
a.s.→ γ∆(s), s = 1, . . . , d.

Next we turn to asymptotic normality, which can be obtained by applying a central limit
theorem for strongly mixing processes under the following additional assumption.

(A4) E(X8+ε
(n) ) <∞ for some ε > 0.

Remark 3.11 Since E(B1) = 0, Condition (A4) holds if E(B10
1 ) < ∞ and E(|y1|5) < ∞,

since this implies E(X10
t ) <∞ and hence E(X10

(n)) <∞. This can be seen by conditioning
on the time-change

∫ ·
0
ysds and using [25, Proposition 2.5].
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Lemma 3.12 Let (A1)-(A4) be satisfied. Then, for T →∞,√⌊
T

∆

⌋(
(m̂1,∆,T , µ̂2,∆,T , µ̂3,∆,T , µ̂4,∆,T , γ̂∆,T,d)−(m1,∆, µ2,∆, µ3,∆, µ4,∆, γ∆,d)

)
d→ Nd+4(0,Σ),

where the covariance matrix Σ has components

Σk,l = Cov(G1,k, G1,l) + 2
∞∑
j=1

Cov(G1,kG1+j,l),

with

Gn :=
(
X(n), (X(n) −m1,∆)2, (X(n) −m1,∆)3, (X(n) −m1,∆)4,

(X2
(n) − µ2,∆)(X2

(n+1) − µ2,∆), . . . , (X2
(n) − µ2,∆)(X2

(n+d) − µ2,∆)
)
.

PROOF. Since (X(n))n∈N∗ is strongly mixing with exponentially decreasing rate, the claim
follows from the Ibragimov central limit theorem for strongly mixing processes (cf. [16,
Theorem 18.5.3]) along the lines of the proof of [14, Proposition 3.7]. �

Summing up, we have the following result.

Theorem 3.13 Assume (A1)-(A3) hold. Then, for T →∞,

(µ̂∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂2
∆,T )

a.s.→ (µ, c3, c4, λ, ξ, ω
2).

If additionally (A4) holds, then, for T →∞,√⌊
T

∆

⌋(
(µ̂∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂

2
∆,T )− (µ, c3, c4, λ, ξ, ω

2)

)
d→ ∇J∆(m1,∆, µ2,∆, µ3,∆, µ4,∆, γ∆,d)Nd+4(0,Σ),

where Σ is defined as in Lemma 3.12.

PROOF. The strong consistency follows from Corollary 3.10 by the continuous mapping
theorem (cf. [29, Theorem 2.3]) and the asymptotic normality is a consequence of Lemma
3.12 and the delta method (cf. [29, Theorem 3.1]), because J∆ is continuously differentiable
in (m1,∆, µ2,∆, µ3,∆, µ4,∆, γ∆,d). �

3.3 Estimation results for real data

Using Algorithm 3.4 proposed above, we now fit the time-changed Lévy model to real data.
As in, e.g., [1, 6, 10] we consider a long time series of daily returns, since this provides
rich information about the conditional and unconditional distribution of the returns while
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allowing us to sidestep the seasonality issues inherent in high frequency data, which are
beyond our scope here. We use a daily time series of the German industrial index DAX
spanning from the 14th of June in 1988 to the 10th of April in 2008 (i.e. T = 20, ∆ = 1/250

and T/∆ = 5000 returns). Following [14], we use d ≈
√
bT/∆c, i.e., d = 70 for T = 20

and ∆ = 1/250. The results are shown in Table 1.

µ̂1/250,20 ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0.0894 0 -0.00549 0.000445 2.54 0.0485 0.00277

Table 1: Estimation results based on Algorithm 3.4 with d = 70.

The fitted model accounts for the skewness of −0.3943 and the kurtosis of 8.8210 ex-
hibited by our data set. The empirical autocorrelation functions and their theoretical coun-
terparts are shown in Figure 1, indicating that the second-order dependency structure is fit
quite well, too.
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Figure 1: Empirical and fitted autocorrelation functions of the log returns (first) and the
squared log returns (second)

Remark 3.14 Many applications in Mathematical Finance require a model for the stock
price discounted by a bond S0

t = ert with constant interest rate r. If we use the average
0.0456 of the 6-month EURIBOR from its inception as a proxy for r and estimate the pa-
rameters of the discounted model using Algorithm 3.4, we obtain the results shown in Table
2. Only the estimate of µ changes, since all other estimators use centered moments.

