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Zusammenfassung

Diese Arbeit beschäftigt sich mit rationalen Investoren, die in unvollständigen Märkten ihren
Erwartungsnutzen maximieren.

In Teil I betrachten wir Unvollständigkeit aufgrund von Sprüngen bzw. stochastischer
Volatilität. Mithilfe von Martingalmethoden bestimmen wir zunächst in einer Vielzahl ver-
schiedener Modelle optimale Handelsstrategien bzgl. Potenznutzenfunktionen. Weiterhin
zeigen wir wie lineare Nährungen nutzenbasierter Preise und Absicherungsstrategien als
Lösung eines quadratischen Hedge-Problems unter einem geeigneten Maß bestimmt wer-
den können. Angewandt auf affine Volatilitätsmodelle ergeben sich daraufhin semi-explizite
Formeln.

In Teil II behandeln wir Unvollständigkeit aufgrund von proportionalen Transaktions-
kosten. Wir zeigen, dass in diskreten Modellen immer ein Schattenpreis existiert, welcher
innerhalb der Bid-Ask Preise des ursprünglichen Modells liegt und zum gleichen maximalen
Erwartungsnutzen führt. Anschließend erläutern wir wie das klassische Merton Problem
mit Transaktionskosten durch die simultane Berechnung von Schattenpreis und optimaler
Strategie gelöst werden kann.
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Abstract

This thesis deals with rational investors who maximize their expected utility in incomplete
markets.

In Part I, we consider models where incompleteness is induced by jumps and stochastic
volatility. Using martingale methods we determine optimal investment strategies for power
utility in a wide class of different models. Moreover, we show how first-order approxima-
tions of utility-based prices and hedging strategies can be computed by solving a quadratic
hedging problem under a suitable measure. This representation result is then applied to
affine stochastic volatility models leading to semi-explicit solutions.

In Part II, we deal with incompleteness due to proportional transaction costs. In finite
discrete time we establish that there always exists a shadow price process, which lies within
the bid-ask bounds of the original market with transaction costs and leads to the same max-
imal expected utility. We then show that this idea can also be used in actual computations.
This is done by reconsidering the classical Merton problem with transaction costs and solv-
ing it by computing the shadow price and the optimal strategy simultaneously.
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Chapter 1

Introduction

Economic agents trading in a securities market are faced with the following three classical
problems of financial theory:

1. Suppose the investor disposes of some initial endowment. Then what is an optimal
investment strategy, i.e. what kind of dynamic trading strategy should the investor
employ so as to make the most of her money?

2. Assume the investor is approached by some other economic agent who offers her a
certain premium in exchange for some specific nontraded contingent claim. Should
the investor accept the deal? More generally, is there some threshold price such that
the investor accepts the deal if she is offered more and declines otherwise?

3. If the investor accepts the deal, she receives a premium today, but is obliged to pay
out the random value of the contingent claim at maturity. How should the premium be
invested in order to reduce this risk, i.e. how should the contingent claim be hedged?

Answers to all three of these fundamentals questions can of course only be given sub-
ject to some probabilistic model for the securities market. Here, one has to consider two
fundamentally different situations.

In complete markets every contingent claim admits a replicating portfolio composed of
the traded assets which duplicates the corresponding payoff. The prime example is of course
the classical model of Black & Scholes (1973), where the (logarithmized) asset returns are
assumed to be stationary over time, independent of the past and distributed according to a
Normal distribution. Subject to the reasonable assumption that the market does not admit
arbitrage, i.e. risk-free profits do not exist, the answers to Questions 2 and 3 above are very
simple. There exists a unique price for the contingent claim that does not allow for risk-free
profits, namely the initial value of the replicating strategy. Moreover, the replicating strategy
completely removes the risk incurred by selling the contingent claim.

Question 1 posed above turns out to be more difficult from a conceptual point of view
even in complete markets. The reason is that in addition to the general No Arbitrage as-
sumption, one also needs to specify the investor’s individual preferences in order to decide
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what constitutes an optimal investment strategy. A classical approach in Mathematical Eco-
nomics and Financial Mathematics is to consider a rational investor who strives to maximize
the expected utility derived from her portfolio at some future date. Here utility is measured
by a so-called utility function, which assigns a numerical value to the degree of satisfaction
induced by a certain terminal value of the portfolio. This approach is founded on the work
of von Neumann & Morgenstern (1947), who show that such a utility function exists for any
economic agent who has preferences over lotteries, i.e. who can rank all random payoffs in
terms of her individual preferences.

This profound conceptual distinction between Question 1 and Questions 2, 3 above is
rather surprising at first glance. When examined more closely, it indeed appears quite artifi-
cial and unrealistic, since in reality risks cannot be completely removed. This is reflected in
incomplete markets, where not every random payoff admits a replicating strategy. It turns
out that most probabilistic models of securities markets are incomplete: For example, if one
replaces the Normal distribution in the Black-Scholes model by any other distribution, this
leads to an incomplete model due to jumps in the asset price. Moreover, completeness of a
given model depends delicately on a number of other simplifying modelling assumptions.
For example, the Black-Scholes model is no longer complete if trading is only allowed at a
finite number of dates or if transaction costs make the implementation of hedging strategies
prohibitively expensive.

Consequently, incomplete markets are not a peculiar exception but comprise most re-
alistic models that have been proposed in the empirical literature. Let us now reconsider
Questions 1-3 above in the context of incomplete markets. Since perfect hedging strategies
no longer exist and many different prices are typically consistent with the absence of arbi-
trage now, the situation does not just become mathematically more involved, but the whole
line of reasoning breaks down. In order to come up with prices and hedging strategies in
incomplete markets, one therefore has to make some additional assumptions.

An economically appealing approach is to base pricing and hedging on utility maximiza-
tion as well. The approach to the optimal investment problem posed in Question 1 above
did not make use of completeness. Therefore incompleteness of the given model only leads
to additional mathematical but not conceptual difficulties. Assuming the investor strives to
maximize her expected utility, Questions 1-3 can now be answered in a consistent way as
follows:

1. Invest the initial endowment so as to maximize expected utility.

2. Agree to sell the contingent claim, if the premium raises the maximal expected utility
that can be obtained by dynamic trading in the market, despite having to pay out the
contingent claim.

3. The difference between the optimal investment strategies in 1 and 2 represents the
optimal utility-based hedging strategy.

While this approach is appealing from an economical viewpoint, it is of course only
useful in applications, if the objects of interest, i.e. optimal investment strategies as well as
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utility-based prices and hedging strategies, can actually be computed in concrete models.
This is precisely what the present thesis is concerned with.

1.1 Outline of the thesis

In the following we present a brief outline of the contents of this thesis. This outline only
serves to present a rough overview, for a more thorough discussion of the respective con-
tents as well as detailed references to related literature the reader is referred to the separate
introductions at the beginning of each chapter.

In Part I, we deal with incompleteness induced by jumps and/or stochastic volatility
in the asset prices. These features arise if one replaces the Black-Scholes model by more
sophisticated models in order to capture some of the empirical facts observed in reality.

Chapter 2 is based on Kallsen & Muhle-Karbe (2008a). It is concerned with (time-
inhomogeneous) affine semimartingales. This class of stochastic processes encompasses
many specific models put forward in the empirical literature and is appealing mathematically
due to its analytical tractability. Building on Duffie et al. (2003), we characterize these
processes from the point of view of semimartingale characteristics and provide easy-to-
check criteria for the exponential of an affine process to be a martingale. Using these results
we establish conditions for the absolute continuity of the laws of two given affine processes.
Moreover, we study whether exponential moments of affine processes can be computed by
solving some integro-differential equations. These results are of independent theoretical
interest, but are also used repeatedly in the remainder of the thesis.

Chapter 3 deals with the statistical estimation of asset price models allowing both for
stochastic volatility and jumps of the asset price. Making use of results from Barndorff-
Nielsen & Shephard (2006), we propose a moment-based estimation approach for which we
establish strong consistency and asymptotic normality. This estimation algorithms is then
applied to real data and tested by performing a simulation study. Moreover, we also show
how to estimate the current level of volatility by using the Kalman filter. As in Chapter 2
these results are of independent interest, but are also needed in the remainder of the thesis
to provide realistic parameter values for the models under consideration.

Chapter 4 stems from Kallsen & Muhle-Karbe (2008c) and considers utility maximiza-
tion in affine stochastic volatility models, i.e. Question 1 above. Inspired by the general
results of Kramkov & Schachermayer (1999), we use ideas from quadratic hedging put for-
ward in Černý & Kallsen (2007) to construct a martingale criterion that allows both for the
computation of a candidate strategy and for the verification that this candidate is indeed op-
timal. With the help of this criterion we characterize optimal investment strategies for power
utility in a wide class of affine stochastic volatility models. Using a conditioning argument,
we then go on to show that this approach can be applied for models with conditionally
independent increments as well.

Chapter 5 is concerned with Questions 2 and 3 above, i.e. with the computation of utility-
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based prices and hedging strategies. Since these computations are typically impossible to
deal with even in simple concrete models, we consider a first-order approximation for a
small number of contingent claims. Drawing on results of Kramkov & Sîrbu (2006, 2007)
we show that for power utility functions, these first order approximations can be represented
as the solution of a mean-variance hedging problem under a suitable equivalent probability
measure subject to the original numeraire.

Chapter 6 is based on joint work with Richard Vierthauer. It is concerned with the
application of the results which have been obtained in Chapter 5 for a general semimartin-
gale framework. More specifically, we again consider affine stochastic volatility models. By
piecing together results from Chapters 4 and 5 as well as results on mean-variance hedging in
affine models from the forthcoming Ph.D. thesis Vierthauer (2009), we obtain semi-explicit
formulas for the first-order approximations of power utility-based prices and hedging strate-
gies. In addition, we provide some numerical examples for the model of Barndorff-Nielsen
& Shephard (2001).

In Part II of the thesis we turn our attention to incompleteness caused by proportional
transaction costs. Here we only consider Question 1, i.e. the pure investment problem with-
out any contingent claims. In the spirit Jouini & Kallal (1995), we employ the concept of a
shadow price process. This is a fictitious price process lying within the bid-ask-bounds of
the original market with transaction costs, such that the solution to the utility-maximization
problem for the frictionless market with the shadow price and for the original market with
transaction costs coincide.

Chapter 7 provides an elementary proof that such a shadow price always exists in finite
discrete time.

Chapter 8, which is based on Kallsen & Muhle-Karbe (2008b), then deals with using the
concept of shadow prices for the computation of optimal portfolios in the presence of trans-
action costs. More specifically, we reconsider the setup of Magill & Constantinides (1976),
Davis & Norman (1990) and Shreve & Soner (1994), i.e. an investor trying to maximize
expected utility from consumption over an infinite horizon in a Black-Scholes model with
proportional transaction costs. We show that this Merton problem with transaction costs can
be solved for logarithmic utility by computing the optimal strategy and the shadow price
simultaneously.

This thesis relies heavily on the general theory of stochastic processes and in particular
on the calculus of semimartingale characteristics. For the convenience of the reader, the
main notions and results used here are summarized in Appendix A.

Finally, Appendix B contains some technical results on Moore-Penrose pseudoinverses
which are needed in Chapter 5.



Part I

Models with jumps and stochastic
volatility
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Chapter 2

Time-inhomogeneous affine
semimartingales

2.1 Introduction

Affine processes play an important role in stochastic calculus and its applications e.g. in
Mathematical Finance (cf. Duffie et al. (2000, 2003), Chen & Filipović (2005), Kallsen
(2006), Cheridito et al. (2007) and the references therein). Their popularity for modelling
purposes is probably due to their combination of flexibility and mathematical tractability.
More specifically, affine processes can capture some of the stylized facts observed in the
data (cf. Chapter 3 below). At the same time they possess enough mathematical structure to
allow for explicit solutions to diverse problems in Mathematical Finance (cf. e.g. Chapters
4, 5, 6 and the references therein).

Affine processes have been studied in great depth in the very impressive works of Duffie
et al. (2003) and Filipović (2005) using the theory of Markov processes. Here, following the
approach of Kallsen (2006), we characterize the important subclass of nonexplosive affine
processes in terms of their differential semimartingale characteristics (cf. Appendix A for a
brief summary and Jacod & Shiryaev (2003) (henceforth JS) for more details). This is done
in Section 2.2 below. In Section 2.3, we introduce affine stochastic volatility models, which
represent the main application of affine processes in this thesis. Afterwards, we proceed to
study several important properties related to affine semimartingales.

1. Suppose that the exponential of an affine process is a local martingale. Under what
conditions is it a true martingale?

2. Suppose that two parameter sets of affine processes are given. Do they correspond to
the same process under equivalent probability measures?

3. Under what condition is the p-th exponential moment of an affine process given as the
solution to a generalized Riccati equation?

The first question is of interest in statistics and Mathematical Finance, where such expo-
nentials denote density and price processes. In particular, establishing that a certain local

7



8 Chapter 2. Time-inhomogeneous affine semimartingales

martingale is actually a true martingale plays a key role in verifying that a given candidate
strategy maximizes expected utility from terminal wealth (see Chapter 4 below). General
criteria as the Novikov condition or its generalization to processes with jumps in Lépingle &
Mémin (1978) are generally far from necessary. Less restrictive criteria have been obtained
by making subtle use of e.g. the Markovian structure of the process. In Hobson (2004) and
Cheridito et al. (2007) it is shown that in the context of bivariate affine diffusions, any expo-
nential local martingale is a true martingale. Similarly, Cheridito et al. (2005) and Wong &
Heyde (2004) contain conditions for the exponential of a diffusion with and without jumps
to be a martingale. Below in Section 2.4 we present weak sufficient conditions which are
taylor-made for affine processes and easy to verify in concrete models.

The second question is motivated from statistics and finance as well. Applied to finance,
one law plays the role of the physical probability measure whereas the other is used as a
risk-neutral measure for derivative pricing. In order to be consistent with arbitrage theory,
these laws must be equivalent. In Section 2.5 we derive sufficient conditions which are
based on the results of Section 2.4. On the one hand, these extend the results of JS on Lévy
processes. On the other hand, they resemble results of Cheridito et al. (2005) applied to the
affine case, however with sometimes less restrictive moment conditions.

As a function of t, the characteristic function E(exp(iu>Xt)), u ∈ Rd, of an Rd-valued
affine process X solves a generalized Riccati equation as it is shown in great generality in
Duffie et al. (2003) and Filipović (2005). Morally speaking, the same should hold for real
exponential moments E(exp(p>Xt)), p ∈ Rd. Statements in Duffie et al. (2003) suggest
that this may hold for arbitrary affine processes but the paper does not seem to provide an
applicable condition. We study this question in Section 2.6. Using the results from Section
2.4, we derive criteria which are again easy to verify given a specific model. Theses results
turn out to be very useful in applications, since one frequently has to calculate exponential
moments, respectively verify whether they exist in the first place (cf. e.g. Chapter 6).

2.2 Definition and existence

Often affine processes are introduced as Markov processes whose characteristic function
is of exponentially affine form. We study them from the point of view of semimartingale
theory. In this context they correspond to processes with affine characteristics.

Differential characteristics of Markov processes are deterministic functions of the cur-
rent state of the process. This leads to the notion of a martingale problem in the following
sense.

Definition 2.1 Suppose that P0 is a distribution on Rd and mappings β : Rd × R+ → Rd,
γ : Rd × R+ → Rd×d, κ : Rd × R+ × Bd → R+ are given. We call (Ω,F ,F, P,X)

solution to the martingale problem related to P0 and (β, γ, κ) if X is a semimartingale on
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(Ω,F ,F, P ) such that PX0 = P0 and ∂X = (b, c,K) with

bt(ω) = β(Xt−(ω), t), (2.1)

ct(ω) = γ(Xt−(ω), t), (2.2)

Kt(ω,G) = κ(Xt−(ω), t, G). (2.3)

One may also call the distribution PX ofX solution to the martingale problem. Since we
consider only càdlàg solutions, PX is a probability measure on the Skorohod or canonical
path space (Dd,Dd,Dd) of Rd-valued càdlàg functions on R+ endowed with its natural
filtration (cf. (JS, Chapter VI)). When dealing with this space, we denote byX the canonical
process, i.e. Xt(α) = α(t) for α ∈ Dd. In any case, uniqueness of the solution refers
only to the law PX because processes on different probability spaces cannot reasonably be
compared otherwise.

From now on, we only consider affine martingale problems , where the differential char-
acteristics are affine functions of Xt− in the following sense:

β((x1, ..., xd), t) = β0(t) +
d∑
j=1

xjβ(t), (2.4)

γ((x1, ..., xd), t) = γ0(t) +
d∑
j=1

xjγj(t), (2.5)

κ((x1, ..., xd), t, G) = κ0(t, G) +
d∑
j=1

xjκj(t, G), (2.6)

where (βj(t), γj(t), κj(t)), j = 0, ..., d, t ∈ R+ are given Lévy-Khintchine triplets on Rd.
If the triplets do not depend on t, we are in the setting of Duffie et al. (2003), where results
on affine Markov processes yield conditions for the existence of a unique solution to this
problem (cf. Kallsen (2006)). In the time-inhomogeneous case we turn to the corresponding
results of Filipović (2005), namely Theorems 2.13 and 2.14.

However, we require the solution process to be a semimartingale in the usual sense, i.e.
with finite values for all t ∈ R+. Filipović (2005) establishes that this is the case if the
Markov process in question is conservative, but it does not contain analogues to the criteria
for the homogeneous case in Duffie et al. (2003). Therefore we extend (Duffie et al., 2003,
Lemma 9.2) to the time-inhomogeneous case, which is done in Appendix A.

Unlike most results in semimartingale theory, the conditions in Filipović (2005) depend
on the choice of the truncation function on Rd. From now on, we assume it to be of the form
h = (h1, ..., hd) with

hk(x) := χ(xk) :=

{
0 if xk = 0,

(1 ∧ |xk|) xk
|xk|

otherwise.
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Definition 2.2 Let m, d ∈ N with m ≤ d. Lévy-Khintchine triplets (βj(t), γj(t), κj(t)),
j = 0, ..., d, t ∈ R+, are called strongly admissible if, for t ∈ R+,

βkj (t)−
∫
hk(x)κj(t, dx) ≥ 0 if 0 ≤ j ≤ m, 1 ≤ k ≤ m, k 6= j;

κj
(
t, (Rm

+ × Rd−m)C
)

= 0 if 0 ≤ j ≤ m;∫
hk(x)κj(t, dx) <∞ if 0 ≤ j ≤ m, 1 ≤ k ≤ m, k 6= j;

γklj (t) = 0 if 0 ≤ j ≤ m, 1 ≤ k, l ≤ m unless k = l = j;

βkj (t) = 0 if j ≥ m+ 1, 1 ≤ k ≤ m;

γj(t) = 0 if j ≥ m+ 1;

κj(t, ·) = 0 if j ≥ m+ 1

and if the following continuity conditions are satisfied:

• βj(t), γj(t) are continuous in t ∈ R+ for 0 ≤ j ≤ d,

• hk(x)κj(t, dx) is weakly continuous on (Rm
+×Rd−m)\{0} for 0 ≤ j ≤ d, 1 ≤ k ≤ m

with k 6= j,

• hk(x)2κj(t, dx) is weakly continuous on (Rm
+ × Rd−m)\{0} for 0 ≤ j ≤ d and

k ≥ m+ 1 or k = j,

i.e. for s→ t ∈ R+ and any bounded continuous function f : Rd → R, we have∫
f(x)hk(x)κj(s, dx)→

∫
f(x)hk(x)κj(t, dx) if 0 ≤ j ≤ d, 1 ≤ k ≤ m, k 6= j,∫

f(x)hk(x)2κj(s, dx)→
∫
f(x)hk(x)2κj(t, dx) if 0 ≤ j ≤ d, k ≥ m+ 1 or k = j.

Remark 2.3 If the Lévy-Khintchine triplets do not depend on t, this definition is consistent
with Kallsen (2006). In this case, the attribute strongly can and will be dropped because it
refers to continuity in t. In particular, the choice of the truncation function does not matter.
In the time-inhomogeneous case however, the continuity conditions depend on the choice
of the truncation function. Nevertheless, the function h defined explicitly above can be
replaced by any continuous truncation function h̃ satisfying |h̃| ≥ ε > 0 outside of some
neighbourhood of 0. In particular, h(x) = x can be used if X is a special semimartingale.

In view of Lemma A.10, (Filipović, 2005, Theorems 2.13 and 2.14) can immediately
be rephrased as an existence and uniqueness result for affine martingale problems, which
extends (Kallsen, 2006, Theorem 3.1) to the time-inhomogeneous case.

Theorem 2.4 (Affine semimartingales) Let (βj(t), γj(t), κj(t)), j = 0, ..., d, t ∈ R+ be
strongly admissible Lévy-Khintchine triplets and denote by ψj the corresponding Lévy ex-
ponents

ψj(t, u) = u>βj(t) +
1

2
u>γj(t)u+

∫
(eu

>x − 1− u>h(x))κj(t, dx).
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Suppose in addition that

sup
t∈[0,T ]

∫
{xk>1}

xkκj(t, dx) <∞ for j, k = 1, . . . ,m, ∀T ∈ R+. (2.7)

Then the affine martingale problem related to (β, γ, κ) and some initial distribution P0 on
Rm

+ × Rd−m has a solution P on (Dd,Dd,Dd) such that X is Rm
+ × Rd−m-valued. For

0 ≤ t ≤ T the corresponding conditional characteristic function is given by

E
(
eiλ
>XT

∣∣∣Dt

)
= exp

(
Ψ0(t, T, iλ) + Ψ(1,...,d)(t, T, iλ)>Xt

)
, ∀λ ∈ Rd, (2.8)

where

Ψ0(t, T, u) =

∫ T

t

ψ0(s,Ψ(1,...,d)(s, T, u))ds (2.9)

and Ψ(1,...,d) solves the following generalized Riccati equations:

Ψ(1,...,d)(T, T, u) = u,
d

dt
Ψj(t, T, u) = −ψj(t,Ψ(1,...,d)(t, T, u)), j = 1, ..., d. (2.10)

Moreover, if (Ω′,F ′,F′, P ′, X ′) is another solution to the affine martingale problem, the
distributions of X and X ′ coincide, i.e. PX′ = P .

PROOF. This follows from (Filipović, 2005, Theorems 2.13, 2.14) and Lemma A.10 below
along the lines of the proof of (Kallsen, 2006, Theorem 3.1). �

Notation 2.5 For a semimartingale X , affine w.r.t. strongly admissible Lévy-Khintchine
triplets (βi, γi, κi), i = 0, . . . ,m, we write ψXi for the Lévy exponent corresponding to
(βi, γi, κi).

As is well known, the stochastic exponential of a real-valued Lévy process X with
∆X > −1 is the exponential of another Lévy process and vice versa. A similar statement
holds for components of affine processes:

Lemma 2.6 Let X be an Rd-valued semimartingale with affine differential characteristics
relative to strongly admissible Lévy-Khintchine triplets (βj(t), γj(t), κj(t)), 0 ≤ j ≤ d,
t ∈ R+. Let i ∈ {1, . . . , d}. Then the differential characteristics of

(X, X̃ i) := (X,L (exp(X i))

are affine with m̃ = m, d̃ = d + 1, relative to strongly admissible Lévy-Khintchine triplets
(β̃j(t), γ̃j(t), κ̃j(t)), 0 ≤ j ≤ d + 1, t ∈ R+, where (β̃d+1(t), γ̃d+1(t), κ̃d+1(t)) = (0, 0, 0)

and

β̃j(t) =

(
β(t)

βij(t) + 1
2
γiij (t) +

∫
(χ(exi − 1)− χ(xi))κj(t, dx)

)

γ̃klj (t) =


γklj (t) for k, l = 1, . . . , d,

γilj (t) for k = d+ 1, l = 1, . . . , d,

γkij (t) for k = 1, . . . , d, l = d+ 1,

γiij (t) for k, l = d+ 1,

κ̃j(t, G) =

∫
1G(x, exi − 1)κj(t, dx), ∀G ∈ Bd+1
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for 0 ≤ j ≤ d. Furthermore, exp(X i) = exp(X i
0)E (X̃ i). Conversely, if ∆X i > −1, the

differential characteristics of

(X, X̂ i) := (X, log(E (X i))

are affine with m̃ = m, d̃ = d + 1, relative to strongly admissible Lévy-Khintchine triplets
(β̂j(t), γ̂j(t), κ̂j(t)), 0 ≤ j ≤ d + 1, t ∈ R+, where (β̂d+1(t), γ̂d+1(t), κ̂d+1(t)) = (0, 0, 0)

and

β̂j(t) =

(
β(t)

βij(t)− 1
2
γiij (t) +

∫
(χ(log(1 + xi))− χ(xi))κj(t, dx)

)

γ̂klj (t) =


γklj (t) for k, l = 1, . . . , d,

γilj (t) for k = d+ 1, l = 1, . . . , d,

γkij (t) for k = 1, . . . , d, l = d+ 1,

γiij (t) for k, l = d+ 1,

κ̂j(t, G) =

∫
1G(x, log(1 + xi))κj(t, dx), ∀G ∈ Bd+1

for 0 ≤ j ≤ d. Moreover, we have E (X i) = exp(X̂ i).

PROOF. The characteristics can be computed with Proposition A.3 and A.4. Strong admis-
sibility of the triplets (β̃j, γ̃j, κ̃j) and (β̂j, γ̂j, κ̂j) follows immediately from strong admissi-
bility of (βj, γj, κj) because the mappings x 7→ χ(exi−1)−χ(xi)

χ(xi)2 and x 7→ χ(log(1+xi))−χ(xi)
χ(xi)2 are

bounded and continuous on (Rm
+ × Rd−m)\{0}. �

2.3 Affine stochastic volatility models

One application of affine semimartingales is given by affine stochastic volatility models
(cf. Carr et al. (2003), Carr & Wu (2003), Kallsen (2006) and the references therein for an
overview), which allow to capture many empirically observed phenomena by modelling the
logarithmized stock price and the market volatility as a bivariate affine process (cf. Chapter
3 below for more details).

Definition 2.7 (Affine stochastic volatility models) Let S be some positive asset price
process and denote by X = log(S/S0) the corresponding logarithmized asset price. A
bivariate stochastic process (y,X) is called affine stochastic volatility model, if it is an affine
semimartingale with m = 1 relative to admissible triplets (βi, γi, κi), i = 0, 1, 2 on R2.
More specifically, this means that the differential characteristics (b(y,X), c(y,X), K(y,X), I) of
(y,X) are of the form

b(y,X) =

(
β1

0 + β1
1y−

β2
0 + β2

1y− + β2
2X−

)
, c(y,X) =

(
γ11

1 y− γ12
1 y−

γ12
1 y− γ22

0 + γ22
1 y−

)
, (2.1)

K(y,X)(G) = κ0(G) + κ1(G)y−, ∀G ∈ B2, (2.2)
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for Lévy-Khintchine triplets (βi, γi, κi), i = 0, 1, 2 on R2. Since y governs the magnitude of
the dynamics of the asset price, it can be interpreted as the stochastic volatility of X .

Remark 2.8 It is of course possible to construct affine models for several assets driven by
multiple factors as well. In order to simplify the exposition in the following sections, we do
not follow this path here and instead refer the reader to Vierthauer (2009).

We now consider some examples that have been proposed in the literature.

2.3.1 Heston (1993)

The most prominent example of a continuous affine stochastic volatility model is given
by the Heston model introduced by Heston (1993) as the solution to the following pair of
stochastic differential equations (SDEs):

dyt = (ϑ− λyt)dt+ σ
√
ytdZt, y0 > 0,

dXt = (µ+ δyt)dt+
√
ytdBt, X0 = 0. (2.3)

Here, ϑ ≥ 0, µ, δ, λ, σ denote constants and Z, B Wiener processes with constant correla-
tion % ∈ [−1, 1]. An application of Propositions A.2 and A.3 shows that (y,X) is an affine
stochastic volatility model relative to the triplets (βi, γi, κi), i = 0, 1, 2 given by

(β0, γ0, κ0) =

((
ϑ

µ

)
, 0, 0

)
,

(β1, γ1, κ1) =

((
−λ
δ

)
,

(
σ2 σ%

σ% 1

)
, 0

)
,

(β2, γ2, κ2) = (0, 0, 0) .

2.3.2 Barndorff-Nielsen and Shephard (2001)

If the square-root process (2.3) is replaced with a Lévy-driven Ornstein-Uhlenbeck (OU)
process, one obtains the model proposed by Barndorff-Nielsen & Shephard (2001) (hence-
forth BNS). More specifically, it is given as the solution to

dyt = −λyt−dt+ dZλt, y0 > 0,

dXt = (µ+ δyt−)dt+
√
yt−dBt, X0 = 0,

where µ, δ, λ > 0 denote constants, B a Wiener process and Z a subordinator (i.e. an
increasing Lévy process) with Lévy-Khintchine triplet (bZ , 0, KZ). From Propositions A.2
and A.3 it follows that (y,X) is an affine stochastic volatility model relative to

β0 =

(
λbZ

µ

)
, γ0 = 0, κ0(G) =

∫
1G(z, 0)λKZ(dz) ∀G ∈ B2,

(β1, γ1, κ1) =

((
−λ
δ

)
,

(
0 0

0 1

)
, 0

)
,

(β2, γ2, κ2) = (0, 0, 0) .
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2.3.3 Carr et al. (2003)

Carr et al. (2003) generalize both the Heston model and the BNS model by introducing
jumps in the asset price. As discussed in Kallsen (2006), one has to consider time-changed
Lévy models instead of SDEs in this case in order to preserve the affine structure. Here, we
restrict our attention to the following generalization of the BNS model:

dyt = −λyt−dt+ dZλt, y0 > 0,

dYt = yt−dt, Y0 = 0,

Xt = µt+BYt .

Here, µ and λ > 0 are constants, whereas B and Z denote a Lévy process with triplet
(bB, cB, KB) and an independent subordinator with triplet (bZ , 0, KZ), respectively. In view
of (Kallsen, 2006, Section 4.4), (y,X) is affine stochastic volatility model relative to the
triplets

β0 =

(
λbZ

µ

)
, γ0 = 0, κ0(G) =

∫
1G(z, 0)λKZ(dz) ∀G ∈ B2,

β1 =

(
−λ
bB

)
, γ1 =

(
0 0

0 cB

)
, κ1(G) =

∫
1G(0, x)KB(dx) ∀G ∈ B2,

(β2, γ2, κ2) = (0, 0, 0) .

Note that we recover the BNS model, if B is chosen to be a Brownian motion with drift,
i.e. with Lévy-Khintchine triplet (bB, cB, KB) = (δ, 1, 0).

2.4 Exponentially affine martingales

In this section we provide criteria for the exponential of a component of an affine process
to be a martingale. We start with a general sufficient condition which is proved in Section
2.4.2. In Sections 2.4.3 and 2.4.4 we apply this general result to the time-homogeneous case
and to processes with independent increments, respectively.

2.4.1 Time-inhomogeneous exponentially affine martingales

Let X be an Rd-valued semimartingale with affine differential characteristics relative to
strongly admissible Lévy-Khintchine triplets (βj(t), γj(t), κj(t)), 0 ≤ j ≤ d, t ∈ R+. The
following result is proved in Section 2.4.2.

Theorem 2.9 Suppose that for some 1 ≤ i ≤ d and T ∈ R+ the following holds:

1. κj(t, {x ∈ Rd : xi < −1}) = 0 for j = 0, . . . ,m, ∀t ∈ [0, T ],

2.
∫
{xi>1} xiκj(t, dx) <∞ for j = 0, . . . ,m, ∀t ∈ [0, T ],
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3. βij(t) +
∫

(xi − hi(x))κj(t, dx) = 0 for j = 0, . . . , d, ∀t ∈ [0, T ],

4. the measure hk(x)xiκj(t, dx) on (Rm
+×Rd−m)\{0} is weakly continuous in t ∈ [0, T ]

for j = 1, . . . ,m and k = 1, . . . , d .

5. supt∈[0,T ]

∫
{xk>1} xk(1 + xi)κj(t, dx) <∞ for j, k = 1, . . . ,m.

Then the stopped process E (X i)T is a martingale.

Condition 1 ensures that E (X i) does not jump to negative values. Condition 2 is needed
for the integral in Condition 3 to be finite. Condition 3 in turn means that E (X i)T has
zero drift, i.e. that it is a local martingale. The continuity condition 4 is needed to apply
the results of Filipović (2005). It holds automatically in the time-homogeneous case (cf.
Corollary 2.17). The crucial nontrivial assumption is the last one. The origin of this moment
condition is discussed in Section 2.4.2.

From Theorem 2.9 we can obtain a similar result on the entire real line:

Corollary 2.10 Suppose that for some 1 ≤ i ≤ d and all t ∈ R+ the following holds:

1. κj(t, {x ∈ Rd : xi < −1}) = 0 for j = 0, . . . ,m, ∀t ∈ R+,

2.
∫
{xi>1} xiκj(t, dx) <∞ for j = 0, . . . ,m, ∀t ∈ R+,

3. βij(t) +
∫

(xi − hi(x))κj(t, dx) = 0 for j = 0, . . . , d, ∀t ∈ R+,

4. the measure hk(x)xiκj(t, dx) on (Rm
+ × Rd−m)\{0} is weakly continuous in t for

j = 1, . . . ,m and k = 1, . . . , d.

5. supt∈[0,T ]

∫
{xk>1} xk(1 + xi)κj(t, dx) <∞ for j, k = 1, . . . ,m, ∀T ∈ R+.

Then E (X i) is a martingale.

PROOF. By Theorem 2.9, E (X i)T is a martingale for all T ∈ R+, which implies that E (X i)

is a martingale as well. �

Example 2.11 If X is continuous, Conditions 1–5 above reduce to βij = 0, j = 0, . . . , d,
i.e. essentially to assuming that E (X i) is a local martingale. This applies e.g. to Heston’s
stochastic volatility model from Section 2.3.1 above.

We also obtain an analogue of Theorem 2.9 for ordinary exponentials:

Corollary 2.12 Suppose that for some 1 ≤ i ≤ d and T ∈ R+ the following holds:

1. E(eX
i
0) <∞,

2.
∫
{xi>1} e

xiκj(t, dx) <∞, j = 0, . . . ,m, ∀t ∈ [0, T ],

3. βij(t) + 1
2
γiij (t) +

∫
(exi − 1− hi(x))κj(t, dx) = 0, j = 0, . . . , d, ∀t ∈ [0, T ],
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4. the measure hk(x)(exi − 1)κj(t, dx) on (Rm
+ × Rd−m)\{0} is weakly continuous in

t ∈ [0, T ] for j = 1, . . . ,m and k = 1, . . . , d,

5. supt∈[0,T ]

∫
{xk>1} xke

xiκj(t, dx) <∞ for j, k = 1, . . . ,m .

Then the stopped process (eX
i
)T is a martingale.

PROOF. By Proposition A.4 and Lemma A.8 the process exp(X i)T is a σ-martingale. From
Proposition A.9 it follows that is a supermartingale, in particular it is integrable. We have
exp(X i) = eX

i
0E (X̃ i) for X̃ i as in Lemma 2.6. E (X̃ i)T is a martingale by Theorem 2.9.