µ̂1/250,20 ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0.0438 0 -0.00549 0.000445 2.54 0.0485 0.00277

Table 2: Estimation results for the discounted stock price with Algorithm 3.4.
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Remark 3.15 As discussed in Remark 3.7 above, it is also possible to consider superpo-
sitions of OU processes and fit them to the empirical autocovariances. Using the MAT-
LAB nonlinear least squares routine lsqnonlin, this approach yields the following set
of parameter estimates for the superposition of two independent OU-processes with mean
reversion λj , mean wjξ and variance wjω2, j = 1, 2:

ξ̂ = 0.0485, ω̂2 = 0.00402, ŵ1 = 0.446, λ̂1 = 32.5, ŵ2 = 0.554, λ̂2 = 1.38.

The corresponding fitted autocorrelation function for the superposition of two OU processes
is shown alongside its counterpart for one OU process in Figure 2. Clearly, the fit is im-
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Figure 2: Empirical and fitted autocorrelation functions of the squared log returns for a
superposition of one (first) and two (second) OU processes.

proved considerably for short lags, although the overall effect is not too big for our daily
data. If one moves to more highly frequent data, however, several OU processes become
indispensable to model dependencies on different time scales.

So far these results are really of semiparametric nature, since we have not specified the
processes B and y yet. We now present some parametric examples.

Example 3.16 (IG-OU process, Gamma-OU process) Suppose y follows a stationary IG-
OU process (cf., e.g., [26]) with IG(a, b) marginals. Then a =

√
ξ3/ω2 and b =

√
ξ/ω2,

hence strongly consistent and asymptotically normal estimators are given by â1/250,20 =

0.203 and b̂1/250,20 = 4.1835. If y follows a stationary Gamma-OU process (cf., e.g., [26])
with Γ(a, b) marginals, the corresponding estimators are â1/250,20 = 0.8483 and b̂1/250,20 =

17.5013.

Example 3.17 (Square-root process) Assume y is given by a strictly stationary and pos-
itive square-root process. Then yt follows a Γ(2λη/σ2, 2λ/σ2)-law by, e.g., [7, Section
15.1.2]. This implies that η = ξ and σ2 = 2λω2/ξ. Hence consistent and asymptotically
normal estimators are given by η̂1/250,20 = 0.0485 and σ̂1/250,20 = 0.5386.
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Note that the stationary distributions for the square-root and the Gamma-OU process
coincide, whereas only the first two moments are identical for the IG-OU process.

Example 3.18 (BNS model) In the BNS model, B is chosen to be a Brownian motion with
drift. In this case, c1 = 0 and c2 = 1 imply that B is a standard Brownian motion.

If the BNS model is estimated using Algorithm 3.4, the third and fourth moments of the
model are not fitted to the data. More specifically, Theorem 2.2 yields that the fitted BNS
model has skewness 0 and kurtosis 6.52 compared with the values −0.39 and 8.82 observed
in our data set. This shows that in our setup, stochastic volatility without jumps in the asset
price cannot explain the skewness in the data and can only account for a part of the heavy
tails. To show the full flexibility of the class of models considered here, we now consider
a Lévy process B with jumps, namely the NIG process, which is a popular model for stock
prices itself.

Example 3.19 (NIG process) Let B be a NIG process with Lévy exponent

ψB(u) = uδ + ϑ
(√

α2 − β2 −
√
α2 − (β + u)2

)
,

where δ ∈ R, α, ϑ > 0 and β ∈ (−α, α). Then by [26, Section 5.3.8], Conditions (A1)-(A4)
are satisfied for ϑ = (α2−β2)3/2α−2 and δ = −β(α2−β2)α−2 and solving for α, β, δ, ϑ we
obtain the following estimators, which are strongly consistent and asymptotically normal by
Theorem 3.13 above:

β̂∆,T :=
ĉ3,∆,T

ĉ4,∆,T − 5ĉ 2
3,∆,T/3

, α̂∆,T :=
√
β̂2

∆,T + 3β̂∆,T/ĉ3,∆,T ,

ϑ̂∆,T :=
(α̂2

∆,T − β̂2
∆,T )3/2

α̂2
∆,,T

, δ̂∆,T :=
−ϑ̂∆,T β̂∆,T√
α̂2

∆,T − β̂2
∆,T

.

For our data set, this yields

β̂1/250,20 = −13.9, α̂1/250,20 = 88.3, ϑ̂1/250,20 = 85.0, δ̂1/250,20 = 13.6.

3.4 Simulation study

To investigate the small sample behavior of our estimation algorithm, we now assume that
X is given by a NIG-IG-OU process, i.e., y is chosen to be a stationary IG-OU process
with mean reversion λ and marginal IG(

√
ξ3/ω2,

√
ξ/ω2) distributions, whereas the Lévy

process B is assumed to be an NIG process.
As for parameters, we use the estimates obtained from our daily DAX time series in

Examples 3.16 and 3.19 above. Sample paths of an NIG-IG-OU process can easily be simu-
lated using algorithms found in [26, Sections 8.4.5 and 8.4.7]. We simulate 1000 samples of
equidistant observations of returns X(n) for ∆ = 1/250 and T = 20 and T = 40, where we
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first work on a finer grid with 80 steps per day and then only use the returns on the original
grid to reduce discretization errors. The results are shown in Table 3. As above, we have
chosen d ≈

√
bT/∆c, i.e., d = 70 for T = 20 and d = 100 for T = 40 here. Note that we

measure the estimation error relative to the true values of the parameters in order to account
for the different sizes of the parameters.

µ c3 c4 λ ξ ω2

True Value 0.0894 -0.00549 0.000445 2.54 0.0485 0.00277
T = 20 µ̂1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 0.0856 -0.0543 0.000454 3.01 0.0478 0.00250
AAPE 0.427 0.354 0.307 0.339 0.174 0.454
T = 40 µ̂1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 0.0910 -0.00547 0.000450 2.82 0.0484 0.00272
AAPE 0.311 0.271 0.231 0.242 0.125 0.347

Table 3: Estimated mean and average absolute percentage error for the parameters µ̂∆,T ,
ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T and ω̂2

∆,T estimated with Algorithm 3.4.

The estimators seem to be fairly consistent for the sample size under consideration, the
only notable exception being the mean reversion parameter λ which is markedly biased to
the right. Moving from T = 20 to T = 40 we observe that the mean absolute errors decrease
by factors of roughly

√
2 as would be expected from the Ibragimov central limit theorem.

3.5 Estimation of the current level of volatility

The current value of the activity process y is needed in many applications in Mathemati-
cal Finance, e.g., for portfolio optimization or hedging of derivatives. Since it cannot be
observed directly, it has to be filtered from the given returns. Assuming y follows an OU
process and c1 = 0, we can proceed along the lines of [2, Section 5.4.3], and obtain a linear
state space representation which allows to use the Kalman filter (cf. [13] for more details),
to provide a best linear (based on X(n) and X2

(n)) predictor of y. More specifically, it fol-
lows from Corollary 3.2 and [2, Section 5.4.3] that a linear state space representation of
(X(n), X

2
(n)) is given by(

X(n)

X2
(n)

)
=

(
µ∆

µ2∆2

)
+

(
0 0

λ−1 0

)(
λ(Yn∆ − Y(n−1)∆)

yn∆

)
+ un,

where the vector martingale difference sequence un satisfies

Var(u1n) = ∆ξ, Cov(u1n, u2n) = 2µ∆2ξ + c3∆ξ,

Var(u2n) = 4µ2∆3ξ + 4
ω2

λ2

(
e−λ∆ − 1 + λ∆

)
+ 2ξ2∆2 + c4∆ξ + 4µ∆2c3ξ,
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and (
λ(Y(n+1)∆ − Yn∆)

y(n+1)∆

)
=

(
0 1− e−λ∆

0 e−λ∆

)(
λ(Yn∆ − Y(n−1)∆)

yn∆

)
+ wn,

with IID noise wn (uncorrelated with un) satisfying

E(wn) = ξ

(
e−λ∆ − 1 + λ∆

1− e−λ∆

)
,

Var(wn) = 2ω2

(
λ∆− 2(1− e−λ∆) + 1

2
(1− e−2λ∆) 1

2
(1− e−λ∆)2

1
2
(1− e−λ∆)2 1

2
(1− e−2λ∆)

)
.

In Figure 3 we show the results of applying the Kalman filter to the simulated returns,
suggesting it is possible to obtain decent estimates of the volatility in this way.
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Kalman Filter Estimate
True Volatility

Figure 3: Sample paths of an IG-OU process (thin line) with parameters as in Example 3.16
and the Kalman filter estimate (thick line) obtained from the corresponding NIG-IG-OU
process with parameters as in Examples 3.19, 3.16.

4 Moment estimation for arbitrary B

We now consider the case where µ = 0 and the Lévy process B is not necessarily assumed
to be a martingale, i.e., c1 6= 0. Estimation is done subject to the following assumptions:

(B1) For time horizon T > 0 and grid size ∆ > 0 we have equally spaced observations
Xj∆, j = 0, ..., bT/∆c and returns X(j) = Xj∆ −X(j−1)∆, j = 1, ..., bT/∆c.

(B2) µ = 0 and the cumulants of B satisfy c2 = 1 and c4 <∞.
(B3) y is a stationary OU or CIR process with mean reversion λ > 0, mean ξ > 0,

variance ω2 > 0 and existing fourth moments.
(B4) E(X8+ε

(n) ) <∞ for some ε > 0.

Remark 4.1 Note that if c1 = E(B1) does not vanish anymore, one now has to to require
E(B10

1 ) <∞ and E(y10
1 ) <∞ in order to ensure that (B4) holds. Like in Remark 3.11, this

follows from [25, Proposition 2.5] by conditioning on the time change.