Since eXi
0 is integrable, we have

E
(
eX

i
t
)

= E
(
eX

i
0E
(
E (X̃ i)t|F0

))
= E

(
eX

i
0
)
<∞.

This yields that eXi is a martingale as well. �

Of course an analogue of Corollary 2.10 holds for ordinary exponentials as well.

2.4.2 Proof of Theorem 2.9

Set M := E (X i)T . Condition 1 implies ∆X i ≥ −1 on [0, T ], which in turn yields M ≥ 0.
Since any nonnegative σ-martingale is a supermartingale by Proposition A.9, it remains to
show that E(MT ) = 1. Since this property only depends on the law of X , we can assume
w.l.o.g. that X is the canonical process on the canonical path space.

If M is a martingale, we can use it as the density process of a locally absolutely contin-
uous measure change and employ Girsanov’s theorem to calculate the characteristics of the
canonical process under this new measure. In this proof the fundamental idea is to work in
the opposite direction: we define the triplets as motivated by Girsanov and prove that there is
a probability measure Q that endows the canonical process with these characteristics. There
we need the crucial moment condition 5. Next, we establish that this new measure is locally
absolutely continuous with respect to the original probability measure, by using a certain
uniqueness property of the martingale problems in question. Hence a density process exists.
The final step of the proof is to show that this density process coincides with M . Related
approaches are taken e.g. in Cheridito et al. (2005), Cheridito et al. (2007), Hobson (2004)
and Wong & Heyde (2004).

Lemma 2.13 For j = 0, . . . , d and t ∈ R+ set

β∗j (t) = βj(t ∧ T ) + γ·ij (t ∧ T ) +

∫
xih(x)κj(t ∧ T, dx), (2.1)

γ∗j (t) = γj(t ∧ T ), (2.2)

κ∗j(t, G) =

∫
1G(x)(1 + xi)κj(t ∧ T, dx), ∀G ∈ Bd. (2.3)

Under Conditions 1–4 of Theorem 2.9 this defines strongly admissible Lévy-Khintchine
triplets. If Condition 5 holds as well, then there is a unique solution Q to the correspond-
ing affine martingale problem on (Dd,Dd,Dd) with any fixed initial distribution Q0 on
Rm

+ × Rd−m.
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PROOF. In view of Condition 5 and Theorem 2.4, it suffices to show that (β∗j (t), γ
∗
j (t), κ

∗
j(t))

are strongly admissible Lévy-Khintchine triplets. Let 0 ≤ t ≤ T . By Condition 2 the
integral in (2.1) exists. The equivalence of κ∗j(t, dx) and κj(t, dx) implies κ∗j({0}) = 0 and
we have∫

(1 ∧ |x|2)κ∗j(t, dx) =

∫
(1 ∧ |x|2)κj(t ∧ T, dx) +

∫
(1 ∧ |x|2)xiκj(t ∧ T, dx) <∞

because κj(t) is a Lévy measure and by Condition 2. Therefore (β∗j (t), γ
∗
j (t), κ

∗
j(t)) are

Lévy-Khintchine triplets. Now let 0 ≤ j ≤ m, 1 ≤ k ≤ m, k 6= j. Then

β∗kj (t)−
∫
hk(x)κ∗j(t, dx) = βkj (t ∧ T )−

∫
hk(x)κj(t, dx) ≥ 0

because of the first and fourth admissibility condition for the original triplets (βj, γj, κj).
From the second admissibility condition and by equivalence of κj(t, dx) and κ∗j(t, dx) we
obtain κ∗j(t, (Rm

+ × Rd−m)C) = 0. Moreover, Condition 2 and the third condition on the
original triplets yield∫

hk(x)κ∗j(t, dx) =

∫
hk(x)(1 + xi)κj(t ∧ T, dx) <∞.

We have thus established the first three admissibility conditions, the remaining four being
obvious. Since the mapping t 7→ t∧T is continuous, γ∗ and, due to Condition 4, also β∗ are
continuous in t. Finally, Condition 4 and the continuity conditions for the original triplets
imply weak continuity of

hk(x)κ∗j(t, dx) = hk(x)κj(t ∧ T, dx) + hk(x)xiκj(t ∧ T, dx)

for 1 ≤ k ≤ m, k 6= j, and of

hk(x)2κ∗j(t, dx) = hk(x)2κj(t ∧ T, dx) + hk(x)2xiκj(t ∧ T, dx)

for k ≥ m+ 1 or k = j. Therefore (β∗j , γ
∗
j , κ

∗
j) are strongly admissible. �

The next step is to work towards local absolute continuity of Q with respect to P . In
view of (JS, Lemma III.3.3), we do this by constructing a localizing sequence (Tn)n∈N for
M under P such that Tn ↑ ∞ holds under Q as well. In the continuous case this can always
be achieved by considering the hitting times Tn = inf{t ∈ R+ : |Mt| ≥ n}. This approach
does not work in the presence of jumps, yet here a similar explicit construction is possible.

Lemma 2.14 Let (βj(t), γj(t), κj(t)), j = 0, . . . , d, t ∈ R+ be strongly admissible Lévy-
Khintchine triplets. Assume that a solution P to the corresponding affine martingale prob-
lem on (Dd,Dd,Dd) exists. Then the stopping times (Tn)n∈N given by

Tn = inf{t > 0 : |Xt−| ≥ n or |Xt| ≥ n}

satisfy Tn ↑ ∞ P -almost surely. If Condition 4 in Theorem 2.9 holds and M = E (X i)T is
a local martingale for some 1 ≤ i ≤ d and T ∈ R+, then (Tn)n∈N is a localizing sequence
for M .
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PROOF. Tn ↑ ∞ follows immediately from the càdlàg property of X . Since Mloc is stable
under stopping, we know that MTn ∈Mloc. By (JS, I.1.47c) it remains to show that MTn is
of class (D), i.e. {MTn

S : S finite stopping time} is uniformly integrable. It suffices to show

E

(
sup
t∈[0,T ]

|MTn∧t|

)
<∞ (2.4)

because MTn
t is constant for t ≥ T . Let (B,C, ν) be the characteristics of M . By Lemma

A.7 the stopped process MTn admits the stopped characteristics (BTn , CTn , νTn). Since it is
a local martingale, (JS, II.2.38) yields its canonical decomposition

MTn = MTn
0 + (MTn)c + x ∗ (µTn − νTn)

= MTn
0 + (MTn)c + (x1{|x|≤1}) ∗ (µTn − νTn) + (x1{|x|>1}) ∗ (µTn − νTn).

The definition of Tn and (JS, I.4.61) yield

sup
t∈[0,T ]

MTn
t− ≤ sup

t∈[0,T ]

exp
(
(X i)Tnt−

)
≤ en. (2.5)

For the jump at t we obtain

∆MTn
t = ∆

(
x1{|x|≤1} ∗ (µTn − νTn)

)
t
+ ∆

(
x1{|x|>1} ∗ (µTn − νTn)

)
t

(2.6)

because (MTn)c is continuous and MTn
0 is constant. By (JS, II.1.27) we have

sup
t∈[0,T ]

∆
(
x1{|x|≤1} ∗ (µTn − νTn)

)
t

= sup
t∈[0,T ]

∆MTn
t 1{|∆MTn

t |≤1} ≤ 1. (2.7)

Furthermore, we obtain

sup
t∈[0,T ]

∆
(
x1{|x|>1} ∗ (µTn − νTn)

)
t
≤
∑
t≤T

|∆MTn
t |1{|∆MTn

t |>1} = |x|1{|x|>1} ∗ µTnT .

By (JS, II.1.8) we have

E
(
|x|1{|x|>1} ∗ µTnT

)
=

∫ Tn∧T

0

∫
{|x|>1}

|x|KM
t (dx)dt,

where KM
t denotes the local Lévy measure of M . We can compute the differential char-

acteristics of M through Proposition A.3. With Gt = {x ∈ Rd : Mt−|xi| > 1} and the
definition of Tn this yields∫ Tn∧T

0

∫
{|x|>1}

|x|KM
t (dx)dt =

∫ Tn∧T

0

∫
Gt

Mt−|xi|κ0(t, dx)dt

+
m∑
j=1

∫ Tn∧T

0

∫
Gt

Mt−|xi|κj(t, dx)Xj
t−dt

≤nen
m∑
j=0

∫ Tn∧T

0

∫
{|xi|> 1

n
}
|xi|κj(t, dx)dt.
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Since |1/hi| is bounded on {|xi| > 1
n
} and since it has a positive, bounded and continuous

extension h̃ to Rd, it follows from Condition 4 in Theorem 2.9 that

sup
t∈[0,T ]

∫
{|xi|> 1

n
}
|xi|κj(t, dx) ≤ sup

t∈[0,T ]

∫
Rd
h̃(x)|hi(x)||xi|κj(t, dx) <∞

for j = 0, . . . ,m. Combining the above results yields

E

(
sup
t∈[0,T ]

∆
(
x1{|x|>1} ∗ (µTn − νTn)

)
t

)
<∞. (2.8)

In view ofMTn
t = MTn

t− +∆MTn
t and (2.5–2.8) we have that (2.4) holds as well. This proves

the assertion. �

If we apply the previous result to P and Q we get the following

Corollary 2.15 Under the assumptions of Theorem 2.9, (Tn)n∈N defined as in Lemma 2.14
is a localizing sequence for M under P and we have Tn ↑ ∞ Q-a.s.

PROOF. M is a σ-martingale by Conditions 2 and 3 in Theorem 2.9. Since it is nonnegative
by Condition 2, it is a supermartingale and in particular a special semimartingale. Hence it
is a local martingale by (Kallsen, 2004, Corollary 3.1). The claim then follows immediately
from Condition 4 in Theorem 2.9 and from Lemmas 2.13 and 2.14. �

Now we can prove that Q|D0
T

is locally absolutely continuous with respect to P |D0
T

.
Here, D0

t denotes the σ-field generated by all maps α 7→ α(s), s ≤ t on Dd. The filtration
(D0

t )t∈R+ is needed to apply (JS, III.2.40).

Lemma 2.16 Under the assumptions of Theorem 2.9 we have Q|D0
T
� P |D0

T
.

PROOF. Since M0 = 1, M ≥ 0 and (Tn)n∈N is a localizing sequence for M ∈ Mloc

under P , we can define probability measures Qn � P , n ∈ N with density processes
MTn . We now show that the stopped canonical process XTn∧T has differential charac-
teristics (b∗1[[0,Tn∧T ]], c

∗1[[0,Tn∧T ]], K
∗1[[0,Tn∧T ]]) under both Q and Qn, where (b∗, c∗, F ∗) are

defined in (2.1–2.3), (2.4–2.6) but relative to (β∗j , γ
∗
j , κ

∗
j) instead of (βj, γj, κj).

By construction and Lemma A.7, XTn∧T has the required characteristics under Q. Since
Qn � P , we can use (Kallsen, 2006, Proposition 4) to calculate the characteristics ofXTn∧T

under Qn. By X i ∈Mloc and (JS, II.2.38) we have

X i = X i
0 + ei • X

c + xi ∗ (µX − νX)

where ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the i-th unit vector. (Kallsen, 2006, Proposition
4) yields that XTn∧T has the desired characteristics under Qn as well.

The martingale problem corresponding to (b∗, c∗, K∗) and arbitrary initial law on Rm
+ ×

Rd−m has a unique solution by Lemma 2.13. Since the solution process is Markovian and
by (JS, III.2.40), local uniqueness in the sense of (JS, III.2.37) is implied by uniqueness of
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the martingale problem. (JS, VI.2.10) yields that the stopping times Tn ∧ T , n ∈ N are
strict in the sense of (JS, III.2.35). Hence Qn|D0

Tn∧T
= Q|D0

Tn∧T
. By construction we have

Qn|D0
Tn∧T

� P |D0
Tn∧T

, which implies Q|D0
Tn∧T

� P |D0
Tn∧T

. Let A ∈ D0
T with P (A) = 0.

From
A ∩ {Tn > T} ∈ D0

Tn ∩D0
T = D0

Tn∧T

it follows that Q(A∩ {Tn > T}) = 0 for all n ∈ N and hence Q(A) = 0 by Corollary 2.15.
This proves the claim. �

If Qn denotes the probability measure with density process MTn as in the proof of
Lemma 2.16, we have MTn = dQn

dP
. Since MTn = MTn∧T is D0

Tn∧T -measurable, it is also the
density on the smaller σ-field D0

Tn∧T , i.e. we have

MTn =
dQn|D0

Tn∧T

dP |D0
Tn∧T

=
dQ|D0

Tn∧T

dP |D0
Tn∧T

=: Zn,

where the second equality is shown in the previous proof. Now notice that (Zn)n∈N is
the martingale generated by Z∞ := dQ|D0

T
/dP |D0

T
on the discrete-time probability space

(Dd,D0
T , (D

0
Tn∧T )n∈N, P ). The martingale convergence theorem yields MTn = Zn → Z∞

a.s. for n → ∞. Since we have MTn = MTn∧T → MT a.s. for n → ∞, it follows that
E(MT ) = E(Z∞) = 1, which proves Theorem 2.9.

2.4.3 Time-homogeneous exponentially affine martingales

We now apply the results of Section 2.4.1 to the homogeneous case. Throughout, letX i with
1 ≤ i ≤ d be a component of an Rd-valued semimartingale X admitting affine differential
characteristics relative to admissible Lévy-Khintchine triplets (βj, γj, κj), j = 0, ..., dwhich
do not depend on t. Corollary 2.10 now reads as follows:

Corollary 2.17 E (X i) is a martingale if the following conditions hold:

1. κj({x ∈ Rd : xi < −1}) = 0, j = 0, . . . ,m,

2.
∫
{xi>1} xiκj(dx) <∞, j = 0, . . . ,m,

3. βij +
∫

(xi − hi(x))κj(dx) = 0, j = 0, . . . , d,

4.
∫
{xk>1} xk(1 + xi)κj(dx) <∞, j, k = 1, . . . ,m.

Of course a counterpart to Corollary 2.12 can be derived similarly.

Example 2.18 Consider the affine stochastic volatility model of Carr et al. (2003) from Sec-
tion 2.3.3. The corresponding triplets are admissible with m = 1. If the moment condition∫

{y>1}
eyFB(dy) <∞
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and the drift conditions

0 = µ, 0 = bB +
1

2
cB +

∫
(ey − 1− h(y))FB(dy)

are satisfied, Corollary 2.12 yields that eX is a martingale. These conditions are equivalent
to eB and eµI being martingales, where I denotes the identity process It = t.

The following example shows that even in the homogeneous case with ∆X i > −1,
Corollary 2.17 does not generally hold without the crucial moment condition 4.

Example 2.19 Let

(β0, γ0, κ0) := (0, 0, 0),

β1 :=

(
1

2
√
π

∫∞
0
h(y)y−

3
2 (1 + y)−1dy

1
2
√
π

∫∞
0

(h(y)− y)y−
3
2 (1 + y)−1dy

)
, γ1 := 0,

κ1(G) :=
1

2
√
π

∫ ∞
0

1G(y, y)y−
3
2 (1 + y)−1dy, ∀G ∈ B2,

(β2, γ2, κ2) := (0, 0, 0).

This defines admissible Lévy-Khintchine triplets on R2 satisfying (2.7), but violating Con-
dition 4 in Corollary 2.17 for i = 2. By Theorem 2.4 there exists a probability measure P on
(D2,D2,D2) such that X is a semimartingale with affine differential characteristics relative
to these triplets and X0 = (1, 1) P -almost surely. Computing the differential characteristics
(bM , cM , KM) of M = E (X2) with Proposition A.3 yields

bM =

∫
(h(x)− x)KM(dx) and

∫
{|x|>1}

|x|KM(dx) <∞.

By Lemma A.8 it follows that M is a positive local martingale. Now suppose M was a true

martingale. In view of Lemma A.11 we could then define a probability measure Q
loc
� P

with density process M . Since M = E (x2 ∗ (µX − νX)), an application of (Kallsen, 2006,
Proposition 4) yields the differential characteristics ∂X1 = (b, c,K) ofX1 underQ, namely

bt =

∫
h(x)Ft(dx), ct = 0, Kt(G) =

X1
t−

2
√
π

∫
G∩(0,∞)

x−
3
2dx ∀G ∈ B.

Hence X1 coincides in law under Q with the process in (Duffie et al., 2003, Example 9.3),
which explodes in [0, 1] with strictly positive probability. Since this contradicts Q|D2

1
�

P |D2
1
, we conclude that M = E (X2) is not a martingale.

Recall that Conditions 1–3 in Corollary 2.17 essentially mean that E (X i) is a non-
negative local martingale. Condition 4, on the other hand, is not needed for strong admissi-
bility of (β∗j , γ

∗
j , κ

∗
j) in (2.1–2.3). Hence we know from (Duffie et al., 2003, Theorem 2.7)

that there exists a unique Markov process whose conditional characteristic function satisfies
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(2.8) with respect to (β∗j , γ
∗
j , κ

∗
j). But in order to ensure that it does not explode in finite

time and hence is a semimartingale in the usual sense, we must also require this process
to be conservative (cf. (Duffie et al., 2003, Theorem 2.12)). To establish conservativeness,
one generally has to resort to the sufficient but not necessary criteria in (Duffie et al., 2003,
Proposition 9.1 and Lemma 9.2), which is precisely what is done in the proof of Theorem
2.9.

2.4.4 Processes with independent increments

Instead of time-homogeneity we consider now deterministic characteristics. The following
result slightly generalizes a parallel statement in the proof of (Eberlein et al., 2005, Propo-
sition 4.4) by dropping the assumption of absolutely continuous characteristics. Hence we
also incorporate processes with fixed times of discontinuity.

Proposition 2.20 Let X be a semimartingale with independent increments (a PII in the
sense of JS) satisfying ∆X > −1. Then E (X) is a martingale if and only if it is a local
martingale.

PROOF.⇒: This is obvious.
⇐: W.l.o.g. X0 = 0. Denote the characteristics of X by (B,C, ν). From X ∈ Mloc,

(Kallsen, 2004, Lemma 3.1) and (JS, II.5.2) it follows that there exists a PII Y with triplet
(B∗, C∗, ν∗) given by

B∗t = Bt + Ct + xh(x) ∗ νt, C∗t = Ct, ν∗(dt, dx) = (1 + x)ν(dt, dx).

Its law is uniquely determined. We now choose Q equal to the law of Y and proceed almost
literally as in the proof of Thereom 2.9: Lemma 2.16 is derived as above by using (JS,
III.3.24) or Proposition A.5 rather than (Kallsen, 2006, Proposition 4). Moreover, the proof
of Lemma 2.14 must be slightly modified. �

2.5 Locally absolutely continuous change of measure

In the context of measure changes, Theorem 2.9 can be used to derive a sufficient condition
for local absolute continuity of the law of one affine process relative to another, similar to
(JS, IV.4.32) for processes with independent increments.

Theorem 2.21 Let Y and Z be Rd-valued semimartingales admitting affine differential
characteristics relative to triplets (βj(t), γj(t), κj(t)) and (β̃j(t), γ̃j(t), κ̃j(t)), j = 0, . . . , d,

t ∈ R+, which satisfy the conditions in Theorem 2.4. We have PZ
loc
� P Y if there exist

continuous functions H : R+ → Rd and W : R+×Rd → [0,∞) such that, for j = 0, . . . , d

and all t ∈ R+,

1.
∫ t

0

∫
(1−

√
W (s, x))2κj(s, dx)ds <∞,
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2. κ̃j(t, G) =
∫

1G(x)W (t, x)κj(t, dx), ∀G ∈ Bd,

3.
∫
|h(x)(W (t, x)− 1)|κj(t, dx) <∞,

4. β̃j(t) = βj(t) +H>t γj(t) +
∫
h(x)(W (t, x)− 1)κj(t, dx),

5. γ̃j(t) = γj(t),

6. the measure χ(W (t, x)− 1)(W (t, x)− 1)κj(t, dx) is weakly continuous in t.

PROOF. As before, we denote the canonical process by X . Condition 1 implies that the
measure in Condition 6 is finite. Condition 1 and (JS, II.1.33) with the stopping times from
Lemma 2.14 yield W − 1 ∈ Gloc(µ

X) under P Y . Since H is continuous, it follows that

N = H • Xc + (W − 1) ∗ (µX − νX)

is a well-defined local martingale. The differential characteristics of (X,N) under P Y are
affine relative to

β̂j(t) =

(
βj(t)∫

(χ(W (t, x)− 1)−W (t, x) + 1)κj(t, dx)

)
,

γ̂j(t) =

(
γj(t) γj(t)Ht

H>t γj(t) H>t γj(t)Ht

)
,

κ̂j(t, G) =

∫
1G(x,W (t, x)− 1)κj(t, dx), ∀G ∈ Bd+1 \ {0}, 0 ≤ j ≤ d,

(β̂d+1, γ̂d+1, κ̂d+1) = 0.

These triplets are strongly admissible: the first seven admissibility conditions are obviously
satisfied, the eighth follows from Condition 6, the weak continuity conditions for κj and
the continuity of H . The ninth condition is clear and the last is again a consequence of
Condition 6. Moreover, Conditions 1–5 in Theorem 2.9 hold for i = d + 1: Condition 4 in
Theorem 2.9 is a consequence of the strong admissibility of (βj, γj, κj), (β̃j, γ̃j, κ̃j) and the
continuity of H . Condition 1 above implies Condition 2 in Theorem 2.9 and Condition 3 is
obviously satisfied. Condition 5 in Theorem 2.9 holds by∫

{xk>1}
xk(1 + xd+1)κ̂j(t, dx) =

∫
{xk>1}

xkW (t, x)κj(t, dx) =

∫
{xk>1}

xkκ̃j(t, dx),

which is uniformly bounded on [0, T ] by Condition (2.7) in Theorem 2.4.
By Theorem 2.9 we have that E (N) is a martingale. Since it is positive, we can use it

as a density process to define a probability measure Q
loc
� P Y on (Dd,Dd,Dd) (cf. Lemma

A.11). By (Kallsen, 2006, Proposition 4) the differential characteristics of the canonical
process under Q and PZ coincide. Therefore Theorem 2.4 yields Q = PZ , which proves
the claim. �

Conditions 1–5 also appear in the necessary and sufficient theorem for PII in (JS, IV.4.32).
We base our proof on the results of Filipović (2005). Since the latter are only formulated
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for continuous triplets, we require the additional continuity condition 6. This property holds
in the time-homogeneous case. Except for Assumption (2.7) in Theorem 2.4 the remaining
conditions for each triplet coincide with those for Lévy processes in (JS, IV.4.39).

Corollary 2.22 Let Y and Z be Rd-valued semimartingales with affine differential char-
acteristics relative to triplets (βj, γj, κj) and (β̃j, γ̃j, κ̃j), j = 0, . . . , d, respectively, which

satisfy the conditions of Theorem 2.4. Then PZ
loc
� P Y if there exist H ∈ Rd and a Borel

function W : Rd → [0,∞) such that, for 0 ≤ j ≤ d, we have

1.
∫

(1−
√
W (x))2κj(dx) <∞ ,

2. κ̃j(G) =
∫

1G(x)W (x)κj(dx), ∀G ∈ Bd,

3.
∫
|h(x)(W (x)− 1)|κj(dx) <∞,

4. β̃j = βj +H>γj +
∫
h(x)(W (x)− 1)κj(dx),

5. γ̃j = γj.

Similar results could be derived from (Cheridito et al., 2005, Theorem 2.4) applied to the
affine case. Due to our heavy use of Filipović (2005), we end up with continuity conditions
in the time-inhomogeneous case, whereas Cheridito et al. (2005) only require measurability
and a certain uniform boundedness for H and W . However, our moment conditions are
sometimes less restrictive than the criterion in (Cheridito et al., 2005, Remark 2.5).

Example 2.23 As in Example 2.18, we consider the stochastic volatility model of Carr et al.
(2003). From Corollary 2.22 with H ∈ R2, W (x) = eH

>x we obtain that the distribution
corresponding to the transformed triplets is locally equivalent to the original one if we have∫

{|x|>1}
eH
>xκj(dx) <∞, j = 0, 1.

For the application of Cheridito et al. (2005), one needs the slightly stronger moment con-
dition ∫

{|x|>1}
(H>x)eH

>xκj(dx) <∞, j = 0, 1.

2.6 Exponential Moments

Let X be a semimartingale with affine differential characteristics relative to strongly admis-
sible Lévy-Khintchine triplets (βj(t), γj(t), κj(t)), j = 0, . . . , d, t ∈ R+.

In (Duffie et al., 2003, Propositions 6.1 and 6.4) (respectively (Filipović, 2005, Propo-
sitions 4.1 and 4.3) for the time-inhomogeneous case), it is shown that a solution to the
generalized Riccati equations from Theorem 2.4 always exists for initial values u ∈ Cm

− ×
iRd−m. (Duffie et al., 2003, Theorem 2.16) then asserts that if there exists an analytic ex-
tension of this solution to an open convex set containing p ∈ Rd, the exponential moment
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E(exp(p>XT )) can be obtained by inserting the value p into the formula for the character-
istic function.

The existence of this extension, however, may be difficult to verify, even for models
without jumps. Using the results from Section 2.4, we show that E(exp(p>XT )) or, more
generally, E(exp(p>XT )|Ft) can typically be obtained by solving the generalized Riccati
equations (2.9, 2.10) with initial value p.

Theorem 2.24 Let p ∈ Rd and T ∈ R+. Suppose that Ψ0 ∈ C1([0, T ],R) and Ψ(1,...,d) =

(Ψ1, . . . ,Ψd) ∈ C1([0, T ],Rd) satisfy

1.
∫
{|x|>1} e

Ψ(1,...,d)(t)>xκj(t, dx) <∞, j = 0, . . . , d, ∀t ∈ [0, T ],

2. Ψ(1,...,d)(T ) = p, d
dt

Ψj(t) = −ψj(t,Ψ(1,...,d)(t)), j = 1, . . . , d,

3. Ψ0(t) =
∫ T
t
ψ0(s,Ψ(1,...,d)(s))ds, ∀t ∈ [0, T ],

4. E(exp(Ψ(1,...,d)(0)>X0)) <∞,

5. supt∈[0,T ]

∫
{xk>1} xke

Ψ(1,...,d)(t)>xκj(t, dx) <∞, 1 ≤ j, k ≤ m.

Then we have

E
(
ep
>XT

∣∣Ft

)
= exp

(
Ψ0(t) + Ψ(1,...,d)(t)>Xt

)
, ∀t ≤ T. (2.1)

PROOF. By Condition 1 we have ψj(t,Ψ(1,...,d)(t)) <∞ for all t ∈ [0, T ]. Define

Nt := Ψ0(t) + Ψ(1,...,d)(t)>Xt.

Since Ψ(1,...,d) is continuously differentiable, all Ψj are of finite variation. Hence [Ψj, Xj] =

0 and (
X −X0

N −N0

)
=

(
1 0

Ψ(1,...,d)(I) d
dt

Ψ0(I) +X> d
dt

Ψ(1,...,d)(I)

)
•

(
X

I

)
.

by the fundamental theorem of calculus and partial integration in the sense of (JS, I.4.45).
From this representation we obtain the differential characteristics ∂(X,N) by using Propo-
sition A.3. They are affine relative to time-inhomogeneous triplets (β̂j, γ̂j, κ̂)j given by

β̂j(t) =

 βj(t)
d
dt

Ψj(t) + Ψ(1,...,d)(t)>βj(t) +

+
∫

(h(Ψ(1,...,d)(t)>x)−Ψ(1,...,d)(t)>h(x))κj(t, dx)

 ,

γ̂j(t) =

(
γj(t) γj(t)Ψ

(1,...,d)(t)

Ψ(1,...,d)(t)>γj(t) Ψ(1,...,d)(t)>γj(t)Ψ
(1,...,d)(t)

)
,

κ̂j(t, G) =

∫
1G(x,Ψ(1,...,d)(t)>x)κj(t, dx), ∀G ∈ Bd+1

for j = 0, . . . , d and
(β̂d+1, γ̂d+1, κ̂d+1) = (0, 0, 0).
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From admissibility of the original triplets (βj, γj, κj) and continuity of Ψj , j = 0, . . . , d,
we infer that (β̂j, γ̂j, κ̂j) are strongly admissible. The prerequisites of Corollary 2.12 are
satisfied for i = d + 1: the first follows immediately from Condition 4. The second is
a consequence of Condition 1 and the fact that all κj are Lévy measures, while the third
follows from the definition of Ψ0, Ψ(1,...,d). The fourth prerequisite of Corollary 2.12 follows
again from the continuity of Ψ(1,...,d) while the fifth is just Condition 5. Therefore exp(NT )

is a martingale. For t ≤ T the martingale property yields

E(ep
>XT |Ft) = E(exp(NT )|Ft) = exp(Nt) = exp(Ψ0(t) + Ψ(1,...,d)(t)>Xt),

which proves the claim. �

Condition 1 is only needed for the ordinary differential equation in Condition 2 to be
defined. It is automatically satisfied if the Lévy measures κj have compact support, i.e. if X
has bounded jumps. Condition 2 and 3 mean that Ψ0 and Ψ(1,...,d) solve equations (2.9, 2.10)
with initial value p. In the common situation that X0 is deterministic, Condition 4 obviously
holds. The moment condition 5 is crucial. It holds e.g. if the Lévy measures κj have compact
support or if κ1, . . . , κm are concentrated on the set {x ∈ Rd : x1 = . . . = xm = 0}. This is
the case for many affine stochastic volatility models as e.g. the time-changed Lévy models
proposed by Carr et al. (2003).

As a side remark, the proof of Theorem 2.24 shows that the theory of time-inhomogeneous
affine processes can become useful even in the study of time-homogeneous processes.



Chapter 3

Statistical estimation

3.1 Introduction

It is well known that most financial time series exhibit certain distinct features, usually called
stylized facts. In particular, one usually encounters the following phenomena (cf. e.g. (Cont
& Tankov, 2004, Chapter 7) and the references therein):

1. Gain/Loss asymmetry, i.e. returns are negatively skewed.

2. Heavy tails of the returns compared to the Normal distribution.

3. Conditionally heavy tails, i.e. heavy tails even after correcting for volatility clustering.

4. Absence of autocorrelation of asset returns, but volatility clustering, i.e. significant
autocorrelation of the squared returns.

5. Leverage effect, i.e. a negative crosscorrelation between returns and squared returns.

Consequently, there exists a growing literature on different models trying to recapture these
empirical observations. In continuous time the first three characteristica are typically tackled
by allowing for jumps in the asset price process (cf. e.g. Madan & Seneta (1990), Eberlein &
Keller (1995), Barndorff-Nielsen (1998)), whereas the last two are usually accounted for by
introducing some kind of stochastic volatility (cf. e.g. Heston (1993), Barndorff-Nielsen &
Shephard (2001), Carr et al. (2003) for models where the volatility is driven by an additional
stochastic process and Klüppelberg et al. (2004), Klüppelberg et al. (2006) for continuous
time GARCH models). Overviews on the subject can also be found in Schoutens (2003) and
Cont & Tankov (2004).

For applications in Mathematical Finance finding a suitable statistical model for the data
under consideration is of course only one part of the story. Indeed, one prefers models that
are able to explain at least some of the stylized facts, but at the same time one needs enough
mathematical structure to allow for the solution of financial problems. One class of models
that fits these requirements surprisingly well is given by affine stochastic volatility models
(cf. Section 2.3 above and Schoutens (2003), Kallsen (2006) for an overview). Since the

27
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stochastic volatility y and the logarithmized asset price X are modelled as a bivariate affine
process in these models, the joint conditional characteristic function can be computed with
Theorem 2.4 by solving some generalized Riccati equations. This opens the door to explicit
solutions of many classical problems, some of which we will consider in Chapters 4 and
6. In the present chapter, we introduce an estimation algorithm for a particular subclass
of time-changed Lévy models introduced by Carr et al. (2003). In these the asset price is
modelled as St = S0 exp(Xt) with S0 ∈ R and

Xt = µt+BYt ,

Yt =

∫ t

0

ysds,
(3.1)

where µ ∈ R and B denotes a Lévy process, whereas y is assumed to be positive, stationary
and independent of X . These models can capture several stylized facts observed in the data,
nevertheless they are quite tractable from an analytical point of view.

When performing statistical estimation, it is typically assumed that the time series under
consideration is mean adjusted, i.e. µ is set equal to 0 andB is assumed to be a martingale in
Equation 3.1. By Barndorff-Nielsen & Shephard (2006), it is straightforward to estimate µ
from the mean adjustment ifB is a martingale, since different values for µ do not change any
of the higher centered moments or the second order dependence structure. If on the other
hand, we do not require B to be a martingale, the situation becomes much more involved
(cf. Barndorff-Nielsen & Shephard (2006)).

In applications in Mathematical Finance, the situation is completely different though.
Here, many problems can only be solved if the parameter µ is set equal to zero, thus requir-
ing a non-martingale B to model the drift of the asset under consideration (cf. e.g. Kraft
(2005), Vierthauer (2009) and Chapter 4 for examples when this condition is necessary).
Some problems can also be solved for arbitrary values of µ (cf. e.g. Benth et al. (2003) and
Chapter 4 for portfolio optimization), but in general it is an important problem in Financial
Mathematics to deal with the non-martingale case for B as well.

Statistical estimation of stochastic volatility models typically falls into one of the fol-
lowing two broad categories:

1. Simulation based techniques: See e.g. Andersen et al. (2002), Chernov et al. (2003),
Eraker et al. (2003) and the references therein for applications to affine jump-diffusion
models, which correspond to choosingB in Equation (3.1) to be the sum of a standard
Brownian motion and a compound Poisson process. These approaches could also be
used in the more general setup considered here. However, they require lengthy compu-
tations and are tedious to implement for the non-specialist. Furthermore, consistency
and asymptotic normality are typically only assured under regularity conditions that
are not easily checked in concrete models (cf. e.g. Hansen (1982), Duffie & Singleton
(1993), Gallant & Tauchen (1996) for more details).

2. Approaches using exact formulas for moments of the model: Barndorff-Nielsen &
Shephard (2006) calculate the moments and second order dependence structure of
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model (3.1), exactly in the case where B is a martingale and approximately for fre-
quent observations in the general case. They proceed to construct a quasi-maximum
likelihood (QML) estimator in the case where B is a martingale with symmetric
marginal distributions and note that it would also possible to argue approximately
otherwise. Again easy-to-check regularity conditions ensuring good asymptotic prop-
erties are missing. Furthermore, QML estimation involves nonlinear minimization
and is also not robust with respect to model misspecification.

This last drawback is avoided by performing a direct (generalized-) method of moment
estimation, matching theoretical moments of the model to the corresponding empirical
moments of the data. For affine jump-diffusions this approach has been considered
by Jiang & Knight (2002) in the case where B is a martingale. They use the first
four moments of the returns as well as some autocorrelations of the squared returns to
exemplarily estimate the Heston model. However, asymptotic results are once more
only obtained subject to regularity conditions (cf. Hansen (1982)) that may be difficult
to check in concrete models. On the contrary, Haug et al. (2007), who use a similar
moment based approach for the COGARCH model, only impose conditions on the
parameters of the model that are easily verified for a concrete specification.