As above, for given grid size ∆ > 0 we write µi,∆ and mi,∆ for the i-th centered and
uncentered moment ofX(n), set γ∆(s) := Cov(X(n), X(n+s)) for s ∈ N∗ and define γ∆,d∆

:=

(γ∆(1), . . . , γ∆(d∆)) for d∆ ∈ N∗.
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4.1 Approximate moments

The key to the estimation algorithms proposed below is the following observation by [3].

Lemma 4.2 Assume that (B1)-(B3) hold. Then for ∆ ↓ 0,

m3,∆ = c3∆ξ + 3c1

(
2ω2

λ2
(e−λ∆ − 1 + λ∆) + ∆2ξ2

)
+O(∆3),

m4,∆ = c4∆ξ + (3 + 2c1c3)

(
2ω2

λ2
(e−λ∆ − 1 + λ∆) + ∆2ξ2

)
+O(∆3),

as well as , for s ∈ N∗ and ∆ ↓ 0,

γ∆(s) = ω2 (1− e−λ∆)2

λ2
e−λ∆(s−1) +O(∆3) = ω2∆2e−λ∆(s−1) +O(∆3).

PROOF. This is shown in [3, Propositions 4 and 5]. �

4.2 The estimation procedure

By neglecting all terms of order ∆3 or higher in Lemma 4.2, we obtain the following ap-
proximations of the model parameters by moments of the returns and the autocovariance
function of the squared returns.

Lemma 4.3 Assume (B1)-(B3) hold and let k, p ∈ R++ be constants such that, for fixed
D ∈ N∗ and ∆ ↓ 0,

γ∆(s) = k∆2e−p∆(s−1) +O(∆3), s ∈
{

1, . . . ,

⌊
D√
∆

⌋
+ 1

}
. (4.4)

Then, for sufficiently small ∆, there exists a largest solution x∆ > 0 to

0 = µ2,∆x
2 −∆x3 −m2

1,∆k,

and we have, for ∆ ↓ 0,

λ = p+O(
√

∆/D), ω2 = k +O(∆), ξ = x∆ +O(∆2), c1 =
m1,∆

∆x∆

+O(∆2),

c3 =
m3,∆

∆x∆

− 3m1,∆

(
1 +

k

x2
∆

)
+O(∆2),

c4 =
m4,∆

∆x∆

−
{

3∆

x∆

+
2m1,∆

x2
∆

(
m3,∆

∆x∆

− 3m1,∆

(
1 +

k

x2
∆

))}(
x2

∆ + k
)

+O(∆2).

PROOF. This follows from Theorem 2.2 and Lemma 4.2 using some technical but straight-
forward arguments, cf. [23, Lemma 3.25] for more details. �

Lemma 4.3 motivates the following estimation algorithm. In view of Theorem 4.6 be-
low, all estimators will again be almost surely well-defined for sufficiently small ∆ and
sufficiently large samples.
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Algorithm 4.4 1. Calculate the moment estimators

m̂i,∆,T :=
1

bT/∆c

bT/∆c∑
j=1

X i
(n), i = 1, 2, 3, 4,

as well as, for fixed D ∈ N∗ and d∆ := bD/
√

∆c+ 1, the empirical autocovariances
γ̂∆,T,d∆

:= (γ̂∆,T (1), . . . , γ̂∆,T (d∆)), as

γ̂∆,T (s) :=
1

bT/∆c

bT/∆c−s∑
j=1

(
X2

(j) − m̂2,∆,T

) (
X2

(j+s) − m̂2,∆,T

)
,

for s = 1, . . . , d∆.

2. Define the mapping K∆ : Rd
++ × R2 → R by

K∆((γ1, . . . , γd), k, p) :=

d∆∑
s=1

(
log(γs)− log(∆2k) + p∆s

)2
,

and compute the least square estimator

(k̂∆(γ̂∆,T,d∆
), p̂∆(γ̂∆,T,d∆

)) := arg min
(k,p)∈R2

K∆(γ̂∆,T,d∆
, k, p),

which is given by

p̂∆(γ̂∆,T,d∆
) = −

∑d∆

s=1

(
log(γ̂∆,T,d∆

(s))− log(γ̂∆,T,d∆
)
)

(s− d∆+1
2

)

∆
∑d∆

s=1(s− d∆+1
2

)2)
,

k̂∆(γ̂∆,T,d∆
) = ∆−2 exp

(
log(γ̂∆,T,d∆

) + ∆
d∆ + 1

2
p̂∆(γ̂∆,T,d∆

)

)
,

with log(γ̂∆,T,d∆
) := 1

d∆

∑d∆

s=1 log(γ̂∆,T,d∆
(s)).