The aim of this Chapter is fourfold. First, we extend the method of moments algorithms
used by Jiang & Knight (2002), Haug et al. (2007) to the setup considered here (which en-
compasses pure jump driving processes of infinite activity like the popular Normal Inverse
Gaussian process, for example), drawing on the results of Barndorff-Nielsen & Shephard
(2006). In particular, we consider the case where B is possibly skewed and not necessarily
a martingale. No simulation is required and all estimators are given explicitly, which makes
straightforward implementation for diverse models possible. Inspired by Haug et al. (2007),
we then present exact asymptotic results if B is assumed to be a martingale and approx-
imate asymptotic results if this assumption is dropped, only imposing conditions that are
easily verified in concrete models. Thirdly, we analyze the small sample behavior of our
estimation algorithms by fitting parametrized versions of the models to real data and per-
forming simulation studies with the parameters obtained in this way. Finally, we also show
how to estimate the current level of volatility by using a Kalman filter (if B is a martingale)
respectively an extended Kalman filter (for general B).

The remainder of this chapter is organized as follows. In Section 3.2, we introduce the
model and supply the formulas for its moments obtained by Barndorff-Nielsen & Shephard
(2006). In Section 3.3, we deal with estimation in the case whereB is a martingale. We pro-
vide an estimation algorithm before proving that the sequence of returns is strongly mixing
with exponentially decreasing rate, which then implies strong consistency and asymptotic
normality of our estimators as the number of observations tends to infinity. Furthermore,
we fit the model to real data and test the small sample behavior of our estimators via a
simulation study. Finally, we show how to estimate the current level of volatility by using
a Kalman filter. In Section 3.4, we deal with estimating the model if the martingale as-
sumption on B is dropped. Using approximate moments obtained by Barndorff-Nielsen &
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Shephard (2006), we construct estimators and prove that they are strongly consistent and
asymptotically normal as the number of observations goes to infinity and the space between
subsequent observations tends to zero. Finally, we present another simulation study using
parameters obtained by fitting the model to real data and show how the current level of
volatility can be estimated by using an approximate extended Kalman filter.

3.2 Moments and dependence structure of time-changed
Lévy models

We consider time changed Lévy-models of the following form as proposed by Carr et al.
(2003):

Xt = µt+BYt ,

Yt =

∫ t

0

ysds.
(3.2)

Here, µ ∈ R and B denotes a real valued Lévy process with Lévy-Khintchine triplet
(bB, cB, KB) and Lévy exponent

ψB(u) = ubB +
1

2
ucBu+

∫
(eux − 1− uh(x))KB(dx),

whereas y is assumed to be positive, stationary and independent of B.

Example 3.1 If y is chosen to be a Lévy-driven OU process, i.e.

dyt = −λyt−dt+ dZλt,

for λ > 0 and an increasing Lévy process Z independent ofB, (3.2) leads to the generalized
BNS model of Carr et al. (2003) from Section 2.3.3. In particular, (y,X) is an affine stochas-
tic volatility model in this case. However, notice that the Heston model with correlation (i.e.
% 6= 0 in Section 2.3.1) is not a special case of (3.2).

To use the generalized method of moments for parameter estimation, one needs to calcu-
late sufficiently many moments of the model under consideration. For time-changed Lévy
models this has been done by Barndorff-Nielsen & Shephard (2006) by conditioning on the
time-change Y . More specifically, let ∆ > 0 be some grid size and define the discrete
increments X(n) of the log-price X as

X(n) := Xn∆ −X(n−1)∆, n ∈ N∗. (3.3)

Barndorff-Nielsen & Shephard (2006) relate the moments and dependence structure of
(X(n))n∈N∗ to the moments and dependence structure of y as well as the cumulants of B,
given by

cn :=
∂n

∂un
ψB(u)

∣∣
u=0

, n ∈ N∗.

Summing up results from Barndorff-Nielsen & Shephard (2006), the following holds.
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Theorem 3.2 Let B be a Lévy process with c4 < ∞ and suppose y is stationary with
E(y4

t ) < ∞, E(yt) =: ξ and Var(yt) =: ω2 for all t ∈ R+. Let ry be the autocorrelation
function of y and define

r∗∗y (t) :=

∫ t

0

∫ v

0

ry(u)du dv.

Then, if µ = 0, the following holds:

E(X(n)) = c1∆ξ,

E(X2
(n)) = c2∆ξ + c2

1

(
2ω2r∗∗y (∆) + (∆ξ)2

)
,

E(X3
(n)) = c3∆ξ + 3c1c2

(
2ω2r∗∗y (∆) + (∆ξ)2

)
+ c3

1E(Y 3
∆),

E(X4
(n)) = c4∆ξ + (4c1c3 + 3c2

2)
(
2ω2r∗∗y (∆) + (∆ξ)2

)
+ 6c2

1c2E(Y 3
∆) + c4

1E(Y 4
∆),

as well as, for s ∈ N∗,

Cov(X(n), X(n+s)) =c2
1Cov(yn∆, y(n+s)∆),

Cov(X(n), X
2
(n+s)) =c1c2Cov(yn∆, y(n+s)∆) + c3

1Cov(yn∆, y
2
(n+s)∆),

Cov(X2
(n), X

2
(n+s)) =c2

2Cov(yn∆, y(n+s)∆) + c2
1c2Cov(y2

n∆, y(n+s)∆)

+ c2c
2
1Cov(yn∆, y

2
(n+s)∆) + c4

1Cov(y2
n∆, y

2
(n+s)∆).

Moreover,

Cov(yn∆, y(n+s)∆) = ω2(r∗∗y ((s+ 1)∆)− 2r∗∗y (s∆) + r∗∗y ((s− 1)∆)).

PROOF. (Barndorff-Nielsen & Shephard, 2006, Propositions 2, 5). �

Example 3.3 If y is either a stationary OU process or a stationary square-root process, the
autocorrelation function ry of y is given by

ry(u) = e−λu, u ∈ R+.

A proof of this result can be found e.g. in (Cont & Tankov, 2004, Chapter 15). Consequently,
by (Barndorff-Nielsen & Shephard, 2001, Example 4) we have

r∗∗y (u) =
1

λ2

(
e−λu − 1 + λu

)
, u ∈ R+.

Remark 3.4 To make the conditioning argument of Barndorff-Nielsen & Shephard (2006)
work, it is crucial that the driver B of the asset price is independent of the volatility process
y. This explains why this approach does not work for e.g. the Heston model with correlation.
For affine models one can in principle instead differentiate the characteristic function, which
is often known in closed form. However, this typically leads to extremely complicated
expressions that only yield estimators via the solution of a system of nonlinear equations.
Nevertheless, this approach has been applied by Jiang & Knight (2002) for the Heston model
in the case where B is a martingale. However, desirable asymptotic properties such as
strong consistency and asymptotic normality can only be established subject to additional
assumptions in this case (cf. e.g. Hansen (1982) for more details). Moreover, the much more
involved case when B is not a martingale is not treated in Jiang & Knight (2002).
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3.3 Moment estimation if B is a martingale

By Theorem 3.2 above, we know the moments and second-order dependence structure of
the time-changed Lévy model. We now use these to set up a generalized method of mo-
ments estimator, extending similar approaches used by Jiang & Knight (2002) and Haug
et al. (2007) to estimate affine jump diffusion models and the COGARCH(1,1) model, re-
spectively. Estimation is done subject to the following assumptions on the model:

(A1) For time horizon T > 0 and grid size ∆ > 0 we have equally spaced observations
Xj∆, j = 0, ..., bT/∆c leading to returns X(j) = Xj∆ −X(j−1)∆, j = 1, ..., bT/∆c.

(A2) The cumulants cj of B satisfy c1 = 0, c2 = 1 and c4 <∞.
(A3) y is a stationary OU or square-root process with mean reversion λ > 0, mean ξ > 0

and variance∞ > ω2 > 0.

Remark 3.5 The condition c4 < ∞ holds for most Lévy processes typically used in the
literature, e.g. Variance Gamma (VG) and Normal Inverse Gaussian (NIG) processes (cf.
e.g. Schoutens (2003)). The normalization c2 = 1 just leads to a rescaling of the time
change and therefore can be assumed without leading to a loss of generality in the model
(cf. e.g. Pauwels (2007)). The final parameter restriction c1 = 0 is equivalent to B being a
martingale. It is commonly made in the literature (see e.g. Barndorff-Nielsen & Shephard
(2001), Haug et al. (2007), Pigorsch & Stelzer (2008)), because it drastically simplifies the
moment and dependence structure of the model (cf. Theorem 3.2 above). We will discuss
the case c1 6= 0 in Section 3.4 below.

For given ∆ > 0, denote by mi,∆ and µi,∆, i ∈ N, the i-th uncentered and centered
moments of X(n), respectively. Furthermore, let γ∆(s) := Cov(X2

(n), X
2
(n+s)) for n, s ∈ N∗

and define γ∆,d := (γ∆(1), . . . , γ∆(d)) for d ∈ N∗. Assuming (A1)-(A3), Theorem 3.2 then
reads as follows.

Corollary 3.6 Assume (A1)-(A3) hold. Then for any µ ∈ R, we have

m1,∆ = µ∆, µ2,∆ = ∆ξ, µ3,∆ = c3∆ξ,

µ4,∆ = c4∆ξ + 6
ω2

λ2
(e−λ∆ − 1 + λ∆) + 3(∆ξ)2,

γ∆(s) = ω2

(
1− e−λ∆

)2

λ2
e−λ∆(s−1), s ∈ N∗.

3.3.1 The estimation procedure

We begin by showing that the unknown model parameters µ, c3, c4, λ, ξ, ω
2 are uniquely

determined as a continuously differentiable function of the first four moments of the returns
as well as the autocovariance function of the squared returns.
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Proposition 3.7 Let (A1)-(A3) be satisfied and k∆, p > 0 such that, for s ∈ N∗,

γ∆(s) = k∆e
−p∆(s−1).

Then µ, c3, c4, λ, ξ, ω
2 are uniquely determined by m1,∆, µ2,∆, µ3,∆, µ4,∆, k∆, p as

(µ, c3, c4, λ, ξ, ω
2) = H∆(m1,∆, µ2,∆, µ3,∆, µ4,∆, k∆, p)

with H∆ : R× R++ × R3 × R++ → R6 defined as

H∆(m1, µ2,µ3, µ4, k, p))

:=

(
m1

∆
,
µ3

µ2

,
µ4

µ2

− 3µ2 −
6k∆(e−p∆ − 1 + p∆)

µ2(1− e−p∆)2
, p,

µ2

∆
,

p2k∆

(1− e−p∆)2

)
.

Furthermore, H∆ is continuously differentiable in (m1,∆, µ2,∆, µ3,∆, µ4,∆, k∆, p).

PROOF. Follows immediately from Theorem 3.2 and Corollary 3.6 above. �

Proposition 3.7 motivates the following estimation algorithm, which estimates µ, c3, c4,
λ, ξ, ω2 by matching the first four moments of the model to the corresponding empirical
moments of the data and fitting the logarithmized autocovariance function of the model to
its empirical counterpart via linear regression.

Algorithm 3.8 1. Calculate the moment estimators

m̂1,∆,T :=
1

bT/∆c

bT/∆c∑
j=1

X(j), µ̂i,∆,T :=
1

bT/∆c

bT/∆c∑
j=1

(X(j) − m̂1,∆,T )i, i = 2, 3, 4,

and for d ≥ 2 the empirical autocovariances γ̂∆,T,d := (γ̂∆,T (1), . . . , γ̂∆,T (d)) as

γ̂∆,T (s) :=
1

bT/∆c

bT/∆c−s∑
j=1

(
X2

(j) − µ̂2,∆,T

) (
X2

(j+s) − µ̂2,∆,T

)
, h = 1, . . . , d.

2. For fixed d ≥ 2 define the mapping K∆ : Rd
++ × R2 → R by

K∆(γ, k, p) :=
d∑
s=1

(log(γ(h))− log(k) + p∆s)2 ,

and compute the least square estimator

(k̂∆(γ̂∆,T,d), p̂∆(γ̂∆,T,d)) := arg min
(k,p)∈R2

K∆(γ̂∆,T,d, k, p),

which is given by

p̂∆(γ̂∆,T,d) = −

∑d
s=1

(
log(γ̂∆,T,d(s))− log(γ̂∆,T,d)

)
(s− d+1

2
)

∆
∑d

s=1(s− d+1
2

)2
,

k̂∆(γ̂∆,T,d) = exp

(
log(γ̂∆,T,d) +

d+ 1

2
p̂∆(γ̂∆,T,d)

)
,

with log(γ̂∆,T,d) := 1
d

∑d
s=1 log(γ̂∆,T,d(s)).
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3. Define the mapping J∆ : Rd+4 → R6 by

J∆(m1, µ2, µ3, µ4, γ) :=

{
H∆(m1, µ2, µ3, µ4, k̂∆(γ), p̂∆(γ)) if µ2, γ, p̂∆(γ) > 0,

(0, 0, 0, 0, 0, 0) otherwise,

and compute the estimator

(µ̂∆,T , ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T , ω̂2
∆,T ) := J∆(m̂1,∆,T , µ̂2,∆,T , µ̂3,∆,T , µ̂4,∆,T , γ̂∆,T,d).

Remark 3.9 In view of Corollary 3.6 and Assumption (A3), we have µ2,∆ > 0 as well as
p > 0 and γ∆(s) > 0 for all s ∈ N∗. However, this does not necessarily mean that the
corresponding estimators are strictly positive. Nevertheless, we will show in Corollary 3.14
below that all estimators are strongly consistent, which implies that all estimators will be
almost surely well defined for sufficiently large samples.

Similarly, ĉ4,∆,T < 0 is possible depending on the data. On the other hand, we have
c4 = 0 if B is chosen as a Brownian motion as well as c4 > 0 for all other Lévy process B
with jumps. Hence we take ĉ4,∆,T < 0 as a strong indication that the data is too light tailed
to be suitably modeled by the class of (semi-) heavy tailed models considered here.

Remark 3.10 If one considers the special case whereB is chosen to be a Brownian motion,
i.e. the BNS model, we have c3 = c4 = 0. Hence one can still use Algorithm 3.8 above
by simply neglecting the moments of order 3 and 4 and setting ĉ3,∆,T = ĉ4,∆,T = 0. All
asymptotic considerations in Section 3.3.2 below remain true.

Remark 3.11 As in Haug et al. (2007), we fit the model to the logarithms of the empir-
ical autocovariances rather than the covariances themselves, because this leads to a linear
regression and allows to compute the least squares estimator explicitly. Using the empirical
covariances as proposed by Barndorff-Nielsen & Shephard (2001), one is lead to a nonlin-
ear least squares problem. Consequently, the existence of a unique solution, which depends
on the model parameters in a continuously differentiable way, is no longer obvious and
can only be guaranteed under additional assumptions (c.f. e.g. Hansen (1982)). Neverthe-
less this approach seems to work fine in practice and is the natural choice when consider-
ing superpositions of OU processes (cf. Barndorff-Nielsen & Shephard (2001)) of the form
y =

∑m
j=1 y

(j), where y(j), j = 1, . . . ,m denote independent stationary OU processes. If
each y(j) has mean reversion λj and IG(wja, b) or Γ(wja, b) marginals with

∑m
j=1wj = 1,

Barndorff-Nielsen & Shephard (2001) show that

γ∆(s) = ω2

m∑
j=1

wj
λ2
j

(
1− e−λj∆

)2
e−λj∆(s−1), s ∈ N∗,

which can be used to fit the parameters λj, wj , j = 1, . . . ,m to the empirical autocovariances
via a nonlinear least squares regression.
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3.3.2 Asymptotic properties of the estimator

Since all estimators in Algorithm 3.8 are continuously differentiable functions of empirical
moments, strong consistency and asymptotic normality will follow from ergodicity of the
process (X(n))n∈N∗ . For stochastic volatility models with stock prices driven by Brown-
ian motion, it has been shown independently by Genon-Catalot et al. (2000) and Sørensen
(2000) that the return sequence (X(n))n∈N∗ is α-mixing (and hence ergodic), if y is α-mixing
and further that the mixing coefficents for returns are smaller than or equal to the mixing
coefficients of y. An inspection of the arguments in Genon-Catalot et al. (2000) shows that
this remains true for time-changed Lévy models.

Theorem 3.12 Suppose the process y is strictly stationary and α-mixing with mixing coef-
ficients (αy(k))k∈R+ . Then (X(n))n∈N∗ is also strictly stationary and α-mixing with mixing
coefficients (αX(n))n∈N∗ satisfying

αX(n) ≤ αy(n), ∀n ∈ N∗.

In particular, (X(n))n∈N∗ is ergodic and if y is α-mixing with exponentially decreasing rate,
then (X(n))n∈N∗ is α-mixing with exponentially decreasing rate, too.

PROOF. We generalize the arguments of (Genon-Catalot et al., 2000, Sections 3.1, 3.2) to
time-changed Lévy models. In view of (Genon-Catalot et al., 2000, Proposition 3.1) it is
enough to check the prerequisites of (Genon-Catalot et al., 2000, Definition 3.1). The first
property of (Genon-Catalot et al., 2000, Definition 3.1) follows as in (Genon-Catalot et al.,
2000, Theorem 3.1) if the space of continuous functions and its Borel σ-algebra associated
with the uniform topology are replaced with the Skorokhod space D and its Borel σ-algebra
D associated with the Skorokhod topology (cf. (JS, Chapter VI) and in particular Theorem
VI.1.14 for more details), because the mapping

T : D→ R2; (f(t))t∈R+ 7→
(∫ ∆

0

f(s)ds, f(∆)

)
is D-B(R) measurable. The other two properties of (Genon-Catalot et al., 2000, Definition
3.1) follow literally as in (Genon-Catalot et al., 2000, Theorem 3.1) by applying (Jacod &
Shiryaev, 2003, II.4.15), because X has independent increments on [[0, n∆]] conditional on
σ(ys, s ≤ n∆). �

Theorem 3.12 is applicable in our setup because of the following well known fact.

Lemma 3.13 Let y be a strictly stationary OU process such that E(|yt|p) < ∞ for some
p > 0. Then y is α-mixing with exponentially decreasing rate.

PROOF. By (Masuda, 2004, Theorem 4.3) the process y is β-mixing with exponentially
decreasing rate, hence also α-mixing with exponentially decreasing rate (cf. e.g. (Genon-
Catalot et al., 2000, Section 2.3)). �

By Birkhoff’s ergodic theorem (cf. (Shiryaev, 1995, Theorem V.3.1)) all moments esti-
mators in Algorithm 3.8 are strongly consistent.
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Corollary 3.14 Assuming that (A1)-(A3) hold, we have, for T →∞,

m̂1,∆,T
a.s.→ m1,∆, µ̂i,∆,T

a.s.→ µi,∆, i = 2, 3, 4, γ̂∆,T (s)
a.s.→ γ∆(s), s = 1, . . . , d.

Next we turn to asymptotic normality, which can be obtained by applying a central limit
theorem for strongly mixing processes under the following additional assumption.

(A4) E(X8+ε
(n) ) <∞ for some ε > 0.

Remark 3.15 Since E(B1) = 0, condition (A4) holds e.g. if E(B10
1 ) <∞ and E(|y1|5) <

∞, since this implies E(B10
Yt

) < ∞ and hence E(X10
(n)) < ∞. This can be seen by condi-

tioning on the time-change Y and differentiating the characteristic function of B.

Lemma 3.16 Let (A1)-(A4) be satisfied. Then, for T →∞,√⌊
T

∆

⌋(
(m̂1,∆,T , µ̂2,∆,T , µ̂3,∆,T , µ̂4,∆,T , γ̂∆,T,d)−(m1,∆, µ2,∆, µ3,∆, µ4,∆, γ∆,d)

)
d→ Nd+4(0,Σ),

where the covariance matrix Σ has components

Σk,l = Cov(G1,k, G1,l) + 2
∞∑
j=1

Cov(G1,kG1+j,l),

with

Gn :=
(
X(n), (X(n) −m1,∆)2, (X(n) −m1,∆)3, (X(n) −m1,∆)4,

(X2
(n) − µ2,∆)(X2

(n+1) − µ2,∆), . . . , (X2
(n) − µ2,∆)(X2

(n+d) − µ2,∆)
)
.

PROOF. Since (X(n))n∈N∗ is strongly mixing with exponentially decreasing rate, the claim
follows from the Ibragimov central limit theorem for strongly mixing processes (cf. (Ibrag-
imov & Linnik, 1971, Theorem 18.5.3)) along the lines of the proof of (Haug et al., 2007,
Proposition 3.7). �

Summing up, we have the following result.

Theorem 3.17 Assume (A1)-(A3) hold. Then, for T →∞,

(µ̂∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂2
∆,T )

a.s.→ (µ, c3, c4, λ, ξ, ω
2)

If additionally (A4) holds, then, for T →∞,√⌊
T

∆

⌋(
(µ̂∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂

2
∆,T )− (µ, c3, c4, λ, ξ, ω

2)

)
d→ ∇J∆(m1,∆, µ2,∆, µ3,∆, µ4,∆, γ∆,d)Nd+4(0,Σ),

where Σ is defined as in Lemma 3.16.

PROOF. The strong consistency follows from Corollary 3.14 by the continuous mapping
theorem (cf. (van der Vaart, 1998, Theorem 2.3)) and the asymptotic normality is a con-
sequence of Lemma 3.16 and the delta method (cf. (van der Vaart, 1998, Theorem 3.1)),
because J∆ is continuously differentiable in (m1,∆, µ2,∆, µ3,∆, µ4,∆, γ∆,d). �
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3.3.3 Estimation results for real data

Using Algorithm 3.8 proposed above, we now fit the time-changed Lévy-model to real data.
As in e.g. Andersen et al. (2002), Chernov et al. (2003), Eraker et al. (2003) we consider a
long time series of daily returns, since this provides rich information about the conditional
and unconditional distribution of the returns while allowing us to sidestep the seasonality
issues inherent in high frequency data, which are beyond our scope here.

Consequently, we use a daily time series of the German industrial index Dax S spanning
from the 14th of June in 1988 to the 10th of April in 2008 (i.e. T = 20, ∆ = 1/250 and
T/∆ = 5000 returns). The paths of the returns (X(n))n∈N∗ and the logarithmized price
(Xt)t∈R+ with Xt = log(St/S0) are depicted in Figure 3.1 below.
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Figure 3.1: log-returns (X(n))n∈N∗ (first) and log-price X (second) of the Dax

Following Haug et al. (2007), we use d ≈
√
bT/∆c, i.e. d = 70 for T = 20 and

∆ = 1/250. The results are shown in Table 3.1 below.

µ̂1/250,20 ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0.0894 0 -0.00549 0.000445 2.54 0.0485 0.00277

Table 3.1: Estimation results based on Algorithm 3.8 with d = 70.

Remark 3.18 Many applications in Mathematical Finance require a model for the stock
price discounted by a bond S0

t = ert with constant interest rate r. If we use the average
0.0456 of the 6-month EURIBOR from its inception as a proxy for r and estimate the pa-
rameters of the discounted model using Algorithm 3.8, we obtain the results shown in Table
3.2. Only the estimate of µ changes, since all other estimators use centered moments.
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µ̂1/250,20 ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0.0438 0 -0.00549 0.000445 2.54 0.0485 0.00277

Table 3.2: Estimation results for the discounted stock price with Algorithm 3.8.

The fitted model accounts for the skewness of −0.3943 and the kurtosis of 8.8210 ex-
hibited by our data set, i.e. both for asymmetry and heavy tails. For the returns and squared
returns, the empirical autocorrelation functions and their theoretical counterparts are shown
in Figure 3.2 below, indicating that the dependency structure is fit quite well, too.
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Figure 3.2: Empirical (blue) and fitted (red) autocorrelation functions of the log returns
(first) and the squared log returns (second)

Remark 3.19 An inspection of the crosscorrelation between the returns and the squared
returns reveals that the leverage effect is present in our data set as well.
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Figure 3.3: Empirical (blue) and fitted (red) crosscorrelation function of the log returns and
the squared log returns

Assuming y is an OU process driven by a subordinator Z, this effect can be accounted
for by introducing a leverage term and generalizing the model to

Xt = µt+BYt + %Zλt, % ∈ [−1, 1].
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For the BNS model, this is discussed in detail by Barndorff-Nielsen & Shephard (2001),
who also calculate the resulting second order dependence structure. These results can be
extended to cover the present setup, however this class of models is not very tractable from
the point of view of Mathematical Finance. Hence we do not go into more details here.

Remark 3.20 As discussed in Remark 3.11 above, it is also possible to consider superpo-
sitions of OU processes and fit them to the empirical autocovariances. Using the MAT-
LAB nonlinear least squares routine lsqnonlin, this approach yields the following set
of parameter estimates for the superposition of two independent OU-processes with mean
reversion λj , mean wjξ and variance wjω2, j = 1, 2:

ξ̂ = 0.0485, ω̂2 = 0.00402, ŵ1 = 0.446, λ̂1 = 32.5, ŵ2 = 0.554, λ̂2 = 1.38.

The corresponding fitted autocorrelation function for the superposition of two OU processes
is shown alongside its counterpart for one OU process in Figure 3.4 below.
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Figure 3.4: Empirical (blue) and fitted (red) autocorrelation functions of the squared log
returns for a superposition of one (first) and two (second) OU processes.

Clearly, the fit is improved considerably for short lags, although the overall effect is not
too big for our daily data. If one moves to more highly frequent data, however, several OU
processes become indispensable to model dependencies on different time scales.

So far these results are really of semiparametric nature, since we have not completely
specified the processes B and y yet. We now present some examples of parametric models
commonly used in the literature.

Example 3.21 (IG-OU process, Gamma-OU process) Suppose y follows a stationary IG-
OU process (cf. e.g. Schoutens (2003)) with IG(a, b) marginals. Then a =

√
ξ3/ω2 and
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b =
√
ξ/ω2, hence strongly consistent and asymptotically normal estimators are given by

â1/250,20 =

√√√√ ξ̂3
1/250,20

ω̂2
1/250,20

= 0.203, b̂1/250,20 =

√√√√ ξ̂1/250,20

ω̂2
1/250,20

= 4.1835.

If y follows a stationary Gamma-OU process with Γ(a, b) marginals, the corresponding
estimators are

â1/250,20 =
ξ̂2

1/250,20

ω̂2
1/250,20

= 0.8483, b̂1/250,20 =
ξ̂1/250,20

ω̂2
1/250,20

= 17.5013.

Example 3.22 (BNS model) In the BNS model, B is chosen to be a Brownian motion with
drift. In this case, c1 = 0 and c2 = 1 imply that B is a Standard Brownian Motion.

If the BNS model is estimated using Algorithm 3.8 (which closely resembles the ap-
proach of Barndorff-Nielsen & Shephard (2001) in this case), the third and fourth moments
of the model are not fitted to the data. More specifically, Theorem 3.2 yields that the fitted
BNS model has skewness 0 and kurtosis 6.52 compared with the values −0.39 and 8.82 ob-
served in our data set. This shows that stochastic volatility without jumps in the asset price
cannot explain the skewness in the data and can only account for a part of the heavy tails.
To show the full flexibility of the class of models considered here, we now consider a Lévy
process B with jumps. More specifically, we assume that B is modelled as an NIG process,
which is a popular model for stock prices itself (cf. e.g. Barndorff-Nielsen (1997, 1998),
Rydberg (1997)).

Example 3.23 (NIG process) Let B be a NIG process with characteristic function

E
(
eiuBt

)
= exp

(
t
(
iuδ + ϑ

(√
α2 − β2 −

√
α2 − (β + iu)2

)))
,

where δ ∈ R, α, ϑ > 0 and β ∈ (−α, α). Then by e.g. (Schoutens, 2003, Section 5.3.8),

c1 = δ+
ϑβ√
α2 − β2

, c2 =
α2ϑ

(α2 − β2)3/2
, c3 =

3βα2ϑ

(α2 − β2)5/2
, c4 =

3α2ϑ(α2 + 4β2)

(α2 − β2)7/2
.

Hence Conditions (A1)-(A4) are satisfied for ϑ = (α2−β2)3/2α−2 and δ = −β(α2−β2)α−2.
Solving for α, β, δ, ϑ, this leads to the following estimators, which are strongly consistent
and asymptotically normal by Theorem 3.17 above:

β̂∆,T :=
ĉ3,∆,T

ĉ4,∆,T − 5ĉ 2
3,∆,T/3

, α̂∆,T :=
√
β̂2

∆,T + 3β̂∆,T/ĉ3,∆,T ,

ϑ̂∆,T :=
(α̂2

∆,T − β̂2
∆,T )3/2

α̂2
∆,,T

, δ̂∆,T :=
−ϑ̂∆,T β̂∆,T√
α̂2

∆,T − β̂2
∆,T

,

For our data set, this yields

β̂1/250,20 = −13.9, α̂1/250,20 = 88.3, ϑ̂1/250,20 = 85.0, δ̂1/250,20 = 13.6.
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3.3.4 Simulation study

To investigate the small sample behavior of our estimation algorithm, we now assume that
X is given by a NIG-IG-OU process, i.e. y is chosen to be a stationary IG-OU process
with mean reversion λ and marginal IG(

√
ξ3/ω2,

√
ξ/ω2) distributions, whereas the Lévy

process B is assumed to be a NIG process.
As for parameters, we use the estimates obtained from our daily Dax time series in

Examples 3.21, 3.23 above. Sample paths of an NIG-IG-OU process can easily be simulated
using algorithms found in (Schoutens, 2003, Sections 8.4.5, 8.4.7), examples being shown
in Figure 3.5 below.
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Figure 3.5: Sample paths of the volatility y (first), the returnsX(n) (second) and the log-asset
price X (third) for a NIG-IG-OU process with parameters as in Examples 3.21, 3.23.

We simulate 1000 samples of equidistant observations of returns X(n) for ∆ = 1/250

and T = 20 and T = 40, where we first work on a finer grid with 80 steps per day and then
only use the returns on the original grid to minimize discretization errors.

The results are shown in Table 3.3 below. As above, we have chosen d ≈
√
bT/∆c, i.e.

d = 70 for T = 20 and d = 100 for T = 40 here. Note that we measure the estimation error
relative to the true values of the parameters in order to account for the different sizes of the
parameters under consideration.
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µ c3 c4 λ ξ ω2

True Value 0.0894 -0.00549 0.000445 2.54 0.0485 0.00277
T = 20 µ̂1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 0.0856 -0.0543 0.000454 3.01 0.0478 0.00250
AAPE 0.427 0.354 0.307 0.339 0.174 0.454
T = 40 µ̂1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 0.0910 -0.00547 0.000450 2.82 0.0484 0.00272
AAPE 0.311 0.271 0.231 0.242 0.125 0.347

Table 3.3: Estimated mean and average absolute percentage error for the parameters µ̂∆,T ,
ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T and ω̂2

∆,T estimated with Algorithm 3.8.

The estimators seem to be fairly consistent for the sample size under consideration, the
only notable exception being the mean reversion parameter λ which is markedly biased to
the right. We also find that the average error for the drift rate µ is substantially larger than
for the mean volatility ξ, an effect which is well known from estimation of the classical
Black-Scholes model.

Moving from T = 20 to T = 40 we observe that the mean absolute errors decrease by
factors of roughly

√
2 as would be expected from the Ibragimov central limit theorem.

3.3.5 Estimation of the current level of volatility

The current value of the volatility process v is needed in many applications in Mathematical
Finance, e.g. portfolio optimization (c.f. Benth et al. (2003) and Section 4.5) or variance-
optimal hedging (cf. Pauwels (2007)). Since it cannot be observed directly, it has to be
filtered from the given returns. Assuming y follows an OU process and c1 = 0, we can
proceed along the lines of (Barndorff-Nielsen & Shephard, 2001, Section 5.4.3), and ob-
tain a linear state space representation which allows to use the Kalman filter (cf. Harvey
(1989) for more details), to provide a best linear (based on X(n) and X2

(n)) predictor of y.
More specifically, it follows from Corollary 3.6 and (Barndorff-Nielsen & Shephard, 2001,
Section 5.4.3) that a linear state space representation of (X(n), X

2
(n)) is given by(

X(n)

X2
(n)

)
=

(
µ∆

µ2∆2

)
+

(
0 0

λ−1 0

)(
λ(Yn∆ − Y(n−1)∆)

yn∆

)
+ un,

where the vector martingale difference sequence un satisfies

Var(u1n) = ∆ξ, Cov(u1n, u2n) = 2µ∆2ξ + c3∆ξ,

Var(u2n) = 4µ2∆3ξ + 4
ω2

λ2

(
e−λ∆ − 1 + λ∆

)
+ 2ξ2∆2 + c4∆ξ + 4µ∆2c3ξ,

and (
λ(Y(n+1)∆ − Yn∆)

y(n+1)∆

)
=

(
0 1− e−λ∆

0 e−λ∆

)(
λ(Yn∆ − Y(n−1)∆)

yn∆

)
+ wn,
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with IID noise wn (uncorrelated with un) satisfying

E(wn) = ξ

(
e−λ∆ − 1 + λ∆

1− e−λ∆

)
,

Var(wn) = 2ω2

(
λ∆− 2(1− e−λ∆) + 1

2
(1− e−2λ∆) 1

2
(1− e−λ∆)2

1
2
(1− e−λ∆)2 1

2
(1− e−λ∆)

)
.

In Figure 3.6 below we show the results of applying the Kalman filter to the simulated
returns, suggesting it is possible to obtain decent estimates of the volatility in this way.
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Figure 3.6: Sample paths of an IG-OU process (blue) with parameters as in Example 3.21
and the Kalman filter estimate (red) obtained from the corresponding NIG-IG-OU process
with parameters as in Examples 3.23, 3.21.

Notice that if the marginal distribution of B is known (as e.g. for VG or NIG processes),
it is also possible to use a particle filter (cf. e.g. Pitt & Shephard (1999) for details). Since
Barndorff-Nielsen & Shephard (2001) have noted that estimates obtained from the Kalman
filter and the particle filter are close together in the BNS model, we restrict ourselves to the
simpler Kalman filter approach here and leave an application of particle filters for future
research.

3.4 Moment estimation for arbitrary B

We now consider the case where µ = 0 and the Lévy process B is not necessarily assumed
to be a martingale, i.e. c1 6= 0. Estimation is done subject to the following assumptions:

(B1) For time horizon T > 0 and grid size ∆ > 0 we have equally spaced observations
Xj∆, j = 0, ..., bT/∆c leading to returns X(j) = Xj∆ −X(j−1)∆, j = 1, ..., bT/∆c.

(B2) µ = 0 and the cumulants of B satisfy c2 = 1 and c4 <∞.
(B3) y is a stationary OU or CIR process with mean reversion λ > 0, mean ξ > 0,

variance ω2 > 0 and existing fourth moments.
(B4) E(X8+ε

(n) ) <∞ for some ε > 0.

As above, for given grid size ∆ > 0 we write µi,∆ and mi,∆ for the i-th centered and
uncentered moment ofX(n), set γ∆(s) := Cov(X(n), X(n+s)) for s ∈ N∗ and define γ∆,d∆

:=

(γ∆(1), . . . , γ∆(d∆)) for d∆ ∈ N∗.
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3.4.1 Approximate moments

The key to the estimation algorithms proposed below is the following observation made by
Barndorff-Nielsen & Shephard (2006).

Lemma 3.24 Assume that (B1)-(B3) hold. Then for ∆ ↓ 0,

m3,∆ = c3∆ξ + 3c1

(
2ω2

λ2
(e−λ∆ − 1 + λ∆) + ∆2ξ2

)
+O(∆3),

m4,∆ = c4∆ξ + (3 + 2c1c3)

(
2ω2

λ2
(e−λ∆ − 1 + λ∆) + ∆2ξ2

)
+O(∆3),

as well as , for s ∈ N∗ and ∆ ↓ 0,

γ∆(h) = ω2 (1− e−λ∆)2

λ2
e−λ∆(s−1) +O(∆3) = ω2∆2e−λ∆(s−1) +O(∆3).

PROOF. (Barndorff-Nielsen & Shephard, 2006, Propositions 4, 5). �

3.4.2 The estimation procedure

By neglecting all terms of order ∆3 or higher in Lemma 3.24, we obtain the following
approximations of the model parameters by moments of the returns and the autocovariance
function of the squared returns.

Lemma 3.25 Assume (B1)-(B3) and let k, p ∈ R++ be constants such that, for fixedD ∈ N∗

and ∆ ↓ 0,

γ∆(s) = k∆2e−p∆(s−1) +O(∆3), s ∈
{

1, . . . ,

⌊
D√
∆

⌋
+ 1

}
. (3.4)

Then, for sufficiently small ∆, there exists a largest solution x∆ > 0 to

0 = µ2,∆x
2 −∆x3 −m2

1,∆k,

and we have, for ∆ ↓ 0,

λ = p+O(
√

∆/D), ω2 = k +O(∆), ξ = x∆ +O(∆2), c1 =
m1,∆

∆x∆

+O(∆2),

c3 =
m3,∆

∆x∆

− 3m1,∆

(
1 +

k

x2
∆

)
+O(∆2),

c4 =
m4,∆

∆x∆

−
{

3∆

x∆

+
2m1,∆

x2
∆

(
m3,∆

∆x∆

− 3m1,∆

(
1 +

k

x2
∆

))}(
x2

∆ + k
)

+O(∆2).

PROOF. Inserting s = 1 into Equation (3.4) and applying Lemma 3.24 yields

k∆2 = ω2 (1− e−λ∆)2

λ2
+O(∆3) = ω2∆2 +O(∆3),
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and hence ω2 = k + O(∆) for ∆ ↓ 0. Using this formula, Lemma 3.24 and Equation (3.4)
with s− 1 = bD/

√
∆c we obtain∣∣∣∣e−p∆j

D√
∆

k
− e−λ∆

j
D√
∆

k∣∣∣∣ ≤ C1∆

for some constant C1 > 0 and sufficiently small ∆. Since ∆bD/
√

∆c is bounded from
above for ∆ ↓ 0 this implies that there exists a constant C2 > 0 such that

|λ− p| = | log(e
−p∆

j
D√
∆

k
)− log(e

−λ∆
j
D√
∆

k
)|

∆
⌊
D√
∆

⌋
≤ C2

bD/
√

∆c
|e−p∆

j
D√
∆

k
− e−λ∆

j
D√
∆

k
|

∆
≤ C2C1

bD/
√

∆c
,

and hence λ = p + O(
√

∆/D) for ∆ ↓ 0. By Theorem 3.2 we have m2,∆ = ∆ξ +

c2
1(2ω2r∗∗y (∆) + ∆2ξ2). Inserting c1 = m1,∆/∆ξ as well as the expressions for ω2 and r∗∗y

and rearranging terms shows that

0 = µ2,∆ξ
2 −∆ξ3 −m2

1,∆k +O(∆3). (3.5)

Differentiation shows that the mapping

f∆ : x 7→ µ2,∆x
2 −∆x3

attains a unique maximum at x0,∆ = 2µ2,∆/3∆ with f∆(x0,∆) = 4µ3
2,∆/27∆2, and is strictly

decreasing on (x0,∆,∞). Note that m2
1,∆k = O(∆2) whereas f∆(x0,∆) = O(∆), hence

f∆(x0,∆) > m2
1,∆k for sufficiently small ∆. Together with limx→∞ f∆(x) = −∞ and the

continuity of f∆ this implies that for ∆ ↓ 0 there exists a unique solution x∆ to f∆(x) =

m2
1,∆k on (x0,∆,∞).

Since we have µ2,∆ = ∆ξ + O(∆2) for ∆ ↓ 0 by Theorem 3.2, f∆(x∆) = m2
1,∆k and

Equation (3.5) yield ∆x2
∆(x∆ − ξ) = O(∆2), and hence ξ = x∆ + O(∆), because x∆ >

x0,∆ = 2ξ/3 +O(∆) > ξ/3 > 0 for ∆ ↓ 0 by Theorem 3.2.
As f∆ is strictly decreasing on (x0,∆,∞) and hence on U∆ := [x∆ ∧ ξ, x∆ ∨ ξ] for

sufficiently small ∆, the inverse mapping f−1
∆ is well-defined on U∆ and continuously dif-

ferentiable in the interior of U∆. Since f ′∆ is decreasing on U∆ for sufficiently small ∆, the
mean value theorem implies

|x∆ − ξ| = |f−1
∆ (f∆(x∆))− f−1

∆ (f∆(ξ))| ≤ max

{∣∣∣∣ 1

f ′(x∆)

∣∣∣∣ , ∣∣∣∣ 1

f ′(ξ)

∣∣∣∣} |f∆(x∆)− f∆(ξ)|,

(3.6)
where we have used (f−1

∆ )′(f∆(x)) = 1/f ′∆(x). Now notice that µ2,∆ = ∆ξ + O(∆2) and
ξ = x∆ +O(∆) yield f ′∆(x∆) = −ξ2∆ +O(∆2) and f ′∆(ξ) = −ξ2∆ +O(∆2). Combining
this with f∆(x∆)− f∆(ξ) = O(∆3) and (3.6) shows ξ = x∆ +O(∆2) for ∆ ↓ 0 as claimed.

The remaining assertions now follow from Theorem 3.2 and Lemma 3.24. �
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Remark 3.26 In view of Lemma 3.25 the model parameters can be identified by the first
four moments and the autocovariance function up to an error term vanishing as the grid
size ∆ approaches zero and the number of autocovariance lags taken into account tends to
infinity.

Lemma 3.25 motivates the following estimation Algorithm. In view of Theorem 3.28
below, all estimators will again be almost surely well-defined for sufficiently small ∆ and
sufficiently large samples.

Algorithm 3.27 1. Calculate the moment estimators

m̂i,∆,T :=
1

bT/∆c

bT/∆c∑
j=1

X i
(n), i = 1, 2, 3, 4,

as well as for fixed D ∈ N∗ and d∆ := bD/
√

∆c + 1 the empirical autocovariances
γ̂∆,T,d∆

:= (γ̂∆,T (1), . . . , γ̂∆,T (d∆)), as

γ̂∆,T (s) :=
1

bT/∆c

bT/∆c−s∑
j=1

(
X2

(j) − m̂2,∆,T

) (
X2

(j+s) − m̂2,∆,T

)
, s = 1, . . . , d∆.

2. Define the mapping K∆ : Rd
++ × R2 → R by

K∆(γ̂∆,T,d∆
, k, p) :=

d∆∑
s=1

(
log(γ̂∆,T,d∆

(s))− log(∆2k) + p∆s
)2
,

and compute the least square estimator

(k̂∆(γ̂∆,T,d∆
), p̂∆(γ̂∆,T,d∆

)) := arg min
(k,p)∈R2

K∆(γ̂∆,T,d∆
, k, p),

which is given by

p̂∆(γ̂∆,T,d∆
) = −

∑d∆

s=1

(
log(γ̂∆,T,d∆

(s))− log(γ̂∆,T,d∆
)
)

(s− d∆+1
2

)

∆
∑d∆

s=1(s− d∆+1
2

)2)
,

k̂∆,T (γ̂∆,T,d∆
) = ∆−2 exp

(
log(γ̂∆,T,d∆

) +
d∆ + 1

2
p̂∆(γ̂∆,T,d∆

)

)
,

with log(γ̂∆,T,d∆
) := 1

d∆

∑d∆

s=1 log(γ̂∆,T,d∆
(s)).

3. Compute

x̂∆(m̂1,∆,T , m̂2,∆,T , γ̂∆,T ) := max
{
x ∈ R : µ̂2,∆,Tx

2 −∆x3 − m̂2
1,∆,T k̂n(γ̂∆,T,d∆

) = 0
}
.
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4. Define the mapping H∆ : R++ × R4 × R++ → R6 by

H∆(x,m1,m3,m4, k, p) :=

(
m1

∆x
,
m3

∆x
− 3m1

(
1− k

x2

)
,

m4

∆x
−
{

3∆

x
+

2m1

x2

(
m3

∆x
− 3m1

(
1− k

x2

))}(
x2 + k

)
, p, x, k

)
.

5. Define the mapping J∆ : R4 × Rd∆
+ → R6 by

J∆(m1,m2,m3,m4, γ)

:=

{
H(x̂∆(m1, γ),m1,m2,m3,m4, k̂∆(γ), p̂∆(γ) if γ, x̂∆(m1,m2, γ), p̂∆(γ) > 0,

(0, 0, 0, 0, 0, 0) otherwise,

and compute the estimator

(ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T , ω̂
2
∆,T ) = J∆(m̂1,∆,T , m̂2,∆,T , m̂3,∆,T , m̂4,∆,T , γ̂∆,T,d∆

).

Remarks.

1. Note that the mapping J∆ is continuously differentiable in the true parameter values
(m1,∆,m2,∆,m3,∆,m4,∆, γ∆,d∆

), because the implicit function theorem shows that x̂∆

is continuously differentiable in (m1,∆,m2,∆, γ∆,d∆
).

2. As above, ĉ4,∆,T < 0 is possible depending on the data, which we once again take as
a strong indication that the data is too light tailed to be suitably modeled by the class
of (semi-) heavy tailed models considered here.

3. Notice that the fitted model only recaptures the first four moments of the data up to
an error of order ∆3. Likewise, the true logarithmized autocovariance function of the
model differs from the results of the linear regression in Algortihm 3.27 by an error
term of order ∆3. We will comment on the size of these errors in Section 3.4.6 below.

3.4.3 Asymptotic properties of the estimator

In the construction of the estimation algorithms in Section 3.4.2 we had to resort to approxi-
mate moments with an error term vanishing only as ∆ ↓ 0. Consequently, strong consistency
and asymptotic normality of these algorithms only hold up to this error term as well.

Theorem 3.28 Define ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T , ω̂2
∆,T as in Algorithm 3.27 and

assume (B1)-(B3) hold. Then for ∆ ↓ 0, we have

lim
T→∞

(
(ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂2

∆,T )−
(
(c1, c3, c4, λ, ξ, ω

2) + ε∆

)) a.s.
= 0,
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and if additionally (B4) holds, then as T →∞,

√
bT/∆c

(
(ĉ1,∆,T , ĉ3,∆,T , ĉ4,∆,T ,λ̂∆,T , ξ̂∆,T , ω̂2

∆,T )−
(
(c1, c3, c4, λ, ξ, ω

2) + ε∆

))
d→ ∇J∆(m1,m2,m3,m4, γ∆,d∆

)Nd+4(0,Σ),

where

ε∆ = (O(∆2), O(∆2), O(∆2), O(
√

∆), O(∆2), O(∆)) for ∆ ↓ 0,

and the covariance matrix Σ has components

Σk,l = Cov(G1,k, G1,l) + 2
∞∑
j=1

Cov(G1,kG1+j,l),

for

Gn :=

(
X(n), X

2
(n), X

3
(n), X

4
(n),

(X2
(n) −m2,∆)(X2

(n+1) −m2,∆), . . . , (X2
(n) −m2,∆)(X2

(n+d) −m2,∆)

)
.

PROOF. Set

ε∆ := (c1, c3, c4, λ, ξ, ω
2)− J∆(m1,∆,m2,∆,m3,∆,m4,∆, γ∆,d∆

),

where d∆ = b
√
D/∆c for some D ∈ R+. By Lemma 3.25 and the definition of J∆ in

Algorithm 3.27, we have

ε∆ = (O(∆2), O(∆2), O(∆2), O(
√

∆), O(∆2), O(∆)) for ∆ ↓ 0.

Notice that the proof of Theorem 3.12 also holds in the present setup. Hence, for fixed ∆ >

0, the series (X(n))n∈N∗ is ergodic and Birkoff’s ergodic theorem yields that for T →∞, we
have

m̂i,∆,T
a.s.→ mi,∆, i = 1, 2, 3, 4, γ̂∆,T,d∆

a.s.→ γ∆,d∆
.

By the continuous mapping theorem (cf. van der Vaart (1998), Theorem 2.3), this implies

J∆(m̂1,∆,T , m̂2,∆,T , m̂3,∆,T , m̂4,∆,T , γ̂∆,T,d∆
)

a.s.→ J∆(m̂1,∆, m̂2,∆, m̂3,∆, m̂4,∆, γ̂∆,d∆
),

as T → ∞, because J∆ is continuous in (m1,∆,m2,∆,m3,∆,m4,∆, γ∆,d∆
). This shows the

first statement. The second now follows analogously from the Ibragimov central limit theo-
rem by an application of the delta method (cf. the proofs of Lemma 3.16 and Theorem 3.17
for more details). �
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3.4.4 Estimation results for real data

We now apply Algorithm 3.27 to the same set of daily DAX data used in Section 3.3 above.
The results are shown in Table 3.4 below.

µ̂ ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0 1.85 -0.00675 0.000448 2.54 0.0485 0.00277

Table 3.4: Estimation results based on Algorithm 3.27.

Remark 3.29 As in Remark 3.18, one can again discount by a constant deterministic inter-
est rate r = 0.0456 first and then apply the estimation Algorithm 3.27. Since uncentered
moments are used for the estimation of all parameters in Algorithm 3.27, all parameters are
potentially affected by this. However, the results shown in Table 3.5 suggest that the effect
is quite small for all parameters except for the drift c1.

µ̂ ĉ1,1/250,20 ĉ3,1/250,20 ĉ4,1/250,20 λ̂1/250,20 ξ̂1/250,20 ω̂2
1/250,20

0 0.904 -0.00610 0.000444 2.54 0.0485 0.00278

Table 3.5: Estimation results for the discounted stock price based on Algorithm 3.27.

Example 3.30 (IG-OU process, Gamma-OU process) Suppose y follows a stationary IG-
OU process with IG(a, b) marginals. Plugging in ξ̂ and ω̂2 obtained from our data set with
Algorithm 3.27, we obtain the following estimators for a, b, which are approximately con-
sistent and asymptotically normal for small ∆:

â1/250,20 =

√√√√ ξ̂ 3
1/250,20

ω̂2
1/250,20

= 0.203, b̂1/250,20 =

√√√√ ξ̂1/250,20

ω̂2
1/250,20

= 4.182.

For a stationary Gamma-OU process y with Γ(a, b) marginals we obtain

â1/250,20 =
ξ̂ 2

1/250,20

ω̂2
1/250,20

= 0.847, b̂1/250,20 =
ξ̂1/250,20

ω̂2
1/250,20

= 17.5.

Note that these are practically the same parameters as in Section 3.3.

Example 3.31 (BNS model) If B is given by a Brownian motion with drift δ ∈ R and
volatility σ ∈ R+, we have δ = c1 and σ2 = c2. Consequently, σ = 1 and the estimator
δ̂1/250,20 = ĉ1,1/250,20 = 1.85 is approximately consistent and asymptotically normal for
small ∆. If one considers data discounted with the constant deterministic interest rate r =

0.0456, the corresponding estimator is given by δ̂ = 0.904.

Example 3.32 (NIG process) Suppose that B is given by an NIG process. Plugging c2 = 1

and the estimates for c1, c3, c4 given in Table 3.4 above into

β =
c3

c4 − 5c2
3/3

, α =
√
β2 + 3β/c3, ϑ =

(α2 − β2)3/2

α2
, δ = c1 −

ϑβ√
α2 − β2

,
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yields estimators β̂1/250,20, α̂1/250,20, ϑ̂1/250,20, δ̂1/250,20 for the parameters β, α, ϑ, δ of the
NIG process, which are approximately consistent and asymptotically normal for small ∆:

β̂1/250,20 = −18.2, α̂1/250,20 = 91.7, ϑ̂1/250,20 = 86.3, δ̂1/250,20 = 17.4.

For discounted data, we obtain

β̂1/250,20 = −16.0, α̂1/250,20 = 90.1, ϑ̂1/250,20 = 85.9, δ̂1/250,20 = 15.5.

3.4.5 Simulation study

We now investigate the performance of Algorithm 3.27 by performing the same simulation
study as for Algorithm 3.8 in Section 3.3.4 above.

Consequently, we assume once more that X is given by an NIG-IG-OU process. We
again simulate 1000 samples of equidistant observations of returns X(n), n = 1, . . . , T

∆
for

∆ = 1/250 as well as T = 20 and T = 40, first working on a finer grid with 80 steps per day
to minimize discretization errors. As for parameters we use the values given in Examples
3.30 and 3.32, respectively. Simulated sample paths are shown in Figure 3.7 below.
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Figure 3.7: Sample paths of the volatility v (first), the returns y (second) and the logarith-
mized asset priceX (third) for an NIG-IG-OU process with parameters as in Examples 3.30,
3.32.
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The results of our simulation study are shown in Table 3.6 below. As above we have
chosen d ≈

√
bT/∆c, i.e. d = 70 for T = 20 and d = 100 for T = 40.

c1 c3 c4 λ ξ ω2

True Value 1.84 -0.00675 0.000448 2.54 0.0485 0.00278
T = 20 ĉ1,1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 1.90 -0.00667 0.000452 3.00 0.0482 0.00253
AAPE 0.463 0.278 0.335 0.347 0.176 0.467
T = 40 ĉ1,1/250,T ĉ3,1/250,T ĉ4,1/250,T λ̂1/250,T ξ̂1/250,T ω̂2

1/250,T

Mean 1.84 -0.00673 0.000445 2.83 0.0486 0.00264
AAPE 0.318 0.189 0.270 0.243 0.123 0.357

Table 3.6: Estimated mean and average absolute percentage error for the parameters ĉ1,∆,T ,
ĉ3,∆,T , ĉ4,∆,T , λ̂∆,T , ξ̂∆,T and ω̂2

∆,T .

Comparing these results with Table 3.3, we find that the use of the approximate moments
entails virtually no loss in the quality of the estimators for our daily data. This suggests that
the approximation errors resulting from the use of the approximate moment are rather small
compared to the variance of our estimators.

3.4.6 Computation of the approximation error

The results of our simulation studies suggest that the errors resulting from the use of approx-
imate moments are quite small. However, it is generally difficult to quantify them without
resorting to large scale Monte-Carlo simulations. For affine models however, it is sometimes
possible to explicitly calculate the joint characteristic function of the returnsX(n) andX(n+s)

for n, s ∈ N∗. Differentiation and evaluation at zero via MATLAB’s symbolic toolbox then
lead to exact equations for moments and autocovariances. These equations do not yield
any favorable estimation algorithms, because they are extremely complicated and hideously
nonlinear. However, they can comfortably be used for an a posteriori error estimation. We
have the following general result from Kallsen (2006):

Lemma 3.33 Suppose B has characteristic exponent ψB and y is an OU-process driven by
a subordinator with characteristic exponent ψZ . Then for n, s ∈ N∗, the joint characteristic
function of the returns X(n) and X(n+s) is given by

E
(
eiu1X(n)+iu2X(n+s)

)
= eΨ0(∆,0,iu2)+Ψ0((s−1)∆,Ψ1(∆,0,iu2),0)+Ψ0(∆,Ψ1((s−1)∆,Ψ1(∆,0,iu2),0),iu1)

×E
(
eΨ1(∆,Ψ1((s−1)∆,Ψ1(∆,0,iu2),0),iu1)y(n−1)∆

)
,

where

Ψ1(t, u1, u2) := u1e
−λt +

1− e−λt

λ
ψB(u2), Ψ0(t, u1, u2) :=

∫ t

0

ψZ(Ψ1(t, u1, u2))ds.
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PROOF. Follows from (Kallsen, 2006, Corollaries 3.2, 3.1). �

If y is chosen to be a stationary Gamma-OU process, all terms can be determined ex-
plicitly (cf. e.g. Nicolato & Venardos (2003) for similar formulas in the case where B is a
Brownian motion).

Corollary 3.34 SupposeB has characteristic exponentψB and y is a Γ( ξ
2

ω2 ,
ξ
ω2 )-OU-process.

Then for s ∈ N∗, the joint conditional characteristic function of the returns X(n) and X(n+s)

is given by

E
(
eiu1X(n)+iu2X(n+s)

)
= eΨ0(∆,0,iu2)+Ψ0((s−1)∆,Ψ1(∆,0,iu2),0)+Ψ0(∆,Ψ1((s−1)∆,Ψ1(∆,0,iu2),0),iu1)

×
(

1− ω2

ξ
Ψ1(∆,Ψ1((s− 1)∆,Ψ1(∆, 0, iu2), 0), iu1)

)−ξ2/ω2

,

where

Ψ1(t, u1, u2) := u1e
−λt +

1− e−λt

λ
ψB(u2),

Ψ0(t, u1, u2) :=

ξ2

ω2

(
ξ
ω2 log

(
ξ/ω2−Ψ1(t,u1,u2)

ξ/ω2−u1

)
+ ψB(u2)t

)
ξ/ω2 − ψB(u2)/λ

.

Here log denotes the distinguished logarithm in the sense of (Sato, 1999, Lemma 7.6).

PROOF. Since Ψ1 is C−-valued by (Duffie et al., 2003, Propositions 6.1, 6.4), the first for-
mula follows from Lemma 3.33 by inserting the analytic continuation of the characteristic
function of the Γ( ξ

2

ω2 ,
ξ
ω2 )-distribution to C−. By e.g. (Schoutens, 2003, Section 7.1.1) we

have ψZ(u) = λ(ξ2/ω2)u
ξ/ω2−u for the given stationary Gamma-OU process. Substitution into

Lemma 3.33 and integration using partial fractions yield the assertion. �

The results of using MATLAB’s symbolic toolbox to differentiate and evaluate the char-
acteristic function given in Corollary 3.34 are given in Table 3.7 below.

m1,1/250 m2,1/250 m3,1/250 m4,1/250

Data 3.5777× 10−4, 1.9400× 10−4 −8.5630× 10−7, 3.3018× 10−7

Fitted Model 3.5777× 10−4 1.9404× 10−4 −8.5680× 10−7 3.2683× 10−7

RAE < 10−11% < 0.02% < 0.06% < 1.02%

Table 3.7: Empirical moments of data, exact theoretical moments of the model fitted with
Algorithm 3.27 and the corresponding relative absolute errors.

Clearly, the first four moments are still fit very well despite the approximation errors
involved. We can also compute the exact autocorrelation and crosscorrelation functions of
the returns and squared returns . They are plotted together with the corresponding approxi-
mations and their empirical counterparts in Figure 3.8 below.

Again, the approximation errors involved turn out to be negligible compared to the vari-
ance of the corresponding estimators. Furthermore, it is clearly visible that while the positive
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autocorrelation of the returns and the positive crosscorrelation between the returns and the
squared returns are of course negative features of the model from a theoretical point of view,
the size of these effects is very small. Hence we can conclude that the second-order structure
of the data is still fit satisfactorily for practical purposes.
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Figure 3.8: Empirical (blue), approximate (red) and exact (green) autocorrelation functions
of the log returns (first), crosscorrelation function of the returns and the squared returns
(second) autocorrelation function of the squared log returns (third).

Similar formulas for the joint characteristic function of the returns can also be obtained
if y is chosen to be an IG-OU process (cf. Nicolato & Venardos (2003) for similar formulas).
In this case however, one encounters numerical problems when evaluating the derivatives of
the characteristic function near zero.

3.4.7 Estimation of the current level of volatility

We now propose an approach to estimate the current level of volatility in the case c1 6= 0.
Assuming µ = 0 and y follows an OU process, (Barndorff-Nielsen & Shephard, 2001, Sec-
tion 5.4.3) and Theorem 3.2 yield the following state-space representation of (X(n), X

2
(n)):(

X(n)

X2
(n)

)
=

(
c1(Yn∆ − Y(n−1)∆)

(Yn∆ − Y(n−1)∆) + c2
1(Yn∆ − Y(n−1)∆)2

)
+ un,
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where the vector martingale difference sequence un satisfies, for ∆ ↓ 0,

Var(u1n) = ∆ξ, Cov(u1n, u2n) = c3∆ξ + 2c1∆2
(
ω2 + ξ2

)
+O(∆3),

Var(u2n) = c4∆ξ + (4c1c3 + 2)∆2
(
ω2 + ξ2

)
+O(∆3),

and (
λ(Y(n+1)∆ − Yn∆)

y(n+1)∆

)
=

(
0 1− e−λ∆

0 e−λ∆

)(
λ(Yn∆ − Y(n−1)∆)

yn∆

)
+ wn,

with IID noise wn (uncorrelated with un) satisfying

E(wn) = ξ

(
e−λ∆ − 1 + λ∆

1− e−λ∆

)
,

Var(wn) = 2ω2

(
λ∆− 2(1− e−λ∆) + 1

2
(1− e−2λ∆) 1

2
(1− e−λ∆)2

1
2
(1− e−λ∆)2 1

2
(1− e−λ∆)

)
.

While the nonlinearity of this representation prohibits the use of the Kalman filter, it is still
possible to use the extended Kalman filter by neglecting terms of order O(∆3) or higher
once again. Despite the approximations involved, the results shown in Figure 3.9 below
suggest that it is still possible to obtain decent estimates of the volatility in this way.
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Figure 3.9: Sample paths of IG-OU process (blue) with parameters as in Examples 3.30 and
the approximate extended Kalman filter estimate obtained from the corresponding NIG-IG-
OU process with parameters as in Examples 3.30, 3.32.

As above it is of course also possible to use a particle filter if the marginal distribution
of B is known, but this is beyond our scope here.



Chapter 4

Power utility maximization in incomplete
markets

4.1 Introduction

A classical problem in Mathematical Finance is to consider the investment decisions of an
economic agent who tries to maximize her expected utility from terminal wealth in a securi-
ties market (cf. Karatzas & Shreve (1998), Korn (1997) for an overview). This is often called
the Merton problem, since it was first solved in a continuous-time setting in the seminal pa-
pers of Merton (1969, 1971, 1973) (also cf. Mossin (1968), Samuelson (1969), Hakansson
(1970) for related pioneering work in discrete time). Using methods from the theory of opti-
mal stochastic control, Merton derived a nonlinear partial differential equation, the so-called
Hamilton-Jacobi-Bellman equation, for the value function of the utility maximization prob-
lem in a Markovian Itô process setting. Moreover, he also solved this equation in closed
form for logarithmic, power and exponential utility. This control theoretic approach has
since been studied and applied extensively, as it is flexible enough to accommodate diverse
problems. In particular, a candidate solution can often be constructed by heuristic means,
even though the ensuing verification procedure is generally rather tedious.

Martingale methods represent a rather different approach to utility maximization, based
on duality relationships between optimal strategies and equivalent martingale measures. For
complete markets, where the set of equivalent martingale measures is a singleton, this ap-
proach was put forward by Pliska (1986), Karatzas et al. (1987) as well as Cox & Huang
(1989, 1991). In varying degree of generality it was shown that the marginal utility of the
optimal portfolio is — up to a constant — equal to the density of the equivalent martingale
measure. This leads to the optimal terminal payoff which in turn allows to compute the
corresponding optimal strategy.

The case of incomplete markets is considerably more involved, since there no longer
exists a unique martingale measure in this case. Utility maximization in incomplete markets
using martingale methods has been studied by He & Pearson (1991a) in finite discrete time,
by He & Pearson (1991b), Karatzas et al. (1991), Cvitanić & Karatzas (1992) in diffusion-

55
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type settings and by Foldes (1990, 1992), Kramkov & Schachermayer (1999), Schacher-
mayer (2001), Kramkov & Schachermayer (2003) in the general semimartingale case. The
key idea is to relate the optimal portfolio to the solution of a suitable dual minimization
problem. In finite discrete time, the solution to this problem is always given by an equiva-
lent martingale measure, whereas one has to pass to equivalent local martingale measures or
even supermartingale densities in more general settings.

The martingale duality approach is very general, e.g. in contrast to the stochastic control
approach no Markovian structure is required. Moreover, since it allows to employ the pow-
erful théorie générale de processus stochastiques, this method often allows for short proofs
once the underlying structure of the problem at hand is understood. On the other hand, it is
usually quite difficult to come up with candidate solutions in the first place, unless the mar-
ket is time-homogeneous (see Kallsen (2000)) or the logarithm is used as the utility function
(cf. e.g. Goll & Kallsen (2000) and the references therein).

In this chapter, we show that similar explicit results can be obtained for power utility
in quite complex models featuring jumps as well as stochastic volatility. The key idea is to
represent the optimal strategy in terms of an opportunity process as it is used in Černý &
Kallsen (2007) (henceforth ČK) for quadratic hedging problems. After presenting a brief
account of the general duality theory in Section 4.2, we introduce the notion of an oppor-
tunity process for power utility maximization in Section 4.3. We then use this concept to
characterize optimal strategies in a fairly general class of affine stochastic volatility models
in Section 4.4, using the results on affine semimartingales developed in Chapter 2. This
extends earlier results for Lévy processes (cf. Framstad et al. (1999), Kallsen (2000), Benth
et al. (2001b)), the Heston model (cf. Kraft (2005)) and the Barndorff-Nielsen-Shephard
model (cf. Benth et al. (2003)). In Section 4.5 we then go on to show that by a conditioning
argument a similar approach can also be used in quite general models whose increments are
independent conditional on some stochastic factor process. This generalizes previous results
obtained by Benth et al. (2003) and Delong & Klüppelberg (2008).

Summing up, the goal of this chapter is threefold. Firstly, we solve the power utility
maximization problem in a rather complex setup allowing for some of the stylized facts
observed in real data. Secondly, we indicate that the combination of a martingale approach,
the notion of an opportunity process, and the calculus of semimartingale characteristics turns
out to be very useful both for deriving candidate solutions and for verification. Thirdly,
we lay the foundation for the computation of utility-based prices and hedging strategies in
Chapter 6.

4.2 Existence, uniqueness and duality

Here and in the remainder of Part I of this thesis, our mathematical framework for a friction-
less market model is as follows. Fix a terminal time T ∈ R+ and a filtered probability space
(Ω,F , (Ft)t∈[0,T ], P ) in the sense of (JS, I.1.2). For ease of exposition, we also assume that
FT = F and F0 = {∅,Ω}, i.e. all F0-measurable random variables are a.s. constant.
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We consider a securities market which consists of d+1 assets, one bond and d stocks. As
is common in Mathematical Finance, we work in discounted terms. That means we suppose
that the bond has constant value 1 and denote by S = (S1, . . . , Sd) the discounted price
process of the d stocks in terms of multiples of the bond. The process S is assumed to be an
Rd-valued semimartingale. In this financial model, we consider an investor who disposes of
an initial endowment v ∈ (0,∞) and tries to maximize utility from terminal wealth.

Definition 4.1 A (self-financing) trading strategy is an Rd-valued predictable stochastic
processes φ = (φ1, . . . , φd) ∈ L(S), where φit denotes the number of shares of stock i

in the investor’s portfolio at time t. A trading strategy is called admissible for initial endow-
ment v ∈ (0,∞), if the corresponding (discounted) value process V (φ) := v + φ • S is
nonnegative. The set of admissible strategies is denoted by

Θ(v) := {φ ∈ L(S) : v + φ • S ≥ 0}.

Remark 4.2 The investors initial endowment v admits two possible interpretations. On the
one hand, one can consider it to be the initial cash position disposed of by the economic
agent. Alternatively, it can be interpreted as the initial cash position augmented by the
discounted future earnings of the investor. In view of the definition of admissibility used
here, no debts are allowed at all for the first interpretation, whereas the investor can borrow
up to the value of his future income for the second one.

We suppose that the investor’s preferences are modelled by a utility function on R+ in
the following sense.

Definition 4.3 A mapping u : (0,∞) → R is called utility function if it is strictly in-
creasing, strictly concave, differentiable, satisfies the Inada conditions limx→0 u

′(x) = ∞,
limx→∞ u

′(x) = 0 and is of reasonable asymptotic elasticity in the sense of (Kramkov &
Schachermayer, 1999, Definition 2.2), i.e. lim supx→∞

xu′(x)
u(x)

< 1.

The investors goal is to make the most of her initial endowment in the following sense.

Definition 4.4 An admissible trading strategy ϕ is called optimal for u given initial endow-
ment v, if it maximizes

φ 7→ E
(
u(VT (φ))

)
over all φ ∈ Θ(v), with the convention that E(u(VT (φ))) = −∞ if E(u(VT (φ))−) =∞.

Remark 4.5 Let us briefly discuss what happens if one does not assume that the value of the
bond is normalized to 1. In this case, the undiscounted price process Ŝ = (Ŝ0, Ŝ1, . . . , Ŝd)

of the bond and the d stocks is modelled as an Rd+1-valued semimartingale. A trading
strategy is then defined as an Rd+1-valued predictable process φ̂ ∈ L(Ŝ) and is called self-
financing for (undiscounted) initial endowment v̂ ∈ (0,∞), if its (undiscounted) value pro-
cess is given by V̂ (φ̂) := φ̂>Ŝ = v̂ + φ̂ • Ŝ. Let φ = (φ1, . . . , φd) be a self-financing
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trading strategy in the sense of Definition 4.1 above and suppose that Ŝ0, Ŝ0
− > 0. It then

follows along the lines of (Pauwels, 2007, Lemma 1.4) that there exists a unique R-valued
predictable process φ0 given by

φ0 := v + φ • S− − φ>S−,

such that φ̂ := (φ0, φ1, . . . , φd) is self-financing in the market with price process Ŝ. If
one identifies φ with φ̂, this shows that the set of self-financing strategies remains invariant
under this change of numeraire. Since Ŝ0 > 0, the same holds true for the set of admissible
strategies. Note that utility maximization in the sense of Definition 4.4 refers to discounted
utility, i.e. utility in terms of units of the reference asset 0. If the underlying undiscounted
price process Ŝ0 is deterministic, this is equivalent to maximizing expected undiscounted
utility for the utility function û : x 7→ u(x/Ŝ0

T ). For random Ŝ0 though, the two notions
typically differ.

In the following, u denotes a general utility function. Later we will only consider power
utility functions of the form u(x) = x1−p/(1 − p) for p ∈ R+\{0, 1} or alternatively loga-
rithmic utility u(x) = log(x).