3. Compute

x̂∆(m̂1,∆,T , m̂2,∆,T , γ̂∆,T )

:= max
{
x ∈ R : µ̂2,∆,Tx

2 −∆x3 − m̂2
1,∆,T k̂∆(γ̂∆,T,d∆

) = 0
}
.

4. Define the mapping H∆ : R++ × R4 × R++ → R6 by

H∆(x,m1,m3,m4, k, p) :=

(
m1

∆x
,
m3

∆x
− 3m1

(
1− k

x2

)
,

m4

∆x
−
{

3∆

x
+

2m1

x2

(
m3

∆x
− 3m1

(
1− k

x2

))}(
x2 + k

)
, p, x, k

)
.
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5. Define the mapping J∆ : R4 × Rd∆
+ → R6 by

J∆(m1,m2,m3,m4, γ)

:=

{
H(x̂∆(m1,m2, γ),m1,m3,m4, k̂∆(γ), p̂∆(γ)) if γ, x̂∆(m1,m2, γ), p̂∆(γ) > 0,

(0, 0, 0, 0, 0, 0) otherwise,

and compute the estimator

(ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T , ω̂
2
∆,T )

= J∆(m̂1,∆,T , m̂2,∆,T , m̂3,∆,T , m̂4,∆,T , γ̂∆,T,d∆
).

Remark 4.5 1. Note that the mapping J∆ is continuously differentiable in the true pa-
rameter values (m1,∆,m2,∆,m3,∆,m4,∆, γ∆,d∆

), because the implicit function theo-
rem shows that x̂∆ is continuously differentiable in (m1,∆,m2,∆, γ∆,d∆

).

2. As above, ĉ4,∆,T < 0 is possible depending on the data, which we once again take as
a strong indication that the data is too light tailed to be suitably modelled by the class
of (semi-) heavy tailed models considered here.

4.3 Asymptotic properties of the estimator

For the construction of the estimation algorithms in Section 4.2, we had to resort to approxi-
mate moments with an error term vanishing only as ∆ ↓ 0. Consequently, strong consistency
and asymptotic normality only hold up to this error term as well.

Theorem 4.6 Define ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T , ω̂2
∆,T as in Algorithm 4.4 and assume

(B1)-(B3) hold. Then we have

lim
T→∞

(
(ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂2

∆,T )−
(
(c1, c3, c4, λ, ξ, ω

2) + ε∆

) ) a.s.
= 0,

and, if additionally (B4) holds,√
bT/∆c

(
(ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂2

∆,T )−
(
(c1, c3, c4, λ, ξ, ω

2) + ε∆

) )
d→ ∇J∆(m1,m2,m3,m4, γ∆,d∆

)Nd+4(0,Σ),

as T →∞, where

ε∆ = (O(∆2), O(∆2), O(∆2), O(
√

∆), O(∆2), O(∆)) for ∆ ↓ 0,

and the covariance matrix Σ has components

Σk,l = Cov(G1,k, G1,l) + 2
∞∑
j=1

Cov(G1,kG1+j,l),

for

Gn :=
(
X(n), X

2
(n), X

3
(n), X

4
(n),

(X2
(n) −m2,∆)(X2

(n+1) −m2,∆), . . . , (X2
(n) −m2,∆)(X2

(n+d) −m2,∆)
)
.
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PROOF. Set

ε∆ := (c1, c3, c4, λ, ξ, ω
2)− J∆(m1,∆,m2,∆,m3,∆,m4,∆, γ∆,d∆

),

where d∆ = b
√
D/∆c for some D ∈ R+. By Lemma 4.3 and the definition of J∆ in

Algorithm 4.4, we have

ε∆ = (O(∆2), O(∆2), O(∆2), O(
√

∆), O(∆2), O(∆)) for ∆ ↓ 0.

Notice that the proof of Theorem 3.8 also holds in the present setup. Hence, for fixed ∆ > 0,
the series (X(n))n∈N∗ is ergodic and Birkoff’s ergodic theorem yields that for T → ∞, we
have

m̂i,∆,T
a.s.→ mi,∆, i = 1, 2, 3, 4, γ̂∆,T,d∆

a.s.→ γ∆,d∆
.

By the continuous mapping theorem (cf. [29], Theorem 2.3), this implies

J∆(m̂1,∆,T , m̂2,∆,T , m̂3,∆,T , m̂4,∆,T , γ̂∆,T,d∆
)

a.s.→ J∆(m̂1,∆, m̂2,∆, m̂3,∆, m̂4,∆, γ̂∆,d∆
) as T →∞,

since J∆ is continuous in (m1,∆,m2,∆,m3,∆,m4,∆, γ∆,d∆
). This shows the first statement.