Remark 4.6 For power or logarithmic utility, discounted utility u(V (φ)) and undiscounted
utility u(V̂ (φ)) only differ by a constant factor respectively by a constant, if Ŝ0 is determin-
istic. Hence working in discounted terms entails no loss of generality in this case.

Throughout, we make the following weak assumption. By the Fundamental Theorem of
Asset Pricing (cf. (Delbaen & Schachermayer, 1998, Theorem 1.1)) and (Becherer, 2001,
Proposition 2.3), it is equivalent to No Free Lunch with Vanishing Risk (NFLVR) for the
given financial market (cf. Delbaen & Schachermayer (1994, 1998) for more details).

Assumption 4.7 There exists an equivalent weak local martingale measure, i.e. a probabil-
ity measure Q ∼ P such that V (φ) is a local Q-martingale for any admissible φ.

Subject to Assumption 4.7, admissible strategies can be alternatively represented by the
numbers −ũ of shares per unit of wealth invested into each of the stocks. If the discounted
stock price S is strictly positive, one can alternatively use the fractions θ of wealth invested
into the stocks.

Lemma 4.8 Suppose Assumption 4.7 holds and let φ ∈ Θ(v). Then there exists−ũ ∈ L(S)

such that
V (φ) = vE (−ũ • S).

If additionally S > 0, there exists θ ∈ L((L (S1), . . . ,L (Sd))) such that

V (φ) = vE (θ • (L (S1), . . . ,L (Sd))).

Consequently, we may assume w.l.o.g. that φ = −ũvE (−ũ • S)− respectively φi = θivE (θ •

(L (S1), . . . ,L (Sd)))−/S
i
− for i = 1, . . . , d if S > 0.
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PROOF. Since V (φ) is a local martingale under the equivalent weak local martingale mea-
sure Q from Assumption 4.7, (JS, I.2.27) and V (φ) ≥ 0 imply V (φ) = 0 up to indistin-
guishability on the predictable set {V− = 0}. Hence we can assume w.l.o.g. that φ = 0 on
{V−(φ) = 0} as well, because we can otherwise consider φ̃ := 1{V−(φ)>0}φ instead without
changing the value process. Consequently, we can write φi = −ũiV−(φ) for some pre-
dictable process −ũ, which belongs to L(S) by (Goll & Kallsen, 2000, Proposition A.1).
This yields

V (φ) = v + φ • S = v + V−(φ) • (−ũ • S)

and hence V (φ) = vE (−ũ • S) by the definition of the stochastic exponential. For S > 0,
Assumption 4.7 implies that S is a local Q-martingale. Hence it follows from (JS, I.2.27)
and S > 0, that S− > 0 as well. Therefore we can write φi = −θiV−(φ)/Si− for predictable
processes θi ∈ L(L (Si)), where the stochastic logarithms L (Si) are well-defined for i =

1, . . . , d, since S, S− > 0. Hence

V (φ) = v + V−(φ) •
(
θ •
((

1

S1
−
• S1, . . . ,

1

Sd−
• Sd

)))
for θ = (θ1, . . . , θd) and it follows that V (φ) = vE (θ • (L (S1), . . . ,L (Sd))) by the
definition of the stochastic exponential and the stochastic logarithm. �

In Section 4.1 we referred to the general principle that a self-financing trading strategy
ϕ is optimal for terminal wealth if and only if u′(VT (ϕ)) is — up to a constant — the density
of an equivalent martingale measure. This Fundamental Theorem of Utility Maximization
only holds true literally in finite discrete time, i.e. if both Ω and the time set {0, 1, . . . , T}
are finite (cf. (Kallsen, 2002, Corollary 2.7)). For arbitrary Ω and in continuous time the
situation becomes more involved. The general semimartingale case has been thoroughly
investigated by Kramkov & Schachermayer (1999). Apart from NFLVR, they require that
the maximal expected utility in the given financial market is finite. This property is often
difficult to check even in concrete models, see Sections 4.4 and 4.5. However, it is satisfied
automatically if u is bounded from above as e.g. for u(x) = x1−p/(1− p), p ∈ (1,∞).

Assumption 4.9
U(v) := sup

φ∈Θ(v)

E(u(VT (φ))) <∞.

Remark 4.10 Even in concrete models, Assumption 4.9 is generally not a consequence of
Assumption 4.7. For example, the minimal entropy martingale measure exists for some
parametrizations of the Heston model, that nevertheless allow for infinite expected power
utility (cf. Vierthauer (2009) and Section 4.4.2 below). Conversely, there are models with
finite maximal expected utility, that nevertheless do not satisfy NFLVR (cf. e.g. (Goll &
Kallsen, 2003, Example 5.1)). The issue of whether or not the maximal expected utility
is finite is of profound importance in utility maximization. If it is finite, the optimal value
process is guaranteed to be unique due to the strict concavity of the utility function (cf.
e.g. (Kallsen, 2000, Lemma 2.5)). For infinite expected utility this uniqueness ceases to
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hold. E.g. for power or logarithmic utility, shifting half of the stock investments to the bank
account will also lead to infinite utility in this case. Consequently, two different strategies
can both be optimal, even though one of the respective value processes dominates the other
in an almost-sure sense.

Subject to Assumptions 4.7 and 4.9 we now have the following duality result due to
Kramkov & Schachermayer (1999), which is a precise statement of the Fundamental Theo-
rem of Utility Maximization in the general semimartingale case.

Theorem 4.11 Let u be a utility function, v ∈ (0,∞) and suppose Assumptions 4.7 and 4.9
are satisfied. Then an optimal strategy exists and the corresponding value process is unique.
Moreover, for any admissible strategy ϕ the following are equivalent:

1. There exists a positive supermartingale Z such that ZV (φ) is a supermartingale for
any admissible φ, ZV (ϕ) is a martingale and ZT = u′(VT (ϕ)).

2. ϕ is optimal for u and initial endowment v ∈ (0,∞).

PROOF. Existence and uniqueness as well as the implication 2. ⇒ 1. are established in
(Kramkov & Schachermayer, 1999, Theorem 2.2).

1.⇒ 2. Let φ be any competing admissible strategy. Since u is concave, we have

u(VT (φ)) ≤ u(VT (ϕ)) + u′(VT (ϕ))(VT (φ)− VT (ϕ)).

As u′(VT (ϕ))VT (φ) and u′(VT (ϕ))VT (ϕ) coincide with the terminal values of the super-
martingale ZV (φ) and the martingale ZV (ϕ), respectively, this proves the assertion. �

Remark 4.12 By (Kramkov & Schachermayer, 1999, Theorem 2.2) the supermartingale
Z solves a dual minimization problem and is therefore referred to as the dual minimizer.
Subject to the assumptions of Theorem 4.11 the optimal value process V (ϕ) and the dual
minimizer Z are both strictly positive (cf. (Kramkov & Schachermayer, 1999, Theorem 2.2).

4.3 The opportunity process in power utility maximization

For power utility the dependence between the initial endowment v and the corresponding
optimal strategy and dual minimizer can easily be quantified. Moreover, the maximal ex-
pected utility can be determined explicitly as well.

Corollary 4.13 Let u = x1−p/(1 − p), p ∈ R+\{0, 1} be a power utility function and
assume Assumption 4.7 is satisfied. Then for any strategy ϕ ∈ Θ(1), i.e. 1 + ϕ • S ≥ 0, the
following are equivalent:

1. There exists a positive supermartingale Z such that Z(1+φ • S) is a supermartingale
for any φ ∈ Θ(1), Z(1 + ϕ • S) is a martingale and ZT = (1 + ϕ • ST )−p.
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2. For u and initial endowment v ∈ (0,∞), the strategy vϕ is optimal, the corresponding
maximal expected utility is finite and the dual minimizer is given by v−pZ.

Moreover, the maximal expected utility is given by U(v) = v1−p

1−p Z0 in this case.

PROOF. 1.⇒ 2. As in the proof of Theorem 4.11 it follows that ϕ is optimal for u and initial
endowment 1. Since φ ∈ Θ(v) implies φ/v ∈ Θ(1) and vice versa, this shows that for any
φ ∈ Θ(v), we have

E(u(VT (φ)) = v1−pE(u(1 + φ/v • ST )) ≤ v1−pE(u(1 + ϕ • ST )) = E(u(VT (vϕ))),

which shows that vϕ is optimal for u and initial endowment v. Moreover, as Z(1 + ϕ • S)

is a martingale with terminal value ZT (1 + ϕ • ST ) = (1 + ϕ • ST )1−p, we obtain

U(v) = E(u(VT (ϕ))) = v1−pE(u(1 + ϕ • ST )) =
v1−p

1− p
Z0 <∞.

Since u′(VT (vϕ)) = v−pu′(1 + ϕ • ST ), the formula for the dual minimizer is obvious.
2. ⇒ 1. Since vϕ is optimal, it follows as above that ϕ is optimal for u and initial

endowment 1 with finite expected utility. Hence Assumption 4.9 holds and the claim follows
from Theorem 4.11 for v = 1. �

Remark 4.14 For power utility u(x) = x1−p/(1 − p), p ∈ R+\{0, 1}, the process Z/Z0

minimizes the Lq-distance E(−sgn(q)(YT )q) for q := 1− 1
p
∈ (−∞, 1) over the set

Y (1) := {Y ≥ 0 : Y0 = 1 and Y V (φ) is a supermartingale for all admissible φ},

which in particular contains the densities of all equivalent martingale measures. If Z is
actually a martingale, then Z/Z0 represents the density process of the so-called q-optimal
martingale measure Q0, whose terminal value minimizes the Lq-distance over the densities
of equivalent martingale measures in this case.

Since u′ and the optimal value process V (ϕ) are strictly positive (cf. Remark 4.12) and
the dual minimizer Z has terminal value u′(VT (ϕ)), we can represent the supermartingale
Z as Z = Lu′(V (ϕ)) for some strictly positive semimartingale L with LT = 1. Corollary
4.13 then reads as follows.

Proposition 4.15 Let u(x) = x1−p

1−p for some p ∈ R+\{0, 1} and v ∈ (0,∞). Fix an admis-
sible strategy ϕ and suppose that Assumption 4.7 holds. Then the following are equivalent.

1. There exists a strictly positive semimartingale L with LT = 1 such that LV (ϕ)−pV (φ)

is a σ-supermartingale for any admissible φ and LV (ϕ)1−p is a martingale.

2. ϕ is optimal for u and initial endowment v with finite expected utility.

The corresponding maximal expected utility is given by U(v) = v1−p

1−p L0.
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PROOF. Follows immediately from Corollary 4.13 by inserting L := ZV (ϕ)p and using that
any nonnegative σ-supermartingale is a supermartingale by Proposition A.9. �

Remark 4.16 Let S be strictly positive. Then this supermartingale criterion allows to in-
corporate convex constraints into the utility maximization problem. More specifically, let
C ⊂ Rd be some nonempty convex set and define

Θ(v, C) := {φ ∈ Θ(v) : V (φ) = vE (θ • L (S)) with some C-valued θ}.

The most prominent example is the set Θ(v, [0, 1]d) of admissible strategies involving nei-
ther shortselling and nor leverage. Suppose there exists a trading strategy ϕ ∈ Θ(v, C) and
a positive semimartingale L with LT = 1, such that LV (ϕ)−pV (φ) is a supermartingale for
all φ ∈ Θ(v, C) and such that LV (ϕ)1−p is a martingale. Then it follows literally as in the
proof of 1. ⇒ 2. in Theorem 4.11 that ϕ maximizes expected utility from terminal wealth
over all φ ∈ Θ(v, C).

The idea to state optimality in terms of a process L as in Corollary 4.15 is inspired by a
similar approach of ČK in the context of quadratic hedging, where L is called opportunity
process. It makes sense to use the same terminology here. Indeed, we have

E(u(VT (ϕ))|Ft) =
1

1− p
E(LTVT (ϕ)1−p|Ft)

=
1

1− p
LtVt(ϕ)1−p (4.1)

and hence

Lt = (1− p)E
(
u

(
VT (ϕ)

Vt(ϕ)

)∣∣∣∣Ft

)
. (4.2)

The optimal strategy ϕ has value Vt(ϕ) at time t. One easily verifies that on [[t, T ]], ϕ is the
Vt(ϕ)-fold of the investment strategy φ which starts with initial endowment 1 at time t and
maximizes the expected utility at T . In view of (4.2) this means that Lt stands — up to a
factor 1− p — for the maximal utility from trading between t and T with initial endowment
1. The parallel statement for quadratic utility inspired the term opportunity process in ČK.
Moreover, (4.1) means that LV (ϕ)1−p/(1 − p) corresponds to the value function used in
stochastic control theory.

In view of Corollary 4.15 our approach for finding optimal strategies consists of three
steps. The first is to make an appropriate ansatz for L and ϕ up to some yet unknown param-
eters or deterministic functions. In view of Lemma A.8 the σ-supermartingale respectively
σ-martingale properties of LV (ϕ)−pV (φ) and LV (ϕ)1−p can be viewed as drift conditions,
which are used to determine the unknown parameters in a second step. Finally, one verifies
that the obtained candidate processes L and ϕ indeed meet all conditions of Proposition
4.15, in particular that the σ-martingale LV (ϕ)1−p is in fact a true martingale.

Remark 4.17 Opportunity processes can also be used for the computation and verification
of optimal strategies for exponential utility u(x) = 1−exp(−px), p ∈ (0,∞) (cf. Vierthauer
(2009) for more details).
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4.4 Solution in affine stochastic volatility models

In this section we consider a single risky asset (i.e. d = 1), but the results extend to mul-
tiple stocks in a straightforward manner. For the application of the optimality criterion in
Proposition 4.15 two problems have to be solved. First, one needs an appropriate ansatz
for the optimal strategy ϕ and the opportunity process L. Having chosen parameters such
that the drift rates of LV (ϕ)−pV (φ) and LV (ϕ)1−p are nonpositive respectively vanish, one
must then establish that the σ-martingale LV 1−p is a true martingale. Both problems can be
solved in a number of affine stochastic volatility models by using the results on exponen-
tially affine martingales established in Chapter 2.

Let (y,X) be an affine stochastic volatility model such that the discounted stock price
S = S0E (X) is strictly positive. In the case where X is a Lévy process, the optimal
strategy is known to invest a constant fraction of current wealth in the risky security, i.e.
ϕt = η Vt−(ϕ)

St−
for some constant η ∈ R (cf. Kallsen (2000)). We replace the constant η

by some deterministic function η ∈ L(X) for the more general class of models considered
here. This leads to

V (ϕ) = v +

(
η
V−(ϕ)

S−

)
• S = v + V−(ϕ) • (η • X) = vE (η • X). (4.1)

Since η is assumed to be deterministic, the processes (y,L (V (ϕ)−p)), (y,L (V (ϕ)1−p))

turn out to be time-inhomogeneous affine semimartingales in the sense of Chapter 2. We
guess that the opportunity processL is of exponentially affine form as well, more specifically

Lt = exp(α0(t) + α1(t)yt)

with deterministic functions α0, α1 : [0, T ]→ R. In order to have LT = 1 we need α0(T ) =

α1(T ) = 0. Up to the concrete form of η, α0, α1, we have specified candidate processes ϕ, L.
The functions are chosen such that the required σ-martingale respectively σ-supermartingale
properties hold (cf. the proof of Theorem 4.20). In order to show that the σ-martingale
LV (ϕ)1−p is a true martingale, we use the results developed in Section 2.4, which state that
exponentially affine σ-martingales are martingales under weak assumptions.

Remark 4.18 In the literature, the asset price is sometimes modelled as an ordinary expo-
nential St = S0 exp(Xt) with some bivariate affine process (y,X). In this case we have
St = S0E (X̃t) with some bivariate affine process (y, X̃) (cf. Lemma 2.6). Hence we are in
the setup considered here.

The optimality criterion Proposition 4.15 is necessary and sufficient for models satis-
fying NFLVR and admitting only finite maximal expected utility. However, the present
approach of computing the optimal strategy only works if the optimal strategy ϕ and the
opportunity process L are of the form proposed above. It turns out that this is the case only
if the dynamics of X are proportional to the volatility y with no additional constant part.
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Assumption 4.19 The differential characteristics (b(y,X), c(y,X), K(y,X), I) of (y,X) are of
the form

b(y,X) =

(
β1

0 + β1
1y−

β2
1y−

)
, c(y,X) =

(
γ11

1 γ12
1

γ12
1 γ22

1

)
y−,

K(y,X)(G) =

∫
1G(z1, 0)κ0(dz) +

∫
1G(0, x2)κ1(dx)y−, ∀G ∈ B2,

for given admissible Lévy-Khintchine triplets (βi, γi, κi), i = 0, 1 on R2.

For models satisfying NFLVR, we then have the following general result.

Theorem 4.20 Let u(x) = x1−p/(1 − p), p ∈ R+\{0, 1} and v ∈ (0,∞). Suppose As-
sumptions 4.7 and 4.19 hold and there exist mappings η, α1 ∈ C1([0, T ],R) such that the
following conditions are satisfied up to a dt-null set on [0, T ].

1. κ1({x ∈ R2 : 1 + η(t)x2 ≤ 0}) = 0.

2.
∫
|x2(1 + η(t)x2)−p − h(x2)|κ1(dx) <∞.

3.

β2
1 + γ12

1 α1(t)− pγ22
1 η(t) +

∫ (
x2

(1 + η(t)x2)p
− h(x2)

)
κ1(dx) ≥ 0

if there exists θ < η(t) such that κ1({x ∈ R2 : 1 + θx2 < 0}) = 0 and

β2
1 + γ12

1 α1(t)− pγ22
1 η(t) +

∫ (
x2

(1 + η(t)x2)p
− h(x2)

)
κ1(dx) ≤ 0

if there exists θ > η(t) such that κ1({x ∈ R2 : 1 + θx2 < 0}) = 0.

4. α1(T ) = 0 and

α′1(t) =(p− 1)η(t)β2
1 +

p(1− p)γ22
1

2
η2(t) + ((p− 1)γ12

1 η(t)− β1
1)α1(t)− γ11

1

2
α2

1(t)

−
∫ (

(1 + η(t)x2)1−p − 1− (1− p)η(t)h(x2)
)
κ1(dx)

5.
∫ T

0

∫
{z1>1} e

α1(t)z1κ0(dz)dt <∞.

Then ϕt := η(t)vE (η • X)t−/St− is optimal for u and initial endowment v with value
process V (ϕ) = vE (η • X). The corresponding maximal expected utility is finite and given
by E(u(VT (ϕ))) = v1−p

1−p L0 with the opportunity process

Lt = exp (α0(t) + α1(t)yt) where α0(t) :=

∫ T

t

ψ
(y,X)
0 (α1(s), 0)ds.
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PROOF. As in the proof of Lemma 4.8 it follows that V (ϕ) = vE (η • X). Hence

E

(∑
t≤T

1(−∞,0](1 + η(t)∆Xt)

)
= E

(
1(−∞,0](1 + ηx) ∗ µXT

)
= E

(
1(−∞,0](1 + ηx) ∗ νXT

)
= E

(∫ T

0

∫
1(−∞,0](1 + η(t)x2)κ1(dx)ys−ds

)
= 0

by (JS, II.1.8) and Condition 1. Consequently P (∃t ∈ [0, T ] : η(t)∆Xt ≤ −1) = 0. By (JS,
I.4.61) this implies that V (ϕ) = vE (η • X) > 0. Therefore ϕ is admissible.

Notice that Condition 2 and a second order Taylor expansion show that all integrals in
Conditions 3 and 4 are well-defined. Moreover, α0 is well-defined and in C1([0, T ]) as well
by Condition 5.

Let φ be any competing admissible strategy. In view of Lemma 4.8, the corresponding
value process can be written as V (φ) = vE (θ • X) for some predictable process θ. The
admissibility of θ implies θt∆Xt ≥ −1 which in turn yields

κ1({x ∈ R2 : 1 + θtx2 < 0}) = 0 (4.2)

outside some dP ⊗ dt-null set. Since the identity process It = t is continuous and of finite
variation, ∂(y,X, I) are given by

b(y,X,I) =

β1
0 + β1

1y−
β2

1y−
1

 , c(y,X,I) =

γ11
1 γ12

1 0

γ12
1 γ22

1 0

0 0 0

 y−,

K(y,X,I)(G) =

∫
1G(z1, 0, 0)κ0(dz) +

∫
1G(0, x2, 0)κ1(dx)y− ∀G ∈ B3.

The fundamental theorem of calculus and integration by parts in the sense of (JS, I.4.45)
yield

α0(I) + α1(I)y − α0(0)− α1(0)y0 = (α′0(I) + α′1(I)y) • I + α1(I) • y,

therefore we can compute the differential characteristics of (y, V (ϕ), V (φ), L) in the fol-
lowing steps:

∂

 y

X

I

 Prop. A.3−→ ∂


y

V (ϕ)

V (φ)

α0(I) + α1(I)y

 Prop. A.4−→ ∂


y

V (ϕ)

V (φ)

L

 .

Since V (ϕ) > 0, (bLV (ϕ)−pV (φ), cLV (ϕ)−pV (φ), KLV (ϕ)−pV (φ)) can now be derived by applying
Proposition A.4. In particular, for G ∈ B, we have

KLV (ϕ)−pV (φ)(G) =

∫
1G
(
L−V−(ϕ)−pV−(φ) (eα1z1 − 1)

)
κ0(dz)

+

∫
1G

(
L−V−(ϕ)−pV−(φ)

(
1 + θx2

(1 + ηx2)p
− 1

))
κ1(dx)y−.
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From Conditions 2 and 5 it follows that∫
{|x|>1}

|x|KLV (ϕ)−pV (φ)(dx) <∞ (4.3)

holds outside some dP ⊗ dt-null set. Moreover, by inserting the definition of α0 and the
formula for α′1 from Condition 4, we obtain

b
LV (ϕ)−pV (φ)
t =

∫
(h(x)− x)K

LV −pV (φ)
t (dx) + Lt−Vt−(ϕ)−pVt−(φ)yt−(θt − η(t))

×
(
β2

1 + γ12α1(t)− pγ22η(t) +

∫ (
x2

(1 + η(t)x2)p
− h(x2)

)
κ1(dx)

)
after tedious but straightforward calculations. In view of Condition 3 and (4.2) this yields

bLV (ϕ)−pV (φ) +

∫
(x− h(x))KLV (ϕ)−pV (φ)(dx) ≤ 0,

outside some dP ⊗ dt-null set, which combined with (4.3) shows that LV (ϕ)−pV (φ) is a
σ-supermartingale by Lemma A.8. Moreover, by setting φ = ϕ we obtain that LV (ϕ)1−p is
a σ-martingale. Once more applying Proposition A.3, it follows that (y,L (LV (ϕ)1−p)) is a
bivariate time-inhomogeneous affine semimartingale relative to the time-dependent triplets

β0(t) =

(
β1

0∫
(h(eα1(t)z1 − 1)− (eα1(t)z − 1))κ0(dz)

)
, γ0(t) = 0,

κ0(t, G) =

∫
1G(z1, e

α1(t)z1 − 1)κ0(dz), ∀G ∈ B2,

β1(t) =

(
β1

1∫
(h((1 + η(t)x2)1−p − 1)− ((1 + η(t)x2)1−p − 1))κ1(dx)

)
,

γ1(t) =

(
γ11

1 γ11
1 α3(t) + (1− p)γ12

1 η(t)

γ11
1 α1(t) + (1− p)γ12

1 η1(t) γ11
1 α

2
1(t) + 2(1− p)γ12

1 α1(t)η(t) + (1− p)2γ22
1 η

2(t)

)
,

κ1(t, G) =

∫
1G(0, (1 + η(t)x2)1−p − 1)κ1(dx), ∀G ∈ B2.

The martingale property of LV (ϕ)1−p can now be established by verifying the sufficient
conditions of Theorem 2.9. It is easy to see that the triplets are strongly admissible in the
sense of Definition 2.2. Indeed, the continuity conditions follow from the continuity of η
and α1 as well as dominated convergence. The remaining assumptions of Theorem 2.9 are
also satisfied as can be easily checked. Hence LV (ϕ)1−p is a martingale and the assertion
follows from Corollary 4.15. �

Remarks.

1. Condition 1 is needed to ensure that the value process V (ϕ) is strictly positive. In
models where the asset price can jump to arbitrary positive values, it rules out short-
selling and leverage for the optimal strategy. Conditions 2 and 5 ensure that α0 and
the integrals in Conditions 3, 4 are well-defined. The crucial Conditions are 3 and 4
which represent η and α1 as the solution to a differential algebraic inequality.
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2. Obviously, Condition 3 is satisfied in particular if

β2
1 + γ12α1(t)− pγ22η(t) +

∫ (
x2

(1 + η(t)x2)p
− h(x2)

)
κ1(dx) = 0

holds outside some dt-null set. In this case it follows by inserting the admissible
strategies φ = 1 and φ = 0 that both LV (ϕ)−p and LV (ϕ)−pS are σ-martingales.
As in the proof of Theorem 4.20 it follows that they are also exponentials of time-
inhomogeneous affine processes and hence true martingales by Theorem 2.9. This
shows that Z := LV (ϕ)−p

L0v−p
is the density process of the q-optimal equivalent martingale

measure in this case. In particular, this implies that the model under consideration
satisfies the NFLVR Assumption 4.7. However, this condition is often not general
enough in concrete applications (cf. Examples 4.24 and 4.28 below).

3. In general, it is not clear whether or not the differential algebraic inequalities for η
and α1 admit a solution. In Sections 4.4.2, 4.4.3 below it will turn out that in concrete
models, they typically admit a solution if the maximal expected utility in the model
is finite, in particular when u is bounded from above for p ∈ (1,∞). Similarly, for
exponential utility a solution to a similar system of equations is shown to exist under
weak assumptions in Vierthauer (2009). This leads us to conjecture that an analogous
result holds for power utility, if the maximal utility is finite. However, a thorough
investigation of this issue is beyond our scope here.

4. Let C ⊂ R be convex. If one considers the constrained problem of maximizing
expected utility over the set Θ(v, C) from Remark 4.16, η has to be C-valued. On the
other hand, one can replace Condition 3 with the weaker requirement

3’. Suppose that

β2
1 + γ12

1 α1(t)− pγ22
1 η(t) +

∫
x2

(1 + η(t)x2)p
− h(x2)κ1(dx) ≥ 0

if there exists θ ∈ (−∞, η(t)) ∩ C s.t. κ1({x ∈ R2 : 1 + θx2 < 0}) = 0 and

β2
1 + γ12

1 α1(t)− pγ22
1 η(t) +

∫
x2

(1 + η(t)x2)p
− h(x2)κ1(dx) ≤ 0

if there exists θ ∈ (η(t),∞) ∩ C s.t. κ1({x ∈ R2 : 1 + θx2 < 0}) = 0.

We now consider some examples where the differential algebraic inequality in Theorem
4.20 admits a solution.

4.4.1 Exponential Lévy models

Suppose the asset price is modelled as a strictly positive process of the form S = S0E (X)

for some R-valued Lévy process X with Lévy-Khintchine triplet (bX , cX , KX).
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Put differently, this means that the volatility process y is constant and equal to one, which
in turn implies that ∂(y,X) can be written as

b(y,X) =

(
0

bX

)
y, c(y,X) =

(
0 0

0 cX

)
y, K(y,X)(G) =

∫
1G(0, x)KX(dx)y,

for all G ∈ B2. In this case, Conditions 1, 2 and 3 in Theorem 4.20 neither depend on α1

nor t. Moreover, if there exists η ∈ R satisfying these conditions, α1 is given as the solution
to a constant ODE α′1 = a for suitable a ∈ R by Condition 4.

Corollary 4.21 Let u(x) = x1−p/(1 − p), p ∈ R+\{0, 1} and v ∈ (0,∞). Suppose As-
sumption 4.7 is satisfied and there exists η ∈ R such that the following conditions hold.

1. KX({x ∈ R : 1 + ηx ≤ 0}) = 0.

2.
∫
|(x(1 + ηx)−p − h(x)|KX(dx) <∞.

3.

bX − pcXη +

∫ (
x

(1 + ηx)p
− h(x)

)
KX(dx) ≥ 0

if there exists θ < η such that KX({x ∈ R : 1 + θx < 0}) = 0 and

bX − pcXη +

∫ (
x

(1 + ηx)p
− h(x)

)
KX(dx) ≤ 0

if there exists θ > η such that KX({x ∈ R : 1 + θx < 0}) = 0.

Then ϕt := ηvE (ηX)t−/St− is optimal for u and initial endowment v ∈ (0,∞) with value
process V (ϕ) = vE (ηX). Moreover, the corresponding maximal expected utility is finite
and given by E(u(VT (ϕ))) = v1−p

1−p L0 for the opportunity process Lt = exp(α1(t)) with

α1(t) = (t− T )

×
(

(p− 1)bXη +
p(1− p)

2
cXη2 −

∫
(1 + ηx)1−p − 1− (1− p)ηh(x)KX(dx)

)
.

PROOF. Follows immediately from Theorem 4.20. �

Remarks.

1. In view of (Cont & Tankov, 2004, Proposition 9.9) and (Kallsen, 2004, Lemma 3.3),
the NFLVR Assumption 4.7 is satisfied for all Lévy processes X that are neither a.s.
increasing nor a.s. decreasing.

2. The optimal strategy is myopic, i.e. only depends on the local dynamics of X respec-
tively S. If the Lévy process X is continuous, i.e. a Brownian motion with drift,
Condition 1 and 2 are obviously always satisfied. Moreover, Condition 3 yields that
the classical Merton solution

η =
bX

pcX
=

bX

pc̃X
.
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is optimal in this case, i.e. the optimal fraction η of stocks is proportional to the in-
finitesimal drift rate bX , the inverse of the infinitesimal variance c̃X and the inverse of
the investor’s risk aversion p. If X has jumps, it is still optimal to invest a constant
fraction η in the stock, where the optimal value now has to be determined by finding
the root of a real-valued function. If h(x) = x can be used as the truncation function
and Condition 3 is satisfied with equality, a second-order Taylor expansion yields that

x

(1 + ηx)p
− x = −pηx2 + o(x2)

for small x and hence

η ≈ bX

p(cX +
∫
x2KX(dx))

=
bX

pc̃X

if most of the mass of the Lévy measure K is located in the vicinity of 0. This
shows that the Black-Scholes strategy can serve as a good proxy for the true optimal
strategy, if the frequency of large jumps is sufficiently small (cf. Example 4.24 below
for a specific parametric example).

3. The existence of an optimal investment strategy with finite expected utility only de-
pends on the model parameters (bX , cX , KX) and the investor’s risk aversion p, but
not on the time horizon T . This will turn out to be different for stochastic volatility
models (cf. Sections 4.4.2 and 4.4.3 below).

4. As already pointed out by Samuelson (1969), the fact that the same fraction of wealth
is optimal for all time horizons T ∈ R+ seems to contradict the common wisdom that
it is beneficial to hold a higher percentage of stocks in the long-run than for short-
term investments. However, Corollary 4.21 can be reconciled with this if the second
interpretation of the initial endowment v from Remark 4.2 is used: Since the investor
typically receives more future earnings over a longer time-horizon, she will take this
into account by using a higher v to calculate her investment decision. By Corollary
4.21, the optimal fraction of stocks relative to the augmented initial endowment re-
mains the same, but the optimal fraction of stocks relative to the investors initial cash
position increases for a longer time horizon in this case.

The following Proposition shows that the Conditions of Corollary 4.21 are satisfied for
many specific Lévy processes X considered in the literature.

Proposition 4.22 Suppose that S = S0E (X) for a Lévy process X with Lévy-Khintchine
triplet (bX , cX , KX) satisfying

1. KX((−1, b)), KX((a,∞)) > 0 for any b ∈ (−1, 0) and a ∈ (0,∞).

2.
∫∞
ε
xKX(dx) <∞ and

∫ −ε
−1

−x
(1+x)p

KX(dx) <∞ for some ε ∈ (0, 1).



70 Chapter 4. Power utility maximization in incomplete markets

Then there exists a unique η ∈ [0, 1] such that the conditions of Corollary 4.21 are satisfied.
If S = S0 exp(X̃) for some Lévy process X̃ with Lévy-Khintchine triplet (b

eX c eX , K eX) the
statement remains true if Condition 1 and 2 are replaced with

1’. K eX((−∞,−a)), K
eX((a,∞)) > 0 for any a ∈ (0,∞).

2’.
∫∞
ε
exK

eX(dx) <∞ and
∫ −ε
−∞ e

−pxK
eX(dx) <∞ for some ε > 0.

PROOF. We begin with the first assertion. By (Cont & Tankov, 2004, Proposition 9.9) and
(Sato, 1999, Theorem 21.5), Condition 1 implies that the NFLVR Assumption 4.7 holds.
Let φ be any admissible strategy. Then by Lemma 4.8 we have V (φ) = vE (θ • X) for some
predictable process θ. Admissibility of φ implies θ∆X ≥ −1 and hence KX({x ∈ R :

1 + θx < 0}) = 0. In view of Condition 1, this yields that θ is [0, 1]-valued. Consequently,
Condition 1 of Corollary 4.21 holds for θ. Moreover, since θ takes values in [0, 1], it follows
from Condition 2 that Condition 2 of Corollary 4.21 is satisfied for θ as well. Hence

f : [0, 1]→ R; θ 7→ bX − pcXθ +

∫ (
x

(1 + θx)p
− h(x)

)
KX(dx)

is well-defined. θ 7→ x(1 + θx)−p − h(x) is strictly decreasing on [0, 1], by Condition 1 the
same holds for f . Hence there exists a unique η ∈ [0, 1] such that Condition 3 of Corollary
4.21 is satisfied. The second assertion now follows from (Kallsen, 2000, Lemma 4.2). �

Remark 4.23 Conditions 1 respectively 1′ in Proposition 4.22 mean that the asset price S
can jump to arbitrary positive values. In particular, 1′ is satisfied for most Lévy processes
typically considered in the literature, as e.g. the models of Merton (1976) and Kou (2002)
as well as NIG and VG processes, since all of these have unbounded positive and negative
jumps. Condition 2′ then amounts to checking whether the Lévy measure K eX has sufficient
exponential integrability in the tails.

Corollary 4.21 is a generalization of (Kallsen, 2000, Theorem 3.2) to the case where
the dual minimizer is not necessarily an equivalent martingale measure (cf. Hurd (2004)
for similar results). This effect can arise for realistic parameter values as is exemplified by
the following example, which also considers the impact of jumps on the investors portfolio
choice (also cf. Benth et al. (2001a) and Øksendal & Sulem (2005) for a similar discussion).

However, it is important to note here and in the other examples for portfolio optimization
below that the actual numbers should be interpreted with caution. This is because they are
typically proportional to the drift rate of the asset under consideration, which can only be
estimated reliably over prohibitively long time series. For this reason, one should be careful
when making quantitative rather than qualitative interpretations here.

Example 4.24 Let S = S0 exp(X̃) for some Lévy process X̃ with Lévy-Khintchine triplet
(b

eX , c eX , K eX). Then S is strictly positive and by (Kallsen, 2000, Lemma 4.2) we have
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S = S0E (X) for the Lévy process X with Lévy-Khintchine triplet (bX , cX , KX) given by

bX = b
eX +

c
eX

2
+

∫
(h(ex − 1)− h(x))K

eX(dx), cX = c
eX , (4.4)

KX(G) =

∫
1G(ex − 1)K

eX(dx), ∀G ∈ B. (4.5)

First consider the Black-Scholes model, i.e. let (b
eX , c eX , K eX) = (µ, σ2, 0) for µ ∈ R and

σ > 0. As for parameters, we choose µ = 0.0438 and σ2 = 0.0485 so as to fit the first
two moments of the DAX time series from Chapter 3. By inserting into Corollary 4.21, we
obtain that

ηBS =
bX

pcX
=
µ+ σ2/2

pσ2
=

1.404

p

represents the optimal fraction of wealth to be invested into the stock. Therefore we have
ηBS = 2.808 for p = 1

2
, ηBS = 0.702 for p = 2 and ηBS = 0.00936 for p = 150. Notice

that the first two choices of p most likely correspond to initial endowment without future
income, whereas p = 150 seems more suitable if considerable future earnings have to be
factored in. Now denote by K1 the modified Bessel function of the third kind with index 1

and consider an NIG process with Lévy-Khintchine triplet

(b
eX , c eX , K eX) =

(
δ +

ϑβ√
α2 − β2

, 0,
αϑ

π
eβx

K1(α|x|)
|x|

dx

)
(4.6)

relative to the truncation function h(x) = x which can be used since X is a special semi-
martingale by Proposition A.2 and (JS, II.2.29). The following parameters are obtained by
matching the first four moments to the discounted DAX time series considered in Chapter
3:

α = 53.0, β = −5.09, ϑ = 2.53, δ = 0.288.

SinceK eX is absolutely continuous w.r.t. the Lebesgue measure with strictly positive density,
Condition 1′ of Proposition 4.22 is satisfied. Moreover,

∫
{|x|>1} exp(mx)K

eX(dx) is finite
for −47.8 ≤ m ≤ 58, hence Condition 2′ of Proposition 4.22 holds for p = 2 and p = 1

2
.

Consequently, there exists a unique ηNIG ∈ [0, 1] such that Condition 3 of Corollary 4.21 is
satisfied. Using the MATLAB solver fsolve, we obtain that for p = 2 both inequalities
in Condition 3 are satisfied with equality for ηNIG = 0.701, which therefore represents the
optimal fraction of wealth. Note that while this investment is marginally more prudent than
for the Black-Scholes model, the difference is negligible compared to the variance of the
moment estimators for the model parameters. Now let p = 1/2. Then it turns out that

bX +

∫ (
x

(1 + θx)p
− x
)
KX(dx) > 0

for all θ ∈ [0, 1]. In this case, (Kallsen, 2000, Theorem 3.2) is not applicable, but Corollary
4.21 yields that ηNIG = 1 is optimal, i.e. the investor buys the largest admissible fraction
of stocks. For p = 150 the conditions of Proposition 4.22 are not satisfied, but one easily
verifies that the conditions of Corollary 4.21 are satisfied for ηNIG = 0.00936 ∈ (0, 1).



72 Chapter 4. Power utility maximization in incomplete markets

Remark 4.25 These results indicate that as long as neither leverage nor shortselling is op-
timal, the optimal strategy in the Black-Scholes model serves as an excellent proxy for
the true optimal investment strategy in pure jump Lévy models. This resembles results of
Hubalek et al. (2006) on quadratic hedging strategies, where the Black-Scholes hedging
strategy turns out to be very similar to the variance-optimal hedge in Lévy models with
jumps. When leverage or shortselling is optimal in the Black-Scholes model, the optimal
strategy for a Lévy model with unbounded jumps seems to resemble the optimal strategy for
the constrained problem without shortselling or leverage, i.e. C = [0, 1] in Remark 4.16.

4.4.2 Heston (1993)

If both y and X in Theorem 4.20 are chosen to be continuous (i.e. κ0 = κ1 = 0), the
differential characteristics (b(y,X), c(y,X), K(y,X), I) of (y,X) can be written as

b(y,X) =

(
ϑ− λy
δy

)
, c(y,X) =

(
σ2 σ%

σ% 1

)
y, K(y,X) = 0,

with constants ϑ ≥ 0, λ, δ, σ, %. Hence the most general class of continuous affine stochastic
volatility models that fit the structure condition of Theorem 4.20 is given by the Heston
model from Section 2.3.1 with constant drift rate µ = 0.

In this case, Conditions 1, 2 and 5 of Theorem 4.20 are satisfied, since κ0 = κ1 = 0.
Moreover, Condition 3 always determines η as a function of α1. Insertion into Condition 4
then leads to a Riccati ODE of the form α′1(t) = aα2

1(t) + bα1(t) + c for suitable a, b, c ∈ R.
Hence the existence of a C1([0, T ])-solution α1 (and in turn of an optimal strategy ϕt =

η(t)Vt(ϕ)/St) depends both on the model parameters and the time horizon T .

Corollary 4.26 Let u(x) = x1−p

1−p , p ∈ R+\{0, 1} and set

a := −σ
2

2
− 1− p

2p
σ2%2, b := λ− 1− p

p
σ%δ, c := −1− p

2p
δ2,

D := b2 − 4ac = λ2 − 1− p
p

(
2λσ%δ + σ2δ2

)
.

Case 1: If D > 0, define

α1(t) := −2c
e
√
D(T−t) − 1

e
√
D(T−t)(b+

√
D)− b+

√
D
.

Case 2: If D = 0 and either b > 0 or b < 0, T < −2/b, define

α1(t) :=
1

a(T − t+ 2/b)
− b

2a
.

Case 3: If D < 0 and either b > 0, T < 2√
−D (π − arctan(

√
−D
b

)), or b = 0, T < π√
−D , or

b < 0, T < 2√
−D arctan(

√
−D
−b ), define

α1(t) := −2c
sin(

√
−D
2

(T − t))
√
−D cos(

√
−D
2

(T − t)) + b sin(
√
−D
2

(T − t))
.
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Then ϕt := η(t)vE (η • X)t/St with

η(t) :=
δ + σ%α1(t)

p
.

is optimal for u and initial endowment v ∈ (0,∞) with value process V (ϕ) = vE (η • X).
The corresponding maximal expected utility is finite and given by E(u(VT (ϕ))) = v1−p

1−p L0

for the opportunity process

Lt = exp

(
ϑ

∫ T

t

α1(s)ds+ α1(t)yt

)
. (4.7)

PROOF. Conditions 1, 2 and 5 of Theorem 4.20 are satisfied, because κ0 = κ1 = 0. Now
notice that the denominator in the definition of α3 does not vanish on [0, T ] in all three cases.
Thus α1 belongs to C∞([0, T ],R). In particular, α0 is a well defined and in C∞([0, T ],R)

as well. It now follows by insertion that Condition 3 of Theorem 4.20 holds with equality.
Moreover, Condition 4 is satisfied, too, because in view of (Bronstein et al., 2001, 21.5.1.2)
and |b| >

√
D for D > 0 or by direct calculations, α3 solves the following terminal value

problem:
α′1(t) = aα2

1(t) + bα1(t) + c, α1(T ) = 0. (4.8)

The assertions now follow from Theorem 4.20. �

Remarks.

1. For p ∈ (0, 1), the solution to Case 1 is derived by stochastic control methods in Kraft
(2005). Case 3 appears on an informal level in Liu (2007). Observe that Corollary
4.26 does not provide a solution beyond some critical time horizon T∞, which may
be finite for p < 1 in Cases 2 and 3. A straightforward analysis of (4.7) shows that
the maximal expected utility increases to∞ as T tends to T∞ if the latter is finite. On
the other hand, the optimal expected utility is generally an increasing function of the
time horizon because one can always stop investing in the risky asset. Consequently,
we have

sup{E(u(VT (ϕ))) : ϕ admissible strategy} =∞

for T∞ ≤ T < ∞, which means that no optimal strategy with finite expected utility
exists in this case. This complements related discussions in Hobson (2004), Korn &
Kraft (2004) and Kim & Omberg (1996).

2. The optimal fraction of wealth invested into stocks is not constant if the correlation ρ
differs from 0. We have

η =
bX

pc̃X
+
α1(t)c̃y,X

pc̃X
,

which shows that the optimal fraction now consists of 2 parts: In addition to the my-
opic first term from the uncorrelated case, we now have an additional Merton-Breeden
term that tends to 0 as t→ T (cf. Merton (1973) for an economic interpretation).
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3. Since Condition 3 in Theorem 4.20 is always satisfied with equality here, LV −pT (ϕ)

L0v−p
is

the density process of the q-optimal martingale measure for q := 1 − 1
p
∈ (−∞, 1),

if the conditions of Corollary 4.26 are satisfied. As a side remark, the corresponding
q-optimal measure in Heston’s model for q > 1 is computed in Hobson (2004).

4.4.3 Carr et al. (2003)

If the volatility process y in Theorem 4.20 is chosen to be of finite variation (i.e. γ22
1 = 0 and

hence γ12
1 = 0), one is lead to the model of Carr et al. (2003) considered in Section 2.3.3

above. The corresponding differential characteristics of (y,X) are given by

b(y,X) =

(
λbZ − λy−
bBy−

)
, c(y,X) =

(
0 0

0 cBy−

)
, (4.9)

K(y,X)(G) =

∫
1G(z, 0)KZ(dz) +

∫
1G(0, x)λKB(dx)y−, ∀G ∈ B2,

where λ 6= 0 is a constant and (bB, cB, KB) as well as (bZ , 0, KZ) denote the Lévy-
Khintchine triplets of a Lévy process B and a subordinator Z, respectively.

In this case, Conditions 1, 2 and 3 of Theorem 4.20 depend neither on t nor on α1. If
there exists some η satisfying these conditions, it therefore can be chosen to be constant.
Moreover, given sufficient exponential integrability of the subordinator Z, the ODE for α1

turns out to be linear and hence always admits an explicit solution.

Corollary 4.27 Suppose B is neither a.s. increasing nor a.s. decreasing and assume that
there exists η ∈ R such that the following conditions hold.

1. KB({x ∈ R : 1 + ηx ≤ 0}) = 0

2.
∫
|x(1 + ηx)−p − h(x)|KB(dx) <∞

3.

bB − pcBη +

∫ (
x

(1 + ηx)p
− h(x)

)
KB(dx) ≥ 0

if there exists some θ < η such that KB({x ∈ R : 1 + θx < 0}) = 0 and

bB − pcBη +

∫ (
x

(1 + ηx)p
− h(x)

)
KB(dx) ≤ 0

if there exists some θ > η such that KB({x ∈ R : 1 + θx < 0}) = 0.

4. If p ∈ (0, 1), then
∫ T

0

∫∞
1
eα1(t)zKZ(dz) <∞, where

α1(t) :=
e−λ(T−t) − 1

λ
×
(

(p− 1)bBη +
p(1− p)

2
cBη2 (4.10)

−
∫

(1 + ηx)1−p − 1− (1− p)ηh(x)KB(dx)

)
.
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Then ϕt = ηvE (ηX)t−/St− is optimal for u(x) = x1−p/(1− p), p ∈ R+\{0, 1} and initial
endowment v ∈ (0,∞) with value process V (ϕ) = vE (ηX). The corresponding maximal
expected utility is finite and given by E(u(VT (ϕ))) = v1−p

1−p L0 for the opportunity process

Lt = exp

(∫ T

t

ψZ(α1(s)) ds+ α1(t)yt

)
.

PROOF. Since B is not monotone, it follows from (Cont & Tankov, 2004, Proposition 9.9),
Proposition A.3 and Lemma A.8 that the NFLVR Assumption 4.7 is satisfied.

Conditions 1, 2, 3 imply Conditions 1, 2, 3 of Theorem 4.20, respectively. A second
order Taylor expansion yields that 1+pηx

(1+ηx)p
− 1 = O(x2) for x→ 0. Together with Condition

2 this implies that α1 is well defined because KB is a Lévy measure and

λα1(t)

e−λ(T−t) − 1
=(p− 1)η

(
bB − pcBη +

∫ (
x

(1 + ηx)p
− h(x)

)
KB(dx)

)
+

(
p(p− 1)

2
cBη2 −

∫ (
1 + pηx

(1 + ηx)p
− 1

)
KB(dx)

)
. (4.11)

If p ∈ (0, 1), Condition 4 ensures that Condition 5 of Theorem 4.20 holds as well. This
remains true for p ∈ (1,∞), since Condition 4 is then automatically satisfied: Indeed,
Condition 1 and the Bernoulli inequality imply that α1 is negative in this case, which in turn
yields that Condition 4 holds, because KZ is concentrated on R+ (cf. (Sato, 1999, Theorem
21.5)).

Now notice that Condition 4 of Theorem 4.20 is satisfied as well, because α1 is a solution
of the linear ODE

α′1(t) =λα1(t) + (p− 1)bBη +
p(1− p)

2
cBη2

−
∫

(1 + ηx)1−p − 1− (1− p)ηh(x)KB(dx),

α1(T ) =0.

The assertions now follow from Theorem 4.20. �

Remarks.

1. Notice that it follows literally as in Proposition 4.22 above that there exists a unique
η ∈ [0, 1] satisfying Conditions 1-3 above, if the Lévy process B satisfies the Condi-
tions of Proposition 4.22. Moreover, as for exponential Lévy processes, the optimal
fraction η of stocks is constant over time and the optimal strategy is myopic, since it
is completely characterized by Conditions 3, which can equivalently be rewritten in
terms of the characteristics (bX , cX , KX , I) of X .

2. As for exponential Lévy processes, if h(x) = x can be used as the truncation function
and both inequalities in Condition 3 are satisfied with equality, a second-order Taylor
expansion yields

η ≈ bB

p(cB +
∫
x2KB(dx))

=
bX

pc̃X
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if the driving Lévy process B has predominantly small jumps. Hence the Black-
Scholes strategy is once again a good proxy for the optimal strategy in this case (cf.
Example 4.28 below for a concrete parametric specification).

3. While Conditions 1-3 do not depend on the parameters of the volatility process y,
these do appear in Condition 4, which shows that Corollary 4.27 only holds if y does
not have too many big jumps. In Section 4.5.3 below, we will show that this condition
is not needed to establish optimality of ϕ, but is equivalent to the finiteness of the cor-
responding maximal expected utility. Indeed, as with Heston’s model it may happen
that Corollary 4.27 does not provide a solution for p < 1 beyond some finite time
horizon T∞. In Section 4.5.3 below, it will turn out that the optimal expected utility is
infinite for time horizons T > T∞.

4. As for exponential Lévy processes, LVT (ϕ)−p

L0v−p
only is the density process of the q-

optimal martingale measure, if both inequalities in Condition 3 are satisfied with
equality.

5. Consider now the special case where Bt = δt + Wt with a standard Wiener process
W and triplet (bB, cB, KB) = (δ, 1, 0), i.e. the BNS model from Section 2.3.2. In this
case the asset price process is continuous and the first two conditions of Corollary 4.27
are automatically satisfied. The third then yields that the optimal fraction of wealth in
stock is given by

η =
δ

p
=

bX

pc̃X
.

As for the integrability condition on KZ , we have

α1(t) =
1− p

2p
δ2 1− e−λ(T−t)

λ
.

Portfolio selection in the BNS model is studied using stochastic control methods by
Benth et al. (2003). They allow for an additional constant drift term in the equation for
X (cf. Section 4.5.1 for how to deal with this using the present martingale approach).
On the other hand, they do not obtain closed-form expressions for the expected utility
and for the density process of the corresponding q-optimal martingale measure.

6. Remark 4 after Corollary 4.21 remains true here.

We now have a look at how to verify the assumptions of Corollary 4.27 in a concrete
parametric example.

Example 4.28 Consider the discounted NIG-Gamma-OU or NIG-IG-OU specifications of
the model of Carr et al. (2003) estimated in Chapter 3. More specifically, assume the stock
price is modelled as S = S0 exp(X) with (y,X) as in (4.9) and parameters

α = 90.1, β = −16.0, ϑ = 85.9, δ = 15.5
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for the triplet (4.6) of the NIG process B and

λ = 2.54, ξ = 0.0485, ω2 = 0.00277

of the Gamma-OU respectively IG-OU process y. By Lemma 2.6, we have S = S0E (X̃)

with ∂(y, X̃) of the form (4.9), if (bB, cB, KB) are replaced with

b
eB = bB +

cB

2
+

∫
(h(ex − 1)− h(x))KB(dx), c

eB = cB,

K
eB =

∫
1G(ex − 1)KB(dx) ∀G ∈ B. (4.12)

Since the asset price has unbounded jumps, it follows as in Example 4.24 above that all
admissible strategies are therefore of the form φ = θV (φ)−/S− with θ ∈ [0, 1] and hence
automatically satisfy Condition 1 in Corollary 4.27. Since

∫
exp(mx)KB <∞ for−74.1 ≤

m ≤ 106.1, it follows from (4.12) that Condition 2 holds for all admissible strategies, if
p = 2 or p = 1

2
. For p = 2, Condition 4 of Corollary 4.27 is not needed. For p = 1

2
we have

α1(0) = 0.0797,

which in view of (4.12) implies that Condition 4 is satisfied, because our Gamma-OU re-
spectively IG-OU process has finite m-th exponential moments for m ≤ 17.5 respectively
m ≤ 17.5/2 by e.g. (Schoutens, 2003, Sections 5.5.1, 5.5.2). Hence ηNIG−OU ∈ [0, 1] is the
optimal fraction of stocks if it satisfies Condition 3. For p = 2 both inequalities in Condition
3 are satisfied with equality for ηNIG−OU = 0.701. For p = 1

2
, we have(

bB +
cB

2

)
− pcBα0 +

∫ (
ex − 1

(1 + α0(ex − 1))p
− h(x)

)
KB(dx) > 0 (4.13)

for all θ ∈ [0, 1], which means that ηNIG−OU = 1 satisfies Condition 3. Analogously, one
verifies directly that ηNIG−OU = 0.00936 ∈ (0, 1) satisfies the conditions of Corollary 4.27
and therefore represents the optimal fraction of stocks for p = 150. Hence we get the same
results as for the NIG model in Example 4.24 above. Similarly, the BNS model leads to
the same optimal fractions ηBNS = 2.808 (for p = 1

2
), ηBNS = 0.702 (for p = 2) and

ηBNS = 0.00936 (for p = 150) as the Black-Scholes model.

Further specific examples where Theorem 4.20 is applicable include the model of Carr
& Wu (2003) as well as generalizations of the Heston model featuring jumps in the asset
price (cf. (Kallsen, 2006, Section 4.4) for more details). Other rather straightforward exten-
sions concern a superposition of Lévy-driven Ornstein-Uhlenbeck processes as in Barndorff-
Nielsen & Shephard (2001) as well as multivariate versions of the models in Sections 4.4.2,
4.4.3. For more details on these issues we refer the reader to Vierthauer (2009), who consid-
ers utility maximization for exponential utility in a general multidimensional affine model.
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4.5 Solution in models with conditionally independent in-
crements

In Section 4.4 we obtained optimal investment strategies for power utility in affine stochastic
volatility models. Moreover, we also determined the corresponding opportunity process
(and hence the value function), which turned out to be an exponentially affine function of
the volatility process y, too. However, the approach of Chapter 4.4 crucially depends on the
following two assumptions:

1. The stochastic volatility model under consideration has to be affine.

2. The dynamics of the asset price have to be proportional to the volatility of the market,
i.e. the differential semimartingale characteristics of X have to be linear functions of
y− without additional constant terms.

However, optimal strategies have in some instances been obtained in the literature if one
or both of these assumptions are not satisfied (cf. e.g. Benth et al. (2003) and Delong &
Klüppelberg (2008)), even though the value function cannot be determined explicitly in
these cases. Loosely speaking, this is possible due to the fact that in the setup of Benth
et al. (2003) and Delong & Klüppelberg (2008) the driving processes of the asset prices and
the stochastic factors are assumed to be independent. Hence the problem can be reduced
to dealing with processes with independent increments by conditioning on the whole factor
process. Then one can proceed by applying martingale methods almost literally as in the
Lévy case considered in Kallsen (2000). In the remainder of this chapter, we will make this
statement precise.

Since it does not require additional effort here, we consider the general multidimensional
case and assume that the discounted stock prices S1, . . . , Sd are modelled as positive pro-
cesses of the form Si = Si0E (X i), i = 1, . . . , d for some semimartingale X with differential
characteristics (bX , cX , KX , I).

Remark 4.29 Notice that in the present very general framework, modelling the stock prices
as ordinary exponentials Si = Si0 exp(X̃ i), i = 1, . . . , d for some semimartingale X̃ leads
to the same class of models. Hence, all results can easily be transfered to models of the form
Si = Si0 exp(X i), i = 1, . . . , d by applying Propositions A.3 and A.4.

In the following, we will show that the optimal portfolio is myopic, i.e. only depends
on the local dynamics of S respectively X , if these are deterministic conditional on some
semimartingale y. More specifically, let y be some semimartingale and define the augmented
σ-fields

Gt :=
⋂
s>t

σ(Fs ∪ σ(yr, 0 ≤ r ≤ T )), 0 ≤ t ≤ T,

and the filtration
G := (Gt)t∈[0,T ].
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Assumption 4.30 X is a semimartingale with differential characteristics (bX , cX , KX , I)

relative to the enlarged filtration G and (bX , cX , KX) are G0-measurable, i.e. X is a G-
semimartingale with G0-conditionally independent increments (cf. (JS, II.6) for more de-
tails).

Remark 4.31 Assumption 4.30 means that the dynamics (bX , cX , KX) ofX are measurable
functions of y which can therefore be interpreted as a stochastic factor process. In general,
a semimartingale X will not remain a semimartingale with respect to an enlarged filtration
(cf. e.g. Protter (2004) and the references therein). Even if the semimartingale property is
preserved, the characteristics generally do not remain unchanged. Nevertheless, we shall
show in Sections 4.5.1 and 4.5.2 below that some fairly general models satisfy this property,
if the factor process y is independent of the other sources of randomness in the model.

Subject to Assumption 4.30 we now have the following general result in models satisfy-
ing the NFLVR Assumption 4.7.

Theorem 4.32 Let u(x) = x1−p

1−p , p ∈ R+\{0, 1} and v ∈ (0,∞). Suppose Assumptions 4.7
and 4.30 hold and assume there exists an Rd-valued stochastic process η ∈ L(X) such that
the following conditions are satisfied up to a dP ⊗ dt-null set on Ω× [0, T ].

1. KX({x ∈ Rd : 1 + η>x ≤ 0}) = 0.

2.
∫ ∣∣x(1 + η>x)−p − h(x)

∣∣KX(dx) <∞.

3. For all θ ∈ Rd such that KX({x ∈ Rd : 1 + θ>x < 0} = 0 we have

(θ> − η>)

(
bX − pcXη +

∫
x

(1 + η>x)p
− h(x)KX(dx)

)
≤ 0,

4.
∫ T

0
|αs|ds <∞, where

α := (1− p)η>bX − p(1− p)
2

η>cXη

+

∫ (
(1 + η>x)1−p − 1− (1− p)η>h(x)

)
KX(dx),

Then there exists a G0-measurable process η̃ satisfying Conditions 1-4 such that the strategy
ϕ = (ϕ1, . . . , ϕd) defined as

ϕit := η̃i(t)
vE (η̃ • X)t−

Sit−
, i = 1, . . . , d, t ∈ [0, T ], (4.14)

is optimal for u and initial endowment v with value process V (ϕ) = vE (η̃ • X). The
corresponding maximal expected utility is given by

E(u(VT (ϕ))) =
v1−p

1− p
E

(
exp

(∫ T

0

αsds

))
,

In particular, if η is G0-measurable, this holds for ϕi = ηivE (η • X)−/S
i
−.
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PROOF. In view of Conditions 1-4, the measurable selection theorem (Sainte-Beuve, 1974,
Theorem 3) and (Jacod, 1979, Proposition 1.1) show the existence of η̃, since (bX , cX , KX)

are G0-measurable by Assumption 4.30. Hence we can assume w.l.o.g. that η is G0-measurable,
because we can otherwise pass to η̃ instead.

Since X is a G-semimartingale with G0-measurable differential characteristics by As-
sumption 4.30, (JS, 6.6) shows that it has G0-conditionally independent increments. Relative
to the filtration G, the optimality of the strategy ϕ can now be derived almost literally as in
the Lévy case discussed in Kallsen (2000). This is done in the following lemma.

Lemma 4.33 Suppose the assumptions of Theorem 4.32 are satisfied. Then the strategy ϕ
defined in (4.14) maximizes φ 7→ E(u(VT (φ))|G0) over all φ which are admissible w.r.t. G.
Moreover, the corresponding maximal conditional expected utility is finite and given by

E(u(VT (ϕ))|G0) =
v1−p

1− p
exp

(∫ T

0

αsds

)
.

PROOF. First step: We begin by showing ϕ ∈ L(S). Since η and hence ϕ is F-predictable
by assumption and Ft ⊂ Gt, t ∈ [0, T ], we obtain that ϕ is G-predictable as well. In view
of Assumption 4.30, the differential characteristics of X relative to F coincide with those
relative to G. Together with (JS, III.6.30) this implies H ∈ L(X) and hence ϕ ∈ L(S) with
respect to G.

Second step: As in Lemma 4.8 it follows that the value process of ϕ is given by V (ϕ) =

vE (η • X). By Condition 1 in Theorem 4.32 and (JS, I.4.61) this implies V (ϕ) > 0. Hence
ϕ is admissible w.r.t G.

Third step: Since
∫ T

0
|αs|ds <∞ outside some dP -null set by Condition 4, the process

Lt := exp

(∫ T

t

αsds

)
= L0E

(∫ T

·
αsds

)
t

.

is indistinguishable from a real-valued càdlàg process of finite variation and hence a G-
semimartingale, since η and (bX , cX , KX) are G0 measurable. Let φ be any admissible
strategy w.r.t. G. In view of (Delbaen & Schachermayer, 1998, Theorem 1.1), Lemma
A.8 and Assumption 4.30, Assumption 4.7 implies that the market with enlarged filtration
G satisfies NFLVR as well. In view of Lemma 4.8 the corresponding value process can
therefore be written as V (φ) = v + V−(φ)θ • X for some G-predictable process θ. The
admissibility of φ implies θ>t ∆Xt ≥ −1 which in turn yields that outside some dP ⊗dt null
set,

KX({x ∈ Rd : 1 + θ>t x < 0}) = 0. (4.15)

The characteristics (b
L
L0
V (ϕ)−pV (φ)

, c
L
L0
V (ϕ)−pV (φ)

, K
L
L0
V (ϕ)−pV (φ)

, I) of L
L0
V (ϕ)−pV (φ) can

now be computed similarly as in the proof of Theorem 4.20 using Propositions A.3 and A.4.
In particular, we obtain

K
L
L0
V (ϕ)−pV (φ)

(G) =

∫
1G

(
L−
L0

V−(ϕ)−pV−(φ)

(
1 + θ>x

(1 + η>x)p
− 1

))
KX(dx),
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for all G ∈ B, which combined with Condition 2 yields∫
{|x|>1}

|x|K
L
L0
V (ϕ)−pV (φ)

(dx) <∞ (4.16)

outside some dP ⊗ dt-null set. Moreover, insertion of the definition of α leads to

b
L
L0
V (ϕ)−pV (φ)

=

∫
(h(x)− x)K

L
L0
V (ϕ)−pV (φ)

(dx)

+
L−
L0

V−(ϕ)−pV−(φ)(θ> − η>)

(
bX − pcXη +

∫
x

(1 + η>x)p
− h(x)KX(dx)

)
,

and hence

b
L
L0
V (ϕ)−pV (φ)

+

∫
(x− h(x))K

L
L0
V (ϕ)−pV (φ)

(dx) ≤ 0 (4.17)

dP ⊗ dt-almost everywhere on Ω × [0, T ] by (4.15) and Condition 3. In view of (4.16)
and (4.17) the process L

L0
V (ϕ)−pV (φ) is therefore a supermartingale by Lemma A.8 and

Proposition A.9.
If we set φ = ϕ, we obtain from (4.17) and Lemma A.8 that the supermartingale

L
L0
V (ϕ)1−p is a positive σ-martingale with initial value v1−p <∞ and hence a local martin-

gale by (Jacod, 1979, Proposition 2.18) and (Kallsen, 2004, Corollary 3.1). We now show
that it is a true martingale.

Since L
L0
V (ϕ)1−p is a supermartingale it is sufficient to show E(LT

L0
VT (ϕ)1−p) = v1−p.

As this property only depends on the distribution of L
L0
V (ϕ)1−p we can assume w.l.o.g. that

(Ω,F ,G) is given by the canonical path space (Dd,Dd,Dd) of Rd-valued càdlàg func-
tions endowed with its natural filtration (cf. (JS, Chapter VI)). An application of Proposition
A.3 shows that the differential characteristics of L ( L

L0
V (ϕ)1−p) are G0-measurable. Hence

L ( L
L0
V 1−p) is a process with G0-conditionally independent increments by (JS, II.6.6). In

view of (Shiryaev, 1995, Theorem II.7.5) there exists a regular versionR(ω, dω′) of the con-
ditional probability relative to G0 on (Dd,Dd,Dd). Moreover, it follows from (JS, II.6.13)
and (JS, II.6.15) that L ( L

L0
V (ϕ)1−p) is a process with independent increments and a local

martingale under the measureR(ω, ·) for P -almost all ω. Hence Proposition 2.20 yields that
it is true martingale under the measure R(ω, ·) for P -almost all ω. Together with (Shiryaev,
1995, Theorem II.7.3) this implies

E

(
LT
L0

VT (ϕ)1−p
)

= E

(
E

(
LT
L0

VT (ϕ)1−p
∣∣∣∣G0

))
=

∫ ∫
LT (ω̃)

L0(ω̃)
VT (ϕ)1−p(ω̃)R(ω, dω̃)P (dω) = v1−p.

Fourth step: Now we are ready to show that ϕ is indeed optimal. Since u is concave, we
have

u(VT (φ)) ≤ u(VT (ϕ)) + u′(VT (ϕ))(VT (φ)− VT (ϕ)) (4.18)
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for any admissible φ. This implies

E(u(VT (φ))|G0) ≤ E(u(VT (ϕ))|G0) + L0E

(
LT
L0

VT (ϕ)−pVT (φ)− LT
L0

VT (ϕ)1−p
∣∣∣∣G0

)
≤ E(u(VT (ϕ))|G0),

because by the third step, L
L0
V (ϕ)−pV (φ) is a G-supermartingale and L

L0
V (ϕ)1−p is a

G-martingale, both starting at v1−p. This shows that ϕ is optimal conditional on G0 as
claimed. The formula for the corresponding maximal expected utility follows immediately
from LT = 1 and the martingale property of L

L0
V (ϕ)1−p. �

We can now complete the proof of Theorem 4.32. First note that the first two steps in the
proof of Lemma 4.33 also show that ϕ is admissible w.r.t. the filtration F. AsX and hence S
have the same differential characteristics with respect to both G and F and F-predictability
implies G-predictability, (JS, III.6.30) yields that any other admissible strategy in the market
with the original filtration F is admissible with respect to G as well. Hence optimality of ϕ
relative to G yields optimality of ϕ with respect to F. This completes the proof of Theorem
4.32. �

Remarks.

1. Conditions 1-3 are local versions of the corresponding Conditions 1-3 in Corollary
4.21 for Lévy processes. They show that the optimal strategy is characterized com-
pletely by the local dynamics of X (or equivalently S) in the present setup, i.e. the
optimal strategy is myopic. Put differently, the optimal proportions ηi of wealth allo-
cated to stock i are the same as in the Lévy case considered in Corollary 4.21 above,
if the Lévy-Khintchine triplet is replaced by the random, time-dependent differential
characteristics. This is a generalization of an observation from Benth et al. (2003):
The investor invests locally as in the Lévy case, but adapts her strategy depending on
the local behaviour of the factor process Y . This corresponds to well known results
for logarithmic utility (cf. e.g Goll & Kallsen (2000, 2003)). However, it is important
to note that whereas the optimal strategy is myopic in the general semimartingale case
for logarithmic utility, one also needs the (weak) Condition 4 of Theorem 4.32 as well
as the crucial Assumption 4.30 for power utility. Nevertheless, we show in Sections
4.5.1 and 4.5.2 below that a wide range of commonly used models fall into this frame-
work, if the drivers of the asset price are independent of the drivers of the stochastic
factor process.

2. Condition 4 is needed to ensure that the conditional expected utility of ϕ is finite.
However, even if it is satisfied, the unconditional expected utility corresponding to
ϕ generally does not have to be finite for p ∈ (0, 1). On the contrary the maximal
expected utility is obviously finite for p > 1, since the power utility function u(x) =

x1−p/(1−p) is bounded from above in this case. Indeed, this can also be derived from
Theorem 4.32, because Condition 3 of Theorem 4.32 and the Bernoulli inequality
imply that α is negative in this case.
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3. The NFLVR Assumption is only needed to apply Lemma 4.8 in the market with en-
larged filtration G. It is therefore not needed if

bX − pcXη +

∫ (
x

(1 + η>x)p
− h(x)

)
KX(dx) = 0

outside some dP ⊗dt-null set, because LV (ϕ)−p

L0v−p
is the density process of the q-optimal

equivalent martingale measure for this market in this case.

4. For the constrained problem of maximizing expected utility over all φ ∈ Θ(v, C)

the optimal fraction η of stocks has to be C-valued, but Condition 3 only has to be
checked for {θ ∈ C : KX({1 + θ>x < 0}) = 0}.

5. As for the assumption η ∈ L(X), the crucial point is integrability rather than pre-
dictability. This is because if pointwise solutions to Condition 3 exist, the measurable
selection theorem (Sainte-Beuve, 1974, Theorem 3) shows that they can be chosen to
be both F-predictable and G0-measurable.

6. In view of Lemma 4.33 one can also interpret Theorem 4.32 as follows. Given As-
sumption 4.30, complete information about some factor process y does not yield any
benefits to the investor, as it remains optimal to invest according to the same strategy.
Hence inside information in the sense of Di Nunno et al. (2006) about this stochastic
factor does not make a difference subject to Assumption 4.30.

We now consider two particular special cases that suffice to cover a wide range of appli-
cations.

Corollary 4.34 (Continuous paths) Suppose X is continuous, Assumption 4.30 holds and
there exists η ∈ L(X) such that bX = pcXη. Then ϕi = ηivE (η • X)/S, i = 1, . . . , d is
optimal.

PROOF. Since X is continuous, we have KX = 0, Conditions 1-2 of Theorem 4.32 are
satisfied and η ∈ L(X) as well as (JS, III.6.30) yield that Condition 4 holds as well. By
Condition 1, both inequalities in Condition 3 of Theorem 4.32 are satisfied. Hence we are in
the situation of Remark 3 after Theorem 4.32, i.e. the NFLVR Assumption 4.7 is not needed
to apply Theorem 4.32. This proves the assertion. �

Corollary 4.35 (Arbitrary positive and negative jumps) Let d = 1. Then Conditions 1-4
of Theorem 4.32 are satisfied for a unique [0, 1]-valued process η, if the following holds up
to a dP ⊗ dt-null set.