The second follows from the Ibragimov central limit theorem by an application of the delta
method as in the proofs of Lemma 3.12 and Theorem 3.13. �

4.4 Estimation results for real data

We now apply Algorithm 4.4 to the same set of daily DAX data used in Section 3 above.
The results are shown in Table 4. As in Remark 3.14, one can again discount by a constant
deterministic interest rate r = 0.0456 first and then apply the estimation Algorithm 4.4.
Since uncentered moments are used for the estimation of all parameters in Algorithm 4.4,
all parameters are potentially affected by this. However, the results shown in Table 5 suggest
that the effect is quite small for all parameters except for the drift c1.

µ̂ ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0 1.85 -0.00675 0.000448 2.54 0.0485 0.00277

Table 4: Estimation results based on Algorithm 4.4.

µ̂ ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0 0.904 -0.00610 0.000444 2.54 0.0485 0.00278

Table 5: Estimation results for the discounted stock price based on Algorithm 4.4.

Example 4.7 (IG-OU process, Gamma-OU process, square-root process) Since the es-
timators λ̂, ξ̂, ω̂2 are virtually unchanged compared to Section 3, the resulting estimators
for the stationary distribution of y also practically coincide with the respective values from
Examples 3.16 and 3.17.
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Example 4.8 (BNS model) If B is given by a Brownian motion with drift δ ∈ R and
volatility σ ∈ R+, we have δ = c1 and σ2 = c2. Consequently, σ = 1 and the estimator
δ̂1/250,20 = ĉ1,1/250,20 = 1.85 is approximately consistent and asymptotically normal for
small ∆. If one considers data discounted with the constant deterministic interest rate r =

0.0456, the corresponding estimator is given by δ̂1/250,20 = 0.904.

Example 4.9 (NIG process) Suppose that B is given by an NIG process. Plugging c2 = 1

and the estimates for c1, c3, c4 given in Table 4 above into

β =
c3

c4 − 5c2
3/3

, α =
√
β2 + 3β/c3, ϑ =

(α2 − β2)3/2

α2
, δ = c1 −

ϑβ√
α2 − β2

,

yields estimators β̂1/250,20, α̂1/250,20, ϑ̂1/250,20, δ̂1/250,20 for the parameters β, α, ϑ, δ of the
NIG process, which are approximately consistent and asymptotically normal for small ∆:

β̂1/250,20 = −18.2, α̂1/250,20 = 91.7, ϑ̂1/250,20 = 86.3, δ̂1/250,20 = 19.3.

For discounted data, we obtain

β̂1/250,20 = −16.0, α̂1/250,20 = 90.1, ϑ̂1/250,20 = 85.9, δ̂1/250,20 = 16.5.

4.5 Simulation study

We now investigate the performance of Algorithm 4.4 by performing the same simulation
study as for Algorithm 3.4 in Section 3.4 above. As for parameters we use the values given in
Examples 4.7 and 4.9, respectively. The results are shown in Table 6. Comparing the results
with Table 3, we find that the use of the approximate moments seems to entail virtually no
loss in the quality of the estimators for our daily data. This suggests that the approximation
errors resulting from the use of the approximate moment are rather small compared to the
variance of the estimators.

c1 c3 c4 λ ξ ω2

True Value 1.84 -0.00675 0.000448 2.54 0.0485 0.00278
T = 20 ĉ1,1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 1.90 -0.00667 0.000452 3.00 0.0482 0.00253
AAPE 0.463 0.278 0.335 0.347 0.176 0.467
T = 40 ĉ1,1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 1.84 -0.00673 0.000445 2.83 0.0486 0.00264
AAPE 0.318 0.189 0.270 0.243 0.123 0.357

Table 6: Estimated mean and average absolute percentage error for the parameters ĉ1,∆,T ,
ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T and ω̂2

∆,T .
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4.6 Computation of the approximation error

The results of our simulation studies suggest that the errors resulting from the use of approx-
imate moments are quite small. However, it is generally difficult to quantify them without
resorting to large scale Monte-Carlo simulations. For affine models however, it is sometimes
possible to explicitly calculate the joint characteristic function of the returnsX(n) andX(n+s)

for n, s ∈ N∗. Differentiation and evaluation at zero via MATLAB’s symbolic toolbox then
lead to exact formulas for moments and autocovariances. These equations do not yield
any favorable estimation algorithms, because they are extremely complicated and hideously
nonlinear. However, they can comfortably be used for an a posteriori error estimation. We
have the following general result from [19]:

Lemma 4.10 Let y be an OU-process driven by a subordinator Z. Then for n, s ∈ N∗, the
joint characteristic function of the returns X(n) and X(n+s) is given by

E
(
eiu1X(n)+iu2X(n+s)

)
= E

(
eΨ1(∆,Ψ1((s−1)∆,Ψ1(∆,0,iu2),0),iu1)y(n−1)∆

)
× eΨ0(∆,0,iu2)+Ψ0((s−1)∆,Ψ1(∆,0,iu2),0)+Ψ0(∆,Ψ1((s−1)∆,Ψ1(∆,0,iu2),0),iu1),

where

Ψ1(t, u1, u2) := u1e
−λt +

1− e−λt

λ
ψB(u2),

Ψ0(t, u1, u2) :=

∫ t

0

ψZ(Ψ1(s, u1, u2))ds,

and ψB resp. ψZ denote the Lévy exponents of B and Z, respectively.