1. KX((−1, b)), KX((a,∞)) > 0 for any b ∈ (−1, 0), a ∈ (0,∞),

2.
∫ T

0

∫∞
ε
xKX

t (dx)dt <∞ and
∫ t

0

∫ −ε
−1

−x
(1+x)p

KX
t (dx)dt <∞ for some ε ∈ (0, 1).
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PROOF. Literally as in the proof of Proposition 4.22, Conditions 1 and 2 show that Con-
ditions 1-3 of Theorem 4.32 are satisfied for a unique [0, 1]-valued process η. Since η is
bounded, Condition 2 yields that Condition 4 of Theorem 4.32 holds as well. �

Remark 4.36 If d = 1 and S = S0 exp(X̃), Propositions A.4 and A.3 show that the condi-
tions of Corollary 4.35 hold if Conditions 1 and 2 are replaced with

1’. K eX((−∞,−a)), K
eX((a,∞)) > 0 for any a ∈ (0,∞),

2’.
∫ T

0

∫∞
ε
exK

eX
t (dx)dt <∞ and

∫ T
0

∫ −ε
−∞ e

−pxK
eX
t (dx)dt <∞ for some ε > 0.

4.5.1 Integrated Lévy models

In this section, we assume that the discounted stock price S is modelled as a positive process
of the form S = (S1, . . . , Sd), where Si = Si0E (X i), i = 1, . . . , d and

X = y− • B, (4.19)

for an Rd×n-valued semimartingale y and an independent Rn-valued Lévy process B with
Lévy triplet (bB, cB, KB). Furthermore, we suppose that the underlying filtration F is gen-
erated by B and Y (or equivalently by X and y if d = n and y takes values in the invertible
Rd×d-matrices). The following result shows that Assumption 4.30 is satisfied in this case.

Lemma 4.37 Relative to both F and G, X is a semimartingale with G0-measurable differ-
ential characteristics (bX , cX , KX , I) given by

bX = y−b
B +

∫
(h(y−x)− y−h(x))KB(dx), cX = y−c

By>−,

KX(G) =

∫
1G(y−x)KB(dx) ∀G ∈ Bd.

In particular, Assumption 4.30 is satisfied.

PROOF. Since B is independent of y and F is generated by y and B, it follows from (Bauer,
2002, Theorem 15.5) that B remains a Lévy process (and in particular a semimartingale),
if its natural filtration is replaced with either F or G. Since the distribution of B does not
depend on the underlying filtration, we know from the Lévy-Khintchine formula and Propo-
sition A.2 that B admits the same differential characteristics (bB, cB, KB, I) with respect to
its natural filtration and both F and G. Since y− is locally bounded and (F-,G-) predictable,
the process X is a (F-,G-) semimartingale by (JS, I.4.31). Its differential characteristics can
now be derived by applying Proposition A.3. The G0-measurability is obvious. �

Remark 4.38 Notice that if the Lévy process B has jumps, one is lead to a different class
of models if Si = Si0 exp(X i), i = 1, . . . , d for X as in (4.19) above. However, we have
Si = SiE (X̃ i), i = 1, . . . , d for the processes X̃ i = L (exp(X i)), i = 1, . . . , d. Moreover,
subject to Assumption 4.30, Lemma 4.37 and Propositions A.4, A.3 show that X̃ admits the
same differential characteristics (b

eX , c eX , K eX , I) w.r.t. both F and G. Since (b
eX , c eX , K eX , I)

also turn out to be G0-measurable, Assumption 4.30 holds for X̃ as well.
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To show that NFLVR holds, it suffices to consider the Lévy process B.

Lemma 4.39 If there exists Q ∼ P such that B is a σ-martingale, Assumption 4.7 is satis-
fied. For d = 1 this holds unless B is either P -a.s. increasing or P -a.s. decreasing.

PROOF. By (Kallsen, 2004, Lemma 3.3), X and S are Q-σ-martingales as well. The first
part of the assertion now follows from the Fundamental Theorem of Asset Pricing. The
second is a consequence of (Cont & Tankov, 2004, Proposition 9.9). �

Remark 4.40 In view of Lemma 4.39, only degenerate monotone Lévy process do not sat-
isfy NFLVR in the univariate case. For multiple stocks this ceases to hold, consider e.g.
B = (1 + W, 2 + W ) for a Wiener process W . In the continuous case, i.e. if B is a mul-
tivariate Brownian motion with drift µ ∈ Rd and diffusion matrix σ>σ ∈ Rd×d, (Karatzas
& Shreve, 1998, Theorem 4.2) ascertains that NFLVR holds, if the drift vector µ lies in the
range of x 7→ σx. For Lévy processes with jumps a criterion with similar intuitive appeal
does not seem to exist to the best of our knowledge.

4.5.2 Time-changed Lévy models

In this section we show that Theorem 4.32 can also be applied to time-changed Lévy models.
For Brownian motion, stochastic integration and time changes lead to essentially the same
models by the Dambins-Dubins-Schwarz theorem (cf. e.g. (Revuz & Yor, 1999, V.1.6)).
For general Lévy processes with jumps, however, the two classes are quite different. More
details concerning the theory of time changes can be found in Jacod (1979) and Kallsen &
Shiryaev (2002), whereas their use in modelling is dealt with in Kallsen (2006).

Here, we assume that the discounted asset price process is of the form S = (S1, . . . , Sd),
with Si = Si0E (X i), i = 1, . . . d and

X = µ(y−) • Id +BR ·
0 ysds

, (4.20)

for the identity process Idt = (t, . . . , t) on Rd, a mapping µ : R → Rd such that µ(y−) ∈
L(Id) for a strictly positive semimartingale y and an independent Rd-valued Lévy process
B with Lévy-Khintchine triplet (bB, cB, KB). Moreover, we suppose that the underlying
filtration is generated by X and y. We have the following analogue of Lemma 4.37.

Lemma 4.41 Relative to both F and G, X is a semimartingale with G0-measurable differ-
ential characteristics (bX , cX , KX , I) given by

bX = µ(y−) + bBy−, cX = cBy−, KX(G) = KB(G)y− ∀G ∈ Bd.

In particular, Assumption 4.30 is satisfied.

PROOF. Let Y =
∫ ·

0
ysds and Ur := inf{q ∈ R+ : Yq ≥ r} and define the σ-fields

Ht :=
⋂
s>t

σ(Bq, 0 ≤ q ≤ s, Ur, 0 ≤ r <∞).
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Since B is independent of y and hence Y , it remains a Lévy process relative to the filtration
H := (Ht)t∈R+ . Its distribution does not depend on the underlying filtration, hence we
know from the Lévy-Khintchine formula and Proposition A.2 that it is a semimartingale
with differential characteristics (bB, cB, KB, I) relative to H.

By Proposition A.6 the time-changed process (B̃ϑ)ϑ∈[0,T ] := (BYϑ)ϑ∈[0,T ] is a semi-
martingale on [0, T ] relative to the time-changed filtration (H̃ϑ)ϑ∈[0,T ] := (HYϑ)ϑ∈[0,T ] with
differential characteristics (̃b, c̃, F̃ ) given by

b̃ϑ = bByϑ−, c̃ϑ = cByϑ−, K̃ϑ(G) = KB(G)yϑ− ∀G ∈ Bd.

Furthermore, it follows from the proof of (Pauwels, 2007, Proposition 4.3) that H̃t = Gt for
all t ∈ [0, T ]. The assertion now follows by applying Propositions A.3 and A.4 to compute
the characteristics of X . �

Remarks.

1. For the proof of Lemma 4.41 we had to assume that the given filtration is generated by
the process (y,X) or equivalently (Y,X). In reality, though, the integrated volatility
Y and the volatility y typically cannot be observed directly. Therefore the canonical
filtration of the logarithmized asset prize X would be a more natural choice. Fortu-
nately, Y and y are typically adapted to the latter if B is an infinite activity process
(cf. e.g. Winkel (2001)).

2. A natural generalization of (4.20) is given by models of the form

X = µ(y
(1)
− , . . . , y

(n)
− ) • I +

n∑
i=1

B
(i)

Y (i) ,

for µ : (0,∞)n → Rd, strictly positive semimartingales y(i), Y (i) =
∫ ·

0
ysds and

independent Lévy processes B(i), i = 1, . . . , n. If one allows for the use of the even
larger filtration generated by all y(i), B(i)

Y (i) , i = 1, . . . , n the proof of Lemma 4.41
remains valid. If Y (i) is interpreted as business time in some market i, this class of
models allows assets to be influenced by the changing activity in different markets.

3. Unlike in the previous section, models of the form Si = Si0 exp(X i) and Si =

Si0E (X i) lead to the same class of processes for time-changed Lévy processes: If
Si = Si0 exp(µi(y−) + Bi

Y ), i = 1, . . . , d, we have Si = Si0E (µi(y−) • I + B̃i
Y ) for

some other Lévy process B̃ by Propositions A.3 and A.4.

The NFLVR Assumption 4.7 is rather difficult to check here, since it no longer suffices to
consider structure-preserving measure changes as e.g. in Section 2.5. We leave more general
results to future research and only consider the univariate case where (y,X) is given by the
model of Carr et al. from Section 2.3.3 with µ not necessarily equal to 0. Since y is bounded
from below in this model, the results of Cheridito et al. (2005) allow us to show that similarly
as for Lévy processes, NFLVR holds if B and hence the asset price X has either a Gaussian
component or both positive and negative jumps.
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Lemma 4.42 Let d = 1 and suppose (y,X) is given by the model of Carr et al. (2003) from
Section 2.3.3. Then the NFLVR Assumption 4.7 is satisfied if the following holds.

cB > 0 or KB((a, 0)), KB((0, b)) > 0 for some a ∈ (−1, 0) and b ∈ (0,∞).

PROOF. First notice that by the proof of (Cont & Tankov, 2004, Proposition 9.9), we can
assume w.l.o.g. that bB = 0 and KB has moments of all orders. In particular, h(x1, x2) :=

(χ(x1), x2) can be used as the truncation function. Denote by (b, c,K, I) the differential
characteristics

b =

(
λbZ − λy−

µ

)
, c =

(
0 0

0 cBy−

)
,

K(G) =

∫
1G(z, 0)λKZ(dz) +

∫
1G(0, x)KB(dx)y− ∀G ∈ B2,

of the affine semimartingale (y,X) w.r.t. h and set

E := [y/2,∞)× R, U := (y/2,∞)× R, Un := (y/2, n)× (−n, n),

where y := e−λTy0 denotes the lower bound of y (cf. e.g. Barndorff-Nielsen & Shephard
(2001)). First consider the case cB > 0 and let

b∗ := (b1, 0)>, c∗ := c, K∗ := K.

It then follows from Theorem 2.4 that there exists a unique probability measure Q on the
canonical path space (D2,D2,D2) such that the canonical process has Q-differential char-
acteristics (b∗, c∗, K∗, I). For the mappings

φ1 : U → R2, ξ 7→
(

0,− µ

cBξ1

)>
, φ2 : U × R2 → (0,∞), (ξ, x) 7→ 1,

we have c∗ = c and

b∗ = b+ cφ1(y−, X−) +

∫
(φ2((y−, X−), x)− 1)h(x)K(dx),

dK∗

dK
= φ2((y−, X−), x).

Since φ1 is obviously bounded on Un, the conditions of (Cheridito et al., 2005, Remark 2.5)
are satisfied and by Theorem 2.4 the canonical process is a U -valued affine semimartingale
under both P andQ. Hence it follows from (Duffie et al., 2003, Theorem 2.12) and (Cherid-
ito et al., 2005, Theorem 2.4) that Q ∼ P with some density process Z. Now define the
positive local martingale

Z∗ := E (φ1(y−, X−) • Xc),

which is a supermartingale by Proposition A.9. Since Z∗ is a continuous semimartingale,
the strict stopping times

Tn = inf{t > 0 : |(yt−, Xt−)| ≥ n or |(yt, Xt)| ≥ n}, n ∈ N
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form a localizing sequence for Z∗. As in the proofs of Lemma 2.16 and Theorem 2.9 this
allows us to obtain that E(Z∗T ) = E(ZT ) = 1. Consequently, Z∗ is a martingale and we
can use it to define a measure Q∗ ∼ P on (Ω,F ). By (Kallsen, 2006, Proposition 4), the
differential Q∗-characteristics of (y,X) coincide with (b∗, c∗, K∗, I). In view of Lemma
A.8 this shows that X and hence S is a local Q∗-martingale. In particular, Assumption 4.7
holds.

Now consider the case KB((a, 0)), KB((0, b)) > 0 for some a ∈ (−1, 0) and b ∈
(0,∞). If µ ≥ 0, define

b∗ := (b1, 0)>, c∗ := c, K∗(G) :=

∫
1G(x)

(
−
µ1(a,0)(x2)x2∫ 0

a
y2KB(dy)

+ 1

)
K(dx),

for B ∈ B2 and relative to h(x1, x2) = (χ(x1), x2). Set φ1 : U → R2, (ξ1, ξ2) 7→ (0, 0)>

as well as

φ2 : U × R2 → (0,∞), (ξ, x) 7→ −
µ1(a,0)(x2)x2

ξ1

∫ 0

a
y2KB(dy)

+ 1.

Then we have c∗ = c and

b∗ = b+ cφ1(y−, X−) +

∫
(φ2((y−, X−), x)− 1)xK(dx),

dK∗

dK
= φ2((y−, X−), x).

Since KB is a Lévy measure and φ2 is bounded on Un, the conditions of (Cheridito et al.,
2005, Remark 2.5) are satisfied. Hence it follows as in the first case by applying Theorem
2.4 and (Cheridito et al., 2007, Theorem 2.4) that there exists a unique probability measure
Q ∼ P with density process Z on the canonical path space (D2,D2,D2), such that the
canonical process Y has Q-characteristics (b∗, c∗, K∗, I). Since KB has moments of all
orders, it follows as in the proof of Lemma 2.14 that the sequence (Tn)n∈N from above is a
localizing sequence for the positive local martingale

Z∗ := E ((φ2((y−, X−), ·)− 1) ∗ (µ(y,X) − ν(y,X))).

As in the first case, this yields E(Z∗T ) = E(ZT ) = 1, which in turn shows that Z∗ is a true
martingale. Once more applying (Kallsen, 2006, Proposition 4), we get that X and hence S
is a local Q∗-martingale.

If µ < 0, the same result follows analogously by replacing (a, 0) with (0, b) in the
definitions of b∗, c∗, K∗ and φ2 above. �

4.5.3 Examples

We now consider some concrete models where the results of the previous three sections can
be applied. For ease of notation, we consider only a single risky asset (i.e. d = 1), but the
extension to multivariate versions of the corresponding models is straightforward.
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Generalized Black-Scholes models

Let B be a standard Brownian motion and y an independent semimartingale. Consider
measurable mappings µ : R → R and σ : R → (0,∞) such that µ(y−) ∈ L(I) and
σ(y−) ∈ L(B) and suppose the discounted stock price S is given by

S = S0E (µ(y−) • I + σ(y−) • B).

For X := µ(y−) • I + σ(y−) • B, Propositions A.2 and A.4 yield bX = µ(y−) as well as
cX = σ2(y−) and KX = 0. In view of Lemma 4.37, Assumption 4.30 is satisfied. Let

ηt :=
µ(yt−)

pσ2(yt−)
, t ∈ [0, T ].

By Corollary 4.34, the strategy ϕ := ηvE (η • X)/S is optimal for u(x) = x1−p/(1 − p),
p ∈ R+\{0, 1} and initial endowment v ∈ (0,∞), if η ∈ L(X). If y− is E-valued for
E ⊂ R, this holds true e.g. if the mapping x 7→ µ(x)/σ2(x) is bounded on compact subsets
of E.

Remark 4.43 If one works with the set Θ(v, [0, 1]) of strategies without shortselling or
leverage, the content of this section generalizes results of Delong & Klüppelberg (2008) by
allowing for an arbitrary semimartingale factor process.

Notice however, that unlike Delong & Klüppelberg (2008) we only consider utility from
terminal wealth and do not obtain a solution to more general consumption problems.

Finiteness of the maximal expected utility is ensured in the case p > 1 in our setup,
which complements the results of Delong & Klüppelberg (2008). They consider the case p ∈
(0, 1) and prove that for a OU process y driven by a subordinator Z, the maximal expected
utility is finite subject to suitable linear growth conditions on the coefficient functions µ(·)
and σ(·) as well as certain exponential moment conditions on the Lévy measure KZ of Z.

Barndorff-Nielsen and Shephard (2001)

If we set µ(x) := µ̃+ δx for constants µ̃, δ ∈ R, σ(x) :=
√
x and choose

dyt = −λyt− + dZλt, y0 > 0

for a constant λ > 0 and some subordinator Z in the generalized Black-Scholes model
above, we obtain the BNS model introduced in Section 2.3.2. By e.g. Barndorff-Nielsen &
Shephard (2001), we have yt ≥ y0e

−λT > 0 in this case. This shows that

η :=
µ(y−)

pσ2(y−)
=

µ̃

py−
+
δ

p

is bounded and hence belongs to L(X). Consequently, ϕt = ηV (ϕ)/S is optimal for u(x) =

x1−p/(1− p), p ∈ R+\{0, 1} and initial endowment v ∈ (0,∞).
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Remark 4.44 If one works with the set Θ(v, [0, 1]) of strategies without shortselling or
leverage, this recovers the optimal strategy obtained by Benth et al. (2003). Similarly as in
Delong & Klüppelberg (2008), Benth et al. (2003) consider the case p ∈ (0, 1) and prove
that the maximal expected utility is finite subject to an exponential moment condition on the
Lévy measure KZ of Z. Our results complement this by ascertaining that the same strategy
is always optimal (with not necessarily finite expected utility), as well as optimal with finite
expected utility in the case p > 1.

The next example applies the results of this section to one of the parametric versions of
the BNS model estimated in Chapter 3.

Example 4.45 Consider the parameters of the discounted BNS model estimated from a
DAX time series in Chapter 3 above (cf. Remark 3.18 and Examples 3.21, 3.22), i.e. let
S = S0 exp(X̃) for a BNS-IG-OU model (y,X) with µ̃ = 0.0438, δ = 0, mean reversion
λ = 2.54 and stationary IG(0.203, 4.1835)-distribution of y.

By Lemma 2.6, this means that S = S0E (X) for a BNS-IG-OU process with µ̃ =

0.0438, δ = 1
2
, λ = 2.54 and stationary IG(0.203, 4.1835)-distribution. A simulated trajec-

tory of of the optimal fractions of stocks for p = 2 is shown in Figure 4.1 below. There we
also plot the corresponding optimal fraction of stocks if the constrained set Θ(v, [0, 1]) of
strategies without shortselling and leverage is used.
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Figure 4.1: Sample paths of the unconstrained (above) and constrained (below) optimal
fractions of stocks for p = 2 in a BNS-IG-OU model

Note that the optimal fraction now fluctuates according to the stochastic volatility around
the constant fraction 0.702 obtained in Example 4.28 above, leading to severe leverage in
the unconstrained case.
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Carr et. al (2003)

In this section we consider the time-changed Lévy generalizations of the BNS model intro-
duced in Section 2.3.3. More specifically, we assume that S = S0E (X) > 0 for

Xt = µt+BYt , µ ∈ R, (4.21)

as in (4.20) above and let the time change Y be given by Yt =
∫ t

0
ysds with

dyt = −λyt−dt+ dZλt, y0 > 0, (4.22)

where λ > 0 and Z denotes a subordinator. By Lemmas 4.41 and 4.42, Theorem 4.32 is
applicable if B has either a Brownian component or both positive and negative jumps. Here
we confine ourselves to the case of arbitrary positive and negative jumps of the asset price
and leave the straightforward extension to more general setups to the interested reader. Note
that unlike in Section 4.4, Theorem 4.32 now allows us to deal with the case µ 6= 0.

Corollary 4.46 Let u(x) = x1−p

1−p for some p ∈ R+\{0, 1} and assume the Lévy process B
satisfies the following conditions:

1. KB((−1,−b))), KB((a,∞)) > 0 for any b ∈ (−1, 0) and a ∈ (0,∞).

2.
∫∞
ε
xKB(dx) <∞ and

∫ −ε
−∞

−x
(1+x)p

KB(dx) <∞ for some ε > 0.

Then there exists a unique [0, 1]-valued process η ∈ L(X) such that outside some dP ⊗ dt-
null set, (

µ

y−
+ bB

)
− pcBη +

∫ (
x

(1 + ηx)p
− h(x)

)
KB(dx) ≥ 0,

if 0 < η, (
µ

y−
+ bB

)
− pcBη +

∫ (
x

(1 + ηx)p
− h(x)

)
KB(dx) ≤ 0,

if η < 1 and ϕ = ηvE (η • X)−/S− is optimal for u and initial endowment v ∈ (0,∞).

PROOF. Follows immediately from Lemma 4.41, Lemma 4.42 and Corollary 4.35, since the
predictable process y− is locally bounded and hence P -a.s. bounded on [0, T ]. �

Example 4.47 Consider the parameters of the NIG-IG-OU model estimated in Section 3.3.
More specifically, let S = S0 exp(X) for a time-changed Lévy process as in (4.21), (4.22)
and supposeB is given by an NIG process with parameters β = −13.9, α = 88.3, ϑ = 85.0,
δ = 13.6 and y follows an IG-OU process with mean reversion λ = 2.54 and stationary
IG(0.203, 4.18)-distribution.

By Lemma 2.6, this implies that S = S0E (µI + B̃Y ) for the Lévy process B̃ with triplet

b
eB =

1

2
, c

eB = cB, K
eB(G) =

∫ (
1G(ex − 1)

αϑ

π
eβx

K1(α|x|)
|x|

)
dx, ∀G ∈ B,
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for the modified Bessel function K1 of the third kind with index 1 and relative to the trun-
cation function h(x) = x which can be used, since B̃ is a special semimartingale. It now
follows by insertion that the conditions of Corollary 4.46 are satisfied. The optimal frac-
tions to be held in stocks can now be obtained by computing pointwise solutions to the
inequalities in Corollary 4.46.

A trajectory of the optimal fractions of stock for p = 2 and the same simulated path of y
as in Figure 4.1 is shown in Figure 4.2 below.

0 2 4 6 8 10 12 14 16 18 20
0.2

0.4

0.6

0.8

1

Figure 4.2: Sample path of the optimal fraction of stocks for p = 2 in a NIG-IG-OU model

Note that similarly as in Example 4.28 above, we obtain almost the same result as for
the NIG-OU models and the BNS model without shortselling and leverage.

As for the generalized Black-Scholes models above, it is important to emphasize that the
optimal strategy ϕ is only ensured to lead to finite expected utility in the case p > 1.

However, the results provided here allow us to complete the study of the case p ∈ (0, 1)

for µ = 0 started in Section 4.4. Using Theorem 4.32, we can show that the exponential
moment Condition 4 in Corollary 4.27 is actually necessary and sufficient for the maximal
expected utility to be finite. The key insight is that the process

∫ ·
0
αsds from Theorem 4.32

turns out to be an infinitely divisible random variable for µ = 0.

Corollary 4.48 Let v > 0 and u(x) = x1−p

1−p for some p ∈ R+\{0, 1}. Assume µ = 0

and suppose there exists η ∈ R satisfying Conditions 1-3 of Corollary 4.27. Then ϕ :=

ηvE (ηX)−/S− is optimal for u and initial endowment v. The corresponding maximal ex-
pected utility E(u(VT (ϕ))) is always finite for p > 1, whereas for p ∈ (0, 1) it is finite if and
only if ∫ T

0

∫ ∞
1

exp

(
e−λt − 1

λ
Cz

)
KZ(dz)dt <∞ (4.23)

for

C := (p− 1)bBη +
p(1− p)

2
cBη2 −

∫ (
(1 + ηx)1−p − 1− ηh(x)

)
KB(dx).

If the maximal expected utility is finite, it is given by the formula in Corollary 4.27 above.

PROOF. Conditions 1-3 of Corollary 4.27 yield that Conditions 1-3 of Theorem 4.32 are
satisfied for η. Since η is constant and y− is predictable and locally bounded, Condition 2 of
Corollary 4.27 implies that Condition 4 of Theorem 4.32 holds, too. Therefore ϕ is optimal.
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For p ∈ (1,∞), the corresponding maximal expected utility is finite by Corollary 4.27.
Let p ∈ (0, 1). After inserting the characteristics of X from Section 2.3.3, Theorem 4.32
shows that the maximal expected utility is given by

E(u(VT (ϕ))) =
v1−p

1− p
E

(
exp

(
−C

∫ T

0

yt−dt

))
=

v1−p

1− p
E

(
exp

(
−C

∫ T

0

ytdt

))
.

(4.24)
Since (y,

∫ ·
0
ysds) is an affine semimartingale by Proposition A.3, (Kallsen, 2006, Corollary

3.2) implies that the characteristic function of the random variable
∫ T

0
ysds is given by

E

(
exp

(
iu

∫ T

0

ysds

))
= exp

(
ibu+

∫ (
eiux − 1− iuh(x)

)
K(dx)

)
, ∀u ∈ R,

with

K(G) :=

∫ T

0

∫
1G

(
1− e−λt

λ
z

)
λKZ(dz)dt, ∀G ∈ B

and

b := bZ
(
e−λT − 1 + λT

λ

)
+ y0

(
1− e−λT

λ

)
+

∫ T

0

∫ (
h

(
1− e−λt

λ
z

)
− 1− e−λt

λ
h(z)

)
λKZ(dz)dt.

Since KZ is a Lévy measure, i.e. satisfies KZ({0}) = 0 and integrates 1 ∧ |x|2, one eas-
ily verifies that b is finite and K is a Lévy measure, too. By the Lévy-Khintchine formula
(cf. e.g. (Sato, 1999, Theorem 8.1)), the distribution of

∫ T
0
ysds is therefore infinitely di-

visible. Consequently (4.24) and (Sato, 1999, Theorem 7.10, Theorem 25.17) yield that
E(u(VT (ϕ))) is finite if and only if∫

{|x|>1}
e−CxK(dx) =

∫ T

0

∫
{|(1−e−λt)z/λ|>1}

exp

(
e−λt − 1

λ
Cz

)
λKZ(dz)dt <∞.

Since λ > 0 and the Lévy measure KZ is concentrated on R+, the assertion follows. �

Since the exponential moment condition in Corollary 4.48 depends on the time horizon
T , it is potentially only satisfied if the planning horizon is sufficiently small. This resembles
the situation in the Heston model, where the maximal expected utility also turned out to be
infinite for some parameters and sufficiently large T , if p ∈ (0, 1).

However, a qualitatively different phenomenon arises here. Whereas expected utility
could only increase towards infinity in a continuous way in the Heston model, it can sud-
denly jump to infinity here. More specifically, there possibly exists T∞ < ∞ such that the
maximal expected utility is bounded from above for all T ≤ T∞ but infinite for T > T∞.

Moreover, the following example using the BNS model shows that this effect is not a
consequence of a discontinuous asset price X , but is much rather induced by jumps of the
volatility process y.
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Example 4.49 (Sudden explosion of maximal expected utility) In the setup of Corollary
4.48 consider p ∈ (0, 1), KB = 0, bB 6= 0, cB = 1 and hence C = p−1

2p
(bB)2 < 0. Define

the Lévy measure

KZ(dz) := 1(1,∞)(z) exp

(
C

2λ
z

)
dz

z2
,

and let bZ = 0 relative to the truncation function h(z) := χ(z) on R. Setting T∞ :=

log(2)/λ, we obtain∫ ∞
1

exp

(
e−λt − 1

λ
Cz

)
KZ(dz)

{
≤ 1, for t ≤ T∞,

=∞, for t > T∞.

Consequently, by Corollary 4.48, the maximal expected utility that can be obtained by trad-
ing on [0, T ] is finite for T ≤ T∞. Moreover, by inserting into Corollary 4.27 we obtain that,
for T ≤ T∞,

E(u(VT (ϕ))) ≤ exp(1 + |C|y0) <∞.

Hence the maximal expected utility is bounded from above for T ≤ T∞. For T > T∞,
however, is is infinite by Corollary 4.48.

Since u(VT (ϕ)) = VT (ϕ)1−p/(1 − p) is an exponentially affine process for µ = 0, the
finiteness of the maximal expected utility is intimately linked to moment explosions of affine
processes. These are studied in Lions & Musiela (2007) and Andersen & Piterbarg (2007)
in a diffusion setting, as well as in Keller-Ressel (2008) for possibly discontinuous affine
processes.

In line with Corollary 4.26 and Korn & Kraft (2004), Example 4.49 again exemplifies
that one has to be careful when dealing with utility maximization in stochastic volatility
models. Even subject to NFLVR the maximal expected utility does not have to be finite for
all parameter constellations and all time horizons.

In general, infinite expected utility can lead to economically dubious phenomena (cf.
Remark 4.10). However, in the special setup considered here, Lemma 4.33 shows that the
optimal strategy ϕ obtained via Theorem 4.32 is also optimal for an insider who knows the
entire evolution of the stochastic factor process y. Since the corresponding conditional ex-
pected utility is finite, the respective optimal value process V (ϕ) is unique by e.g. (Kallsen,
2000, Lemma 2.5) in the sense that its conditional expected utility strictly dominates all
other value processes. Thus even if other fundamentally different investment strategies also
lead to infinite unconditional utility, it still makes sense economically to invest into the strat-
egy ϕ obtained here.



Chapter 5

Asymptotic power utility-based pricing
and hedging

5.1 Introduction

As in Chapter 4 we consider an investor with initial endowment v, whose goal is to maximize
her expected utility from terminal wealth. However, we now also consider how to price and
hedge nontraded contingent claims.

More specifically, suppose the investor is approached by another economic agent who
offers her a premium qπq in exchange for q units of some nontraded contingent claim H .
At this point, the investor has two choices: If she rejects the offer, her utility from terminal
wealth will be

U(v) := sup
φ∈Θ(v)

E(u(v + φ • ST )), (5.1)

where φ ranges over some suitable set Θ(v) of self-financing strategies admissible for initial
endowment v. If she accepts the offer, her utility from terminal wealth will instead be given
by

U q(v + qπq) := sup
φ∈Θq(v+qπq)

E(u(v + qπq + φ • ST − qH)), (5.2)

maximizing over some set Θq(v + qπq) of self-financing strategies admissible for initial
capital v + qπq as well as an initial position of −q units of the contingent claim H . Of
course a sensible investor will only accept the deal if it raises her expected utility, i.e. if
U q(v+qπq) ≥ U0(v). The minimal price πq per unit of H with this property is called utility
indifference price.

If the investor declines the offer, her optimal trading strategy is given by the optimal trad-
ing strategy ϕ in (5.1), whereas it is optimal to trade according to the optimal strategy ϕq in
(5.2) if the offer is accepted. Therefore the difference ϕq −ϕ is called utility-based hedging
strategy, because it describes the action the investor needs to take in order to compensate for
the risk resulting from the addition of −q contingent claims to her portfolio.

This utility-based approach is appealing from an economic point of view and there-
fore has been studied extensively in the literature (cf. e.g. Hodges & Neuberger (1989),
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Duffie et al. (1997), Rouge & El Karoui (2000), Cvitanić et al. (2001), Delbaen et al.
(2002), Karatzas & Žitković (2003), Hugonnier & Kramkov (2004), Hugonnier et al. (2005),
Žitković (2005), Ilhan & Sircar (2006)). However, it is generally very difficult to determine
the relevant quantities explicitly even for standard utility functions and in simple concrete
models.

A feasible alternative is to consider a first-order approximation for a small number q
of contingent claims, which has recently been considered by Mania & Schweizer (2005),
Becherer (2006), Kallsen & Rheinländer (2008) for exponential utility as well as Hender-
son (2002), Henderson & Hobson (2002) and Kramkov & Sîrbu (2006, 2007) for utility
functions defined on R+.

As in Chapter 4, we consider here power utility functions u(x) = x1−p/(1 − p) for
p ∈ R+\{0, 1}. In Section 5.2 we provide an heuristic account of how to tackle the com-
putation of first order approximations of utility-based prices and hedging strategies. In the
remainder of the chapter we then go on to show how to make these arguments precise. We
first state existence results mainly due to Hugonnier & Kramkov (2004) concerning utility-
based pricing and hedging in Section 5.3. Afterwards, we introduce the asymptotic results of
Kramkov & Sîrbu (2006, 2007) in Section 5.4. In a nutshell, these state that after a suitable
change of numeraire, first order approximations can be computed by solving a quadratic
hedging problem under a certain equivalent martingale measure. Due to the change of nu-
meraire, the dimensionality of the problem is increased by one in this approach. In order to
facilitate computations in concrete models in Chapter 6, we therefore put forward an alter-
native approach in Section 5.5. Here, the first-order approximations are again represented
as the solution to a quadratic hedging problem, but in terms of the original numeraire and
subject to a different equivalent probability measure.

5.2 Heuristic derivation of the solution

In this section we give a heuristic account of how to determine asymptotic expansions of the
utility indifference price and the corresponding utility-based hedging strategy as the number
of contingent claims tends to zero. In doing so, we first proceed along the lines of Kallsen
(2008) and explain how to obtain the results of Kramkov & Sîrbu (2006, 2007) in a heuristic
way (cf. Section 5.4 below for a mathematically precise statement of the corresponding
results). We then go on to provide the heuristic derivation of the alternative representation
that is worked out in Section 5.5.

As already alluded to above, we want to determine first-order approximations of the
utility indifference price πq per unit of H and the utility-based hedging strategy ϕq for q
units of H for small q. Therefore we assume a smooth dependency

πq = π(0) + qπ′ + o(q) (5.3)

with constants π(0), π′. The marginal utility-based price π(0) can be interpreted as a lim-
iting price for very small q. It is studied in Davis (1997) and Karatzas & Kou (1996). The
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risk premium per option π′ represents a kind of sensitivity of the option price relative to the
number q of options sold. Analogously, we suppose

ϕq = ϕ+ qϕ′ + o(q), (5.4)

where ϕ denotes the optimal strategy in the pure investment problem (5.1) and ϕ′ represents
the marginal utility-based hedging strategy per unit of H . In the following we show how to
determine π0, π′, ϕ and ϕ′.

We have considered the pure investment problem (5.1) in Chapter 4. In particular, if
one forgets about technical details, a strategy ϕ is optimal w.r.t. the power utility function
u(x) = x1−p/(1 − p), p ∈ R+\{0, 1} if and only if S is a martingale under the q-optimal
measure Q0 ∼ P with density process

dQ0

dP
:=

u′(VT (ϕ))

C1

=
(VT (ϕ)/v)−p

C1

, (5.5)

where C1 := E((VT (ϕ)/v)−p)) denotes the normalizing constant (cf. Corollary 4.13 for
more details). Notice that here and in the following we work in terms of V (ϕ)/v instead of
V (ϕ), because the former does not depend on the intial endowment v for power utility by
Corollary 4.13. Using this criterion, we showed how to compute the optimal strategy ϕ, its
value process V (ϕ) and the corresponding maximal expected utility for power utility func-
tions in affine stochastic volatility models (see Section 4.4). We now turn to the optimization
problem (5.2) including q options sold for πq each. This amounts to maximizing

g(ϕ′) := E
(
u(v + qπq + ϕq • ST − qH)

)
= E

(
u(VT (ϕ) + q(π(0) + qπ′ + (ϕ′ + o(1)) • ST −H) + o(q2))

)
= E

(
u(VT (ϕ))

)
+ qE

(
u′(VT (ϕ))(π(0) + qπ′ + (ϕ′ + o(1)) • ST −H)

)
+
q2

2
E
(
u′′(VT (ϕ))(π(0) + ϕ′ • ST −H)2

)
+ o(q2).