PROOF. Follows from [19, Corollaries 3.2 and 3.1]. �

For a Gamma-OU process y, all terms can be determined explicitly. A similar closed-
form expression can also be obtained if y is chosen to be a square-root process, cf. [5].

Corollary 4.11 Let y be a Gamma-OU process with stationary Γ(ξ2/ω2, ξ/ω2)-distribu-
tion. Then for s ∈ N∗, we have

E
(
eiu1X(n)+iu2X(n+s)

)
=

(
1− ω2

ξ
Ψ1(∆,Ψ1((s− 1)∆,Ψ1(∆, 0, iu2), 0), iu1)

)−ξ2/ω2

×eΨ0(∆,0,iu2)+Ψ0((s−1)∆,Ψ1(∆,0,iu2),0)+Ψ0(∆,Ψ1((s−1)∆,Ψ1(∆,0,iu2),0),iu1),

where

Ψ1(t, u1, u2) := u1e
−λt +

1− e−λt

λ
ψB(u2),

Ψ0(t, u1, u2) :=

ξ2

ω2

(
ξ
ω2 log

(
ξ/ω2−Ψ1(t,u1,u2)

ξ/ω2−u1

)
+ ψB(u2)t

)
ξ/ω2 − ψB(u2)/λ

.

Here log denotes the distinguished logarithm in the sense of [25, Lemma 7.6].
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PROOF. Since Ψ1 is C−-valued by [9, Propositions 6.1 and 6.4], the first formula follows
from Lemma 4.10 by inserting the analytic continuation of the characteristic function of
the Γ(ξ2/ω2, ξ/ω2)-distribution to C−. By, e.g., [26, Section 7.1.1] we have ψZ(u) =

(uλξ2/ω2)/(ξ/ω2 − u) for the stationary Gamma-OU process. Substitution into Lemma
4.10 and integration using partial fractions yield the assertion. �

The results of using MATLAB’s symbolic toolbox to differentiate and evaluate the char-
acteristic function given in Corollary 4.11 are given in Table 7. Clearly, the first four mo-
ments are still fit very well despite the approximation errors involved.

m1,1/250 m2,1/250 m3,1/250 m4,1/250

Data 3.5777× 10−4, 1.9400× 10−4 −8.5630× 10−7, 3.3018× 10−7

Model 3.5777× 10−4 1.9404× 10−4 −8.5680× 10−7 3.2683× 10−7

APE < 10−11% < 0.02% < 0.06% < 1.02%

Table 7: Empirical moments of data, exact theoretical moments of the model fitted with
Algorithm 4.4, and the corresponding absolute percentage errors.

We can also compute the exact autocorrelation and crosscorrelation functions of the re-
turns and squared returns. They are plotted together with the corresponding approximations
and their empirical counterparts in Figure 4. Again, the approximation errors involved turn
out to be negligible compared to the variance of the corresponding estimators. Furthermore,
it is clearly visible that while the positive autocorrelation of the returns and the positive
crosscorrelation between the returns and the squared returns are of course negative features
of the model from a theoretical point of view, the size of these effects is very small. Hence
we can conclude that the second-order structure of the data is still fit satisfactorily for prac-
tical purposes.

4.7 Estimation of the current level of volatility

We now propose an approach to estimate the current level of volatility in the case c1 6= 0.
Assuming µ = 0 and y follows an OU process, [2, Section 5.4.3] and Theorem 2.2 yield the
following state-space representation of (X(n), X

2
(n)):(

X(n)

X2
(n)

)
=

(
c1(Yn∆ − Y(n−1)∆)

(Yn∆ − Y(n−1)∆) + c2
1(Yn∆ − Y(n−1)∆)2

)
+ un,

where the vector martingale difference sequence un satisfies, for ∆ ↓ 0,

Var(u1n) = ∆ξ, Cov(u1n, u2n) = c3∆ξ + 2c1∆2
(
ω2 + ξ2

)
+O(∆3),

Var(u2n) = c4∆ξ + (4c1c3 + 2)∆2
(
ω2 + ξ2

)
+O(∆3),

and (
λ(Y(n+1)∆ − Yn∆)

y(n+1)∆

)
=

(
0 1− e−λ∆

0 e−λ∆

)(
λ(Yn∆ − Y(n−1)∆)

yn∆

)
+ wn,
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Figure 4: Empirical, approximate and exact autocorrelation functions of the log returns
(first), crosscorrelation function of the returns and the squared returns (second) autocorrela-
tion function of the squared log returns (third).

with IID noise wn (uncorrelated with un) satisfying

E(wn) = ξ

(
e−λ∆ − 1 + λ∆

1− e−λ∆

)
,

Var(wn) = 2ω2

(
λ∆− 2(1− e−λ∆) + 1

2
(1− e−2λ∆) 1

2
(1− e−λ∆)2

1
2
(1− e−λ∆)2 1

2
(1− e−2λ∆)

)
.

While the nonlinearity of this representation prohibits the use of the Kalman filter, it is still
possible to use the extended Kalman filter by neglecting terms of order O(∆3) or higher
once again. Despite the approximations involved, the results shown in Figure 5 suggest that
it is still possible to obtain decent estimates of the volatility in this way.
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Figure 5: Sample paths of IG-OU process (thin line) with parameters as in Examples 4.7
and the approximate extended Kalman filter estimate (thick line) obtained from the corre-
sponding NIG-IG-OU process with parameters as in Examples 4.7, 4.9.
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[9] D. Duffie, D. Filipović, and W. Schachermayer. Affine processes and applications in
finance. The Annals of Applied Probability, 13:984–1053, 2003.

[10] B. Eraker, M. Johannes, and N. Polson. The impact of jumps in volatility and returns.
The Journal of Finance, 58:1269–1300, 2003.

24



[11] V. Genon-Catalot, T. Jeantheau, and C. Larédo. Stochastic volatility models as hidden
Markov models and statistical applications. Bernoulli, 6:1051–1079, 2000.

[12] L. Hansen. Large sample properties of generalized method of moments estimators.
Econometrica, 50:1029–1054, 1982.

[13] A. Harvey. Forecasting, Structural Time Series Models and the Kalman Filter. Cam-
bridge University Press, Cambridge, 1989.

[14] S. Haug, C. Klüppelberg, A. Lindner, and M. Zapp. Method of moment estimation in
the COGARCH(1,1) model. The Econometrics Journal, 10:320–341, 2007.

[15] F. Hubalek and C. Sgarra. Quadratic hedging for the Bates model. International
Journal of Theoretical and Applied Finance, 10:873–885, 2007.

[16] I. Ibragimov and Y. Linnik. Independent and stationary sequences of random vari-
ables. Wolters-Noordhoff Publishing, Groningen, 1971.

[17] J. Jacod and A. Shiryaev. Limit theorems for stochastic processes, volume 288 of
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, second
edition, 2003.

[18] G. Jiang and J. Knight. Estimation of continuous-time processes via the empirical
characteristic function. Journal of Business & Economic Statistics, 20:198–212, 2002.

[19] J. Kallsen. A didactic note on affine stochastic volatility models. In Yu. Kabanov,
R. Liptser, and J. Stoyanov, editors, From Stochastic Calculus to Mathematical Fi-
nance, pages 343–368. Springer, Berlin, 2006.

[20] J. Kallsen and R. Vierthauer. Quadratic hedging in affine stochastic volatility models.
Review of Derivatives Research, 12:3–27, 2009.

[21] H. Kraft. Optimal portfolios and Heston’s stochastic volatility model: An explicit
solution for power utility. Quantitative Finance, 5:303–313, 2005.

[22] H. Masuda. On multidimensional Ornstein-Uhlenbeck processes driven by a general
Lévy process. Bernoulli, 10:97–120, 2004.

[23] J. Muhle-Karbe. On Utility-Based Investment, Pricing and Hedging in Incomplete
Markets. Dissertation Technische Universität München, 2009.

[24] C. Pigorsch and R. Stelzer. A multivariate Ornstein-Uhlenbeck type stochastic volatil-
ity model. Preprint, 2008.

[25] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge University
Press, Cambridge, 1999.

[26] W. Schoutens. Lévy Processes in Finance. Wiley, New York, 2003.

25



[27] A. Shiryaev. Probability. Springer, New York, second edition, 1995.

[28] M. Sørensen. Prediction-based estimating functions. The Econometrics Journal,
3:123–147, 2000.

[29] A. van der Vaart. Asymptotic statistics, volume 3 of Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998.

26


	Introduction
	Moments and second-order dependence structure of time-changed Lévy models
	Moment estimation if B is a martingale
	The estimation procedure
	Asymptotic properties of the estimator
	Estimation results for real data
	Simulation study
	Estimation of the current level of volatility

	Moment estimation for arbitrary B
	Approximate moments
	The estimation procedure
	Asymptotic properties of the estimator
	Estimation results for real data
	Simulation study
	Computation of the approximation error
	Estimation of the current level of volatility

	References