For power utility functions we have u′(x) = x−p and u′′(x) = −px−1−p. Hence

g(ϕ′) = C0v
1−p/(1− p) + qC1v

−pEQ0

(
π(0) + qπ′ + (ϕ′ + o(1)) • ST −H

)
− q2p

2
E
(
VT (ϕ)−1−p (π(0) + ϕ′ • ST −H)

2
)

+ o(q2) (5.6)

= C0v
1−p/(1− p) + qC1v

−pEQ0

(
π(0) + qπ′ + (ϕ′ + o(1)) • ST −H

)
− q2C1v

−p p

2
EQ0

(
VT (ϕ)

v2

(
π(0) + ϕ′ • ST −H

VT (ϕ)/v

)2
)

+ o(q2) (5.7)

with C0 := E((VT (ϕ)/v)1−p). Since Q0 is an equivalent martingale measure (EMM) for S,
it follows that

EQ0((ϕ′ + o(1)) • ST ) = 0. (5.8)

Now define a probability measure Q$ ∼ Q0 through the Radon-Nikodym density

dQ$

dQ0

:=
VT (ϕ)

v
. (5.9)
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Since Q0 is an EMM for S, it follows that Q$ is an EMM relative to the numeraire V (ϕ)/v,
i.e. S$ := Sv/V (ϕ) is a Q$-martingale. Write

π$(0) :=
π(0)v

V (ϕ)
, H$ :=

Hv

V (ϕ)
(5.10)

for the discounted values relative to the new numeraire V (ϕ)/v. Since ϕ′ is assumed to be
self-financing, (Goll & Kallsen, 2000, Proposition 2.1) yields

π(0) + ϕ′ • ST −H
VT (ϕ)/v

= π$(0) + ϕ′ • S$
T −H$.

By (5.8), (5.9), (5.10) we have to maximize

g(ϕ′) =
C0v

1−p

1− p
+ q

C1

vp
(π(0)− EQ0(H)) + q2C1

vp

(
π′ − p

2v
ε2

$(ϕ′)
)

+ o(q2),

with
ε2

$(ϕ′) := EQ$

((
π$(0) + ϕ′ • S$

T −H$
)2
)
.

If we disregard the o(q2)-term, this means that ϕ′ has to minimize ε2
$ and hence represents

the variance-optimal hedging strategy of the claim H$ under the measure Q$ and relative
to the numeraire V (ϕ)/v. Moreover, ε2

$ is given by the corresponding minimal expected
squared hedging error. Since S$ is a Q$-martingale, ϕ′ is given as the integrand in the
Galtchouk-Kunita-Watanabe decomposition

V $
t = V $

0 + ϕ′ • S$
t +N$

t (5.11)

of the Q$-martingale V $ := EQ$(H$|Ft) relative to S$, where N$ denotes a martin-
gale which is orthogonal to S$ (cf. Föllmer & Sondermann (1986)). Consequently, ε2

$ =

E((N$
T )2) by orthogonality of S$, N$. Moreover, it follows from the indifference criterion

U(v) = U q(v + qπq) that
π′ =

p

2v
ε2

$(ϕ′) (5.12)

as well as
π(0) = EQ0(H) (5.13)

or equivalently π$(0) = EQ$(H$). This shows that π$(0) coincides with the variance-
optimal initial endowment of the claimH$ hedged with S$ under the measureQ$. Hence one
has to proceed as follows in order to obtain first-order expansions for the utility indifference
price πq and the utility-based hedging strategy ϕq:

1. Solve the pure investment problem (5.1) without any contingent claims, i.e. determine
the optimal strategy ϕ and its value process V (ϕ).

2. Compute the density process of Q$ w.r.t. P and the dynamics of S$ under Q$.

3. Solve the quadratic hedging problem for the claim H$ under the martingale measure
Q$ and relative to the numeraire V (ϕ)/v.
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Problems 1 and 2 can be solved explicitly in a number of affine stochastic volatility models
(cf. Chapters 4 and 6). Problem 3 has been dealt with in the univariate case (d = 1) for Lévy
processes by Hubalek et al. (2006) and for affine stochastic volatility models by Pauwels
(2007). In principle, a similar approach could also be used to tackle Problem 3 above in
affine stochastic volatility models. However, after changing the numeraire to V (ϕ)/v, one
has to deal with two non-trivial assets even in the simplest case of a market consisting of
just one bond and one stock. This is the motivation for deriving an alternative representation
for π(0), π′, ϕ, ϕ′ in terms of a quadratic hedging problem relative to the original numeraire.
Instead of introducing the measure Q$, rewrite (5.6) in terms of the measure Pe ∼ P for

dPe

dP
=

(VT (ϕ)/v)−1−p

C2

, (5.14)

with normalizing constant C2 := E((VT (ϕ)/v)−1−p). This yields

g(ϕ′) =
C0v

1−p

1− p
+ q

C1

vp
(π(0)− EQ0(H)) + q2C1

vp

(
π′ − pC2

2vC1

ε2
e(ϕ′)

)
+ o(q2),

with
ε2
e(ϕ′) := EPe

(
(π(0) + ϕ′ • ST −H)

2
)
.

Again using the indifference criterion U(v) = U q(v + qπq), we obtain that π(0), ϕ′ and ε2
e

represent the variance-optimal initial endowment resp. hedging strategy and the correspond-
ing minimal expected squared hedging error for the original claim H hedged with S under
the measure Pe relative to the original numeraire. This means that one can now proceed in
the following way to obtain π0, π′, ϕ0, ϕ′:

1. Solve the pure investment problem (5.1) without any contingent claims, i.e. determine
the optimal strategy ϕ and its value process V (ϕ).

2. Compute the density process of Pe w.r.t. P and the dynamics of S under Pe.

3. Solve the quadratic hedging problem for the claimH relative to the original numeraire
and under Pe, which is typically not an EMM.

Comparing the two approaches, we find that the situation resembles quadratic hedging
in the case where the underlying asset is not necessarily a martingale. One can either use
the approach of Gourieroux et al. (1998), Rheinländer & Schweizer (1997), Arai (2005) and
solve a mean-variance hedging problem relative to an EMM and a new numeraire, or one
can turn to the methodology of ČK to solve the hedging problem by different means relative
to the original numeraire.

As already mentioned above, working relative to the original numeraire leads to sim-
pler formulas in the actual computations, because the dimensionality of the problem is not
increased by one (cf. Chapter 6 for more details).
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5.3 Utility-based pricing and hedging

We work in the same setup as in Chapter 4. In addition to the traded securities, we now
also consider a nontraded European contingent claim with maturity T and payment function
H , which is a FT -measurable random variable. Following Kramkov & Sîrbu (2006, 2007),
we assume that H is dominated by the terminal value of the value process corresponding to
some admissible strategy.

Assumption 5.1 |H| ≤ w + ψ • ST for some w ∈ (0,∞) and ψ ∈ Θ(w).

Remark 5.2 Put differently, Assumption 5.1 means that a superhedging strategy exists for
|H| given some initial capital w. It is trivially satisfied for all bounded contingent claims, as
e.g. European put options and also holds for European call options if S is positive.

If the investor sells q units ofH at time 0, her terminal wealth should be sufficiently large
to cover the payment −qH due at time T . Consequently, one has to consider the following
slightly different set Θq

v of admissible strategies in this case (cf. e.g. Hugonnier & Kramkov
(2004) and Delbaen & Schachermayer (1997) for more details).

Definition 5.3 A trading strategy φ ∈ Θ(v) is called maximal, if the terminal value VT (φ)

of its wealth process cannot be dominated by that of any other strategy in Θ(v). An arbitrary
strategy φ is called acceptable, if its wealth process can be written as

V (φ) = v′ + φ′ • S − (v′′ + φ′′ • S), v′, v′′ ∈ R+,

where φ′ ∈ Θ(v′), φ′′ ∈ Θ(v′′) and, in addition, φ′′ is maximal. For v ∈ (0,∞) and q ∈ R
we denote by

Θq(v) := {φ : φ is acceptable, v + φ • ST − qH ≥ 0},

the set of acceptable strategies whose terminal value dominates qH .

Remark 5.4 Subject to the NFLVR Assumption 4.7, Θ(v) coincides with Θq(v) for q = 0.

If in addition to an initial endowment of v ∈ (0,∞), a number of q units of H is sold
for a price of x ∈ R each, the investor’s initial position consists of v + qx in cash as well
as −q units of the contingent claim H . Hence Θq(v + qx) represents the natural set of
admissible trading strategies for utility functions defined on R+. The maximal expected
utility the investor can achieve by dynamic trading in the market is then given by

U q(v + qx) := sup
φ∈Θq(v+qx)

E(u(v + qx+ φ • ST − qH)).

Definition 5.5 Fix q ∈ R. A number πq ∈ R is called utility indifference price (or reserva-
tion price) of H , if

U q(v + qπq) = U(v), (5.15)
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The following example shows that indifference prices do not exist in general, even if
Assumption 5.1 is satisfied and NFLVR holds in the given financial market.

Example 5.6 Let T = 1, d = 1 and consider S = exp(X) for a symmetric NIG process X
with characteristic function

E(exp(iuX1) = exp
(
i(
√

3− 2)u+ (2−
√

4 + u2)
)
.

By (Sato, 1999, Theorem 25.17) the process S is a martingale. In view of (Kallsen, 2000,
Lemma 4.2, Theorem 3.2) this implies that ϕ = 0 is optimal for u(x) = 2

√
x and initial

endowment v = 1
4
. The corresponding maximal expected utility is obviously given by

U(v) = 2
√
v = 1. (5.16)

In particular, Assumption 4.9 is satisfied and since S is a P -martingale Assumption 4.7
holds, too. Now consider a European call option with payment function H = (S1 −K)+,
K > 0. Then Assumption 5.1 is satisfied as well with w = S0 = 1 and ψ = 1.

For x < 3
4
, it follows from (Eberlein & Jacod, 1997, Theorem 2) that Θ1(v + x) = ∅,

because no superhedging strategy with initial capital v + x < 1 exists in this case. Hence

U1(v + x) = −∞ < 1, x <
3

4
. (5.17)

For x ≥ 3
4

we have 1 ∈ Θ1(v + x). Together with monotone convergence this yields

U1(v + x) ≥ 2E
(√

S1 − (S1 − 100)+
)
≥ 2E(

√
S11{S1≤K})

K→∞−→ 2E(
√
S1)

= 2 exp(1 +
√

3/2−
√

15/2) = 1.864,

hence U1(v + x) > 1 for x ≥ 3
4

and sufficiently large K. Combining this with (5.16) and
(5.17) we obtain that no utility indifference price exists in this case.

Remark 5.7 Similarly as in Example 5.6 one can show that utility indifference prices do not
exist in general, even if the investor receives contingent claims with a positive payoff. This
structurally differs from the setup of Henderson (2002) and Henderson & Hobson (2002),
where the utility indifference price always exists, if the investor receives positive random
endowments, but never exists if the investor sells endowments of the same kind.

However, a unique indifference price πq always exists if the number q of contingent
claims sold is sufficiently small or conversely, if the initial endowment v is sufficiently
large.

Lemma 5.8 Suppose Assumptions 4.7, 4.9 and 5.1 hold. Then a unique indifference price
exists for sufficiently small q. More specifically, (5.15) has a unique solution πq if q < v

2w
,

respectively if q < v
w

and H ≥ 0.
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PROOF. First notice that gqv : x 7→ U q(v + qx) is concave and strictly increasing on its
effective domain. Denote byw and ψ the initial endowment and the superhedging strategy of
H from Assumption 5.1. Then gqv(x) ≤ U(v+ qx+ qw) <∞ for all x ∈ R by (Kramkov &
Schachermayer, 1999, Theorem 2.1). For H ≥ 0 and q < v

w
we have gqv(x) > −∞ for x >

w− v
q
. In particular, gqv is continuous and strictly increasing on (w− v

q
,∞) by (Rockafellar,

1970, Theorem 10.1). ByH ≥ 0 we have gqv(0) ≤ U(v). Moreover, Assumption 5.1 implies
gqv(w) ≥ U(v). Hence there exists a unique solution πq ∈ [0, w] to gqv(x) = U(v). Similarly,
for general H and q < v

2w
, the function gqv is continuous and strictly increasing on an open

set containing [−w,w]. Moreover, g(−w) ≤ U(v) and g(w) ≥ U(v). Hence there exists a
unique πq ∈ (−w,w) such that g(πq) = U(v). This proves the assertion. �

We now turn to utility-based hedging strategies. Their existence has been established by
Hugonnier & Kramkov (2004) under the following additional assumption, which is slightly
stronger than the NFLVR Assumption 4.9 by (Ansel & Stricker, 1994, Corollaire 3.5).

Assumption 5.9 There exists an equivalent local martingale measure, i.e. a probability
measure Q ∼ P such that S is a local Q-martingale.

Notice that Assumption 5.9 is equivalent to Assumption 4.9 and hence to NFLVR, if the
asset price process S is positive.

Theorem 5.10 Fix q ∈ R satisfying the conditions of Lemma 5.8 and suppose Assumptions
4.9, 5.1 and 5.9 are satisfied. Then there exists ϕq ∈ Θq(v + qπq) such that

E(u(v + qπq + ϕq • ST − qH)) = U q(v + qπq).

Moreover, the corresponding optimal value process v + qπq + ϕq • S is unique.

PROOF. This follows from (Hugonnier & Kramkov, 2004, Theorem 2), as the proof of
Lemma 5.8 shows that (v+ qπq, q) belongs to the interior of {(x, r) ∈ R2 : Θr(x) 6= ∅}. �

Without contingent claims, the investor will trade according to the strategy ϕ, whereas
she will invest into ϕq if she sells q units of H for πq each. Hence the difference between
both strategies represents the action the investors needs to take in order to compensate for
the risk of selling q units of H . This motivates the following notion.

Definition 5.11 The trading strategy ϕq−ϕ from Theorem 5.10 is called utility-based hedg-
ing strategy.

5.4 The asymptotic results of Kramkov and Sîrbu applied
to power utility

We now give a brief exposition of some of the results of Kramkov & Sîrbu (2006, 2007) con-
cerning the existence and computation of first-order approximations of utility-based prices
and hedging strategies.



5.4. The asymptotic results of Kramkov and Sîrbu 103

Throughout, we suppose that Assumptions 4.9 and 5.9 are satisfied. Moreover, we now
restrict our attention to power utility functions u(x) = x1−p/(1 − p), p ∈ R+\{0, 1} and
denote by ϕ, V (ϕ) = vE (−ã • S) and L the optimal strategy as well as the corresponding
value and opportunity processes for u and initial endowment v from Proposition 4.15.

We begin by providing formal definitions of the first-order approximations of utility-
based prices and hedging strategies introduced heuristically in Section 5.2

Definition 5.12 Real numbers π(0) and π′ are called marginal utility-based price resp. risk
premium per option sold if

πq = π(0) + qπ′ + o(q2).

for q → 0, where πq is well-defined for sufficiently small q by Lemma 5.8. Notice that π(0)

and π′ are necessarily unique, if they exist.

We now turn to the approximation of utility-based hedging strategies in the sense of
Kramkov & Sîrbu (2007). Unlike for exponential utility (cf. e.g. Mania & Schweizer (2005),
Becherer (2006) and Kallsen & Rheinländer (2008)) convergence of the approximation only
refers to the terminal values of the corresponding value processes here.

Definition 5.13 A trading strategy ϕ′ ∈ L(S) is called marginal utility-based hedging strat-
egy, if there exists v′ ∈ R such that

lim
q→0

(v + qπq + ϕq • ST )− (v + ϕ • ST )− q(v′ + ϕ′ • ST )

q
= 0

in P -probability and (v′ + ϕ′ • S)LE (−ã • S)−p is a martingale.

Notice that in contrast to the corresponding wealth process, marginal utility-based hedg-
ing strategies are not necessarily unique.

Remark 5.14 In addition to utility indifference prices, Kramkov & Sîrbu (2007) also con-
sider the (dynamic) certainty equivalence value cq, which is defined as the solution to the
equation

U q(v) = U(v − qcq).

For power utility, (Kramkov & Sîrbu, 2007, Theorem A.1, Theorem 8) show that cq and
πq admit the same first-order approximations. Moreover, ϕ′ ∈ L(S) is a marginal utility-
based hedging strategy in the sense of Definition 5.13 if and only if its wealth process is
the wealth process of a marginal utility-based hedging strategy in the sense of (Kramkov &
Sîrbu, 2007, Definition 2). Together with (Kramkov & Sîrbu, 2007, Theorem A.1, Theorem
8), this follows from the observation that the corresponding value process does not depend
on the initial endowment for power utility by (Kramkov & Sîrbu, 2007, Theorem 2) and
Corollary 4.13. In particular, marginal utility-based hedging strategies are independent of
the current level of wealth for power utility.

The results of Kramkov and Sîrbu are derived subject to two technical assumptions.
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Assumption 5.15 The following process is σ-bounded:

S$ :=

(
1

E (−ã • S)
,

S

E (−ã • S)

)
.

The reader is referred to Kramkov & Sîrbu (2006) for more details on σ-bounded pro-
cesses as well as for sufficient conditions that ensure the validity of this assumption.

Since LE (−ã • S)1−p is a martingale with terminal value E (−ã • S)1−p
T by Proposition

4.15, we can define an equivalent probability measure Q$ ∼ P through

dQ$

dP
:=

E (−ã • S)1−p
T

C0

, C0 := L0 = E(E (−ã • S)1−p
T ). (5.18)

Let H 2
0 (Q$) be the space of square-integrable Q$-martingales starting at 0 and set

M 2
$ :=

{
M ∈H 2

0 (Q$) : M = φ • S$ with φ ∈ L(S$)
}
.

Assumption 5.16 There exists a constant w$ ≥ 0 and a process M$ ∈M 2
$ , such that

|H$| := |H|
E (−ã • S)T

≤ w$ +M$
T .

Remark 5.17 By (Kramkov & Sîrbu, 2006, Remark 1), Assumption 5.16 implies that As-
sumption 5.1 holds. In particular, indifference prices and utility-based hedging strategies
exist for sufficiently small q if Assumptions 4.9, 5.9 and 5.16 are satisfied.

In the proof of (Kramkov & Sîrbu, 2007, Lemma 1) it is shown that

V $
t := EQ$

(
H$|Ft

)
, t ∈ [0, T ]

is a square-integrable Q$-martingale. Hence it admits a decomposition

V $
t = EQ$

(
H$
)

+ ξ • S$ +N$ =
1

C0

E
(
E (−ã • S)−pT H

)
+ ξ • S$ +N$, (5.19)

where ξ • S$ ∈M 2
$ andN$ is an element of the orthogonal complement of M 2

$ in H 2
0 (Q$).

Note that this decomposition coincides with the classical Galtchouk-Kunita-Watanabe de-
composition, if S$ is a locally square integrable martingale. The following Theorem sum-
marizes the results of Kramkov & Sîrbu (2006, 2007) applied to power utility.

Theorem 5.18 Suppose Assumptions 4.9, 5.9, 5.15 and 5.16 hold. Then the marginal utility-
based price π(0) and the risk premium π′ exist and are given by

π(0) :=
1

C0

E(E (−ã • S)−pT H),

π′ :=
p

2v
EQ$((N$

T )2).

A marginal-utility-based hedging strategy φ′ is given in feedback form as

φ′ := (ã, Ed + ãS>−)ξ −
(
π0 + φ′ • S

)
ã,

with ξ from (5.19).
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PROOF. The first two assertions follow immediately from (Kramkov & Sîrbu, 2006, Theo-
rem A.1, Theorem 8, Theorem 4) adapted to the present notation. For the second, (Kramkov
& Sîrbu, 2007, Theorem 2) and (Kramkov & Sîrbu, 2006, Theorem A.1, Theorem 8) yield

lim
q→0

(v + qπq + ϕq • ST )− (v + ϕ • ST )− qE (−ã • S)T (π(0) + ξ • S$
T )

q
= 0. (5.20)

because the process X ′T (x) from (Kramkov & Sîrbu, 2007, Equation 23) coincides with
E (−ã • S) for power utility by Corollary 4.13. Now notice that for ξ0 := π(0) + ξ •

S$ − ξ>S$ = π(0) + ξ • S$
− − ξ>S$

−, Remark 4.5 gives

E (−ã • S)(π(0) + ξ • S$)

= π(0) + ξ0 • E (−ã • S) + (ξ2, . . . , ξd+1) • S

= π(0) + ((ξ2, . . . , ξd+1)− E (−ã • S)−ξ
0ã) • S

= π(0) + ((ã, Ed + ãS>−)ξ) • S − (E (−ã • S)−(π(0) + ξ • S$
−)) • (ã • S).

Hence E (−ã • S)(π0 + ξ • S$) solves the stochastic differential equation

G = π0 + ((ã, Ed + ãS>−)ξ) • S −G− • (ã • S). (5.21)

By (Jacod, 1979, (6.8)) this solution is unique. Since φ′ is well-defined by (ČK, Lemma 4.9)
and π0 + φ′ • S also solves (5.21), we therefore have

E (−ã • S)(π0 + ξ • S̃) = π0 + φ′ • S,

which combined with (5.20) yields the third assertion. �

Remark 5.19 If the dual minimizer v−pLE (−ã • S) is a martingale and hence the density
process of the q-optimal martingale measure Q0, we have C0 = C1 := E(E (−ã • S)−p)

and therefore π(0) = EQ0(H) as in Section 5.2.

5.5 An alternative representation

We now consider how to compute the quantities π(0), π′, ϕ, ϕ′ from the asymptotic expan-
sions in Theorem 5.18. ϕ has been computed in a wide range of affine stochastic volatility
models in Chapter 4, where we also obtained conditions for the existence of the correspond-
ing q-optimal martingale measure Q0. If Q0 exists, the marginal utility-based price π(0)

can be computed by calculating EQ0(H). Since the Q0-characteristics of S can be com-
puted with Proposition A.5, this can be dealt with in affine models using Laplace transform
methods similarly as in Raible (2000), Hubalek et al. (2006) and Pauwels (2007). More gen-
erally, a similar approach still can also be used if Q0 does not exist (cf. Vierthauer (2009)
for more details). Consequently, we suppose in the remainder of this section that ϕ and π(0)

are known and proceed to discuss how to obtain π′, ϕ′.
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By Kramkov & Sîrbu (2006, 2007), ϕ′ and π′ can be obtained by calculating the gen-
eralized Galtchouk-Kunita-Watanabe decomposition (5.19). Since S$ generally only is a
Q$-supermartingale rather than a martingale, this is typically very difficult. If however, S$

happens to be a locally square-integrable Q$-martingale, (5.19) coincides with the classical
Galtchouk-Kunita-Watanabe decomposition. By Föllmer & Sondermann (1986) this shows
that ξ represents the variance-optimal hedging strategy of H hedged with S$ under the mea-
sure Q$ and E((N$

T )2) is given by the corresponding minimal expected squared hedging
error in this case. Moreover, ξ and E((N$

T )2) can then be characterized in terms of semi-
martingale characteristics.

Assumption 5.20 S$ is a locally square-integrable Q$-martingale.

Lemma 5.21 Suppose Assumptions 4.9, 5.9, 5.15, 5.16, 5.20 hold and denote by c̃(S$,V $)$

the modified second Q$-characteristic of (S$, V $) w.r.t. some A ∈ A +
loc. Then we have

ξ = (c̃S
$$)−1c̃S

$,V $$, (5.22)

E((N$
T )2) = EQ$

(
(c̃V

$$ − (c̃S
$,V $$)>(c̃S

$$)−1c̃S
$,V $$) • AT

)
. (5.23)

PROOF. Since S$ is a locally square integrableQ$-martingale by Assumption 5.20, the claim
follows from (ČK, Theorem 4.10, Theorem 4.12) applied to the (local-) martingale case. �

The key to applying Lemma 5.21 in concrete models is the computation of the joint
characteristics of S$ and V $. In principle, this problem can be tackled using semimartingale
calculus and Laplace transform inversion techniques similarly as in Pauwels (2007). How-
ever, this direct approach requires the solution of a d + 1-dimensional quadratic hedging
problem. Instead we pursue a different approach here that represents the relevant quantities
as the solution to a d-dimensional quadratic hedging problem in terms of the original nu-
meraire. For our approach to work, we need the following integrability condition, which is
satisfied e.g. if S$ is a square-integrable Q$-martingale.

Assumption 5.22
C2 := E((E (−ã • S)T )−1−p) <∞.

Subject to Assumption 5.22 we can define a probability measure Pe ∼ P via

dPe

dP
:=

E (−ã • S)−1−p
T

C2

. (5.24)

Lemma 5.23 Suppose Assumptions 4.9, 5.9 and 5.22 hold. Then the process

L$
t := EPe

(
E (−ã • S)2

T

E (−ã • S)2
t

∣∣∣∣Ft

)
, 0 ≤ t ≤ T,

satisfies L$
T = 1. Moreover, we have

EPe

(
dQ$

dPe

∣∣∣∣Ft

)
=
C2

C0

L$
tE (−ã • S)2

t =
L$
tE (−ã • S)2

t

L$
0

.

and L$, L$
− > 0. Hence the stochastic logarithm K := L (L$) = 1

L$
−
• L$ is well-defined.
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PROOF. The first part of the assertion is obvious, whereas the second follows from dQ$

dPe
=

C2

C0
E (−ã • S)2

T . By Remark 4.12 and Lemma 4.8 we have E (−ã • S),E (−ã • S)− > 0.
Combined with Q$ ∼ Pe and (JS, I.2.27) this implies L$, L$

− > 0 and hence the third part
of the assertion by (JS, II.8.3). �

Remark 5.24 L$ is linked to the opportunity process L of the pure investment problem via

L$
t =

E (−ã • S)−1−p
t

E(E (−ã • S)−1−p
t |Ft)

Lt,

by the generalized Bayes’ formula, LT = 1 and since LE (−ã • S)1−p is a martingale.

Set

Vt := E (−ã • S)tV
$
t = E

(
E (−ã • S)−pT
E (−ã • S)−pt

H

∣∣∣∣∣Ft

)
, 0 ≤ t ≤ T, (5.25)

denote by bSebV e
bKe

 ,

 cSe cS,V e cS,Ke

cV,Se cV e cV,Ke

cK,Se cK,V e cKe

 , K(S,V,K)e, A


Pe-differential characteristics of the semimartingale (S, V,K) and define

c̃S? :=
1

1 + ∆AK

(
cSe +

∫
(1 + x3)x1x

>
1 K

(S,V,K)e(dx)

)
,

c̃S,V ? :=
1

1 + ∆AK

(
cS,V e +

∫
(1 + x3)x1x2K

(S,V,K)e(dx)

)
,

c̃V ? :=
1

1 + ∆AK

(
cV e +

∫
(1 + x3)x2

2K
(S,V,K)e(dx)

)
,

where K = K0 +AK +MK denotes an arbitrary semimartingale decomposition of K. We
then have the following representation, which is the main result of this chapter. Note that
it coincides with the heuristic in Section 5.2 if the q-optimal martingale measure Q0 exists,
since this implies C0 = C1.

Theorem 5.25 Suppose Assumptions 4.9, 5.9, 5.15, 5.16, 5.20 and 5.22 are satisfied and
R := Ed + S−ã

> is invertible P ⊗ A-almost everywhere. Then c̃S∗, c̃S,V ∗, c̃V ∗ are well
defined, ϕ′ given in feedback form as

ϕ′ = (c̃S∗)−1c̃S,V ∗ −
(

1

C0

E(E (−ã • S)T )−pH) + ϕ′ • S− − V−
)
ã (5.26)

is a marginal utility-based hedging strategy and the corresponding risk premium is

π′ =
pC2

2vC0

EPe

(( (
c̃V ∗ − (c̃S,V ∗)>(c̃S∗)−1c̃S,V ∗

)
L$
)
• AT

)
. (5.27)
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PROOF. An application of Propositions A.3, A.4 yields the Pe-differential characteristics of
the process (S, V,E (−ã • S),L (C2

C0
L$E (−ã • S)2)). Since C2

C0
L$E (−ã • S)2 is the density

process of Q$ with respect to Pe, the Q$-characteristics of (S, V,E (−ã • S)) can now
be obtained with Proposition A.5. Another application of Proposition A.4 then allows to
compute the Q$-characteristics of (S$, V $). Since S$ ∈ H 2

loc(Q
$) by Assumption 5.20 and

V $ ∈ H 2(Q$) by the proof of (Kramkov & Sîrbu, 2007, Lemma 1), the modified second
characteristics c̃V $$, c̃S$,V $$ and c̃S$$ exist and are given by

c̃V
$$ =

1 + ∆AK

E (−ã • S)2
−

(
c̃V ? + 2V−ã

>c̃S,V ? + V 2
−ã
>c̃S?ã

)
, (5.28)

c̃S
$,V $$ =

1 + ∆AK

E (−ã • S)2
−

(
ã>

Ed + S−ã
>

)(
c̃S,V ? + c̃S?ãV−

)
, (5.29)

c̃S
$

=
1 + ∆AK

E (−ã • S)2
−

(
ã>c̃S?ã ã>c̃S?(Ed + ãS>)

(Ed + Sã>)c̃S?ã (Ed + Sã>)c̃S?(Ed + ãS>)

)
. (5.30)

In particular it follows that c̃V ?, c̃S,V ? and c̃S? are well defined. Let φ′ be the marginal utility-
based hedging strategy from Theorem 5.18. Combining the definition of φ′, Lemma 5.21,
(5.29) and (Albert, 1972, Theorem 3.9, Theorem 9.1.6), we obtain

φ′ = lA−1r
(
(c̃S?)−1c̃S,V ? + (c̃S?)−1(c̃S?)V−ã

)
− (π(0) + φ′ • S−)ã, (5.31)

with

l = (ã, R>), r =

(
ã>c̃S?

Rc̃S?

)
, A =

(
d b>

b C

)
,

for R = Ed + Sã>, d = ã>c̃S?ã, b = Rc̃S?ã, C = Rc̃S?R>. In view of Lemma B.2, (5.31)
implies

Rc̃S?φ′ = Rc̃S?
(
(c̃S?)−1c̃S,V ? − (π(0) + φ′ • S− − V−)ã

)
. (5.32)

Since R is invertible by assumption, this leads to c̃S?ψ′ = 0 for

ψ′ := φ′ − ((c̃S?)−1c̃S,V ? − (π(0) + φ′ • S − V−)ã). (5.33)

Hence (ψ′)>c̃S?ψ′ = 0 and it follows from the definition of c̃S? that cψ′•Se = 0 and
Kψ′•Se = 0. By Proposition A.5, Assumption 5.20, (JS, III.3.8) and Lemma A.8, this
implies bψ′•Se = 0 and hence ψ′ • S = 0. By the definition of ψ′, this shows that the value
process φ′ • S solves the feedback equation

G = (c̃S?c̃S,V ? − (π(0)− V )ã) • S −G− • (a • S).

Since ϕ′ • S also solves this equation and the solution is unique by (Jacod, 1979, (6.8)), we
get ϕ′ • S = φ′ • S. Consequently, ϕ′ is a marginal utility-based hedging strategy.

We now turn to the risk premium π′. First notice that by (Albert, 1972, Theorem 9.1.6),

C$ := c̃V
$$ − (c̃S

$,V $$)>ξ = c̃V
$$ − (c̃S

$,V $$)>(c̃S
$$)−1c̃S

$,V $$ ≥ 0,

Ce := c̃V ? − (c̃S,V ?)>(c̃S?)−1c̃S,V ? ≥ 0.
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Hence C$ • A is an increasing predictable process and by Lemmas 5.21 and A.12,

EQ$((N$
T )2) = EQ$(C$ • A)

=
C2

C0

EPe
(
L$
−E (−ã • S)2

−C
$ • A

)
=
C2

C0

EPe
(
L$
−E (−ã • S)2

− • (〈V $, V $〉Q$ − 〈V $, ξ • S$〉Q$

)
)
.

Since we have shown φ′ • S = ϕ′ • S above, (Goll & Kallsen, 2000, Proposition 2.1) and
the proof of Theorem 5.18 yield ξ • S$ = (ϕ′0, ϕ′) • S$ for ϕ′0 := π(0) + ϕ′ • S − ϕ′S$.
Hence

EQ$((N$
T )2) =

C2

C0

EPe
(
L$
−E (−ã • S)2

− •
(
〈V $, V $〉Q$ − 〈V $, (ϕ′0, ϕ′) • S$〉Q$

))
=
C2

C0

EPe
(
L$
−E (−ã • S)2

−(c̃V
$$ − (c̃S

$,V $$)>(ϕ′0, ϕ′)) • A
)
.

After inserting c̃V $$, c̃S$,V $$ from (5.28) resp. (5.29) and the definition of (ϕ′0, ϕ′), this leads
to

EQ$((N$
T )2) =

C2

C0

EPe
(
(1 + ∆AK)L$

−C
e • AT

)
. (5.34)

Now notice that
L$ = L$

−(1 + ∆AK + ∆MK).

By (JS, I.4.49, I.4.34) the process ∆MK • (L$
−C

e • A) is a local martingale. If (Tn)n∈N

denotes a localizing sequence, this yields

EPe(L$Ce • AT∧Tn) = EPe((1 + ∆AK + ∆MK)L$
−C

e • AT∧Tn)

= EPe((1 + ∆AK)L$
−C

e • AT∧Tn),

and hence
EPe(L$Ce • AT ) = EPe((1 + ∆AK)L$

−C
e • AT )

by monotone convergence. Combining this with (5.34), we obtain

E((N$
T )2) =

C2

C0

EPe(
(
c̃V ? − (c̃S,V ?)>(c̃S?)−1c̃S,V ?

)
L$ • AT ).

In view of Theorem 5.18 this completes the proof. �

Remarks.

1. Note that an inspection of the proof of Theorem 5.25 shows that the formulas for
ϕ′ and π′ are independent of the specific semimartingale decomposition of K that is
used.

2. One easily verifies that if R is not invertible, S− is an eigenvector of R for the eigen-
value 0 and hence ã>S− = −1. By Lemma 4.8 this implies that V (ϕ)− = ϕ>S−, i.e.
all funds are invested into stocks in the pure investment problem.
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3. We are convinced that R does not have to be invertible for Theorem 5.25 to hold. For
d = 1, this follows from direct computations, which show that ϕ′ = φ′ regardless
of whether R is invertible or not. Moreover, if the process S is continuous and the q-
optimal martingale measureQ0 exists, ϕ′ is an utility-based hedging strategy even ifR
is not always invertible. This is a consequence of (Kramkov & Sîrbu, 2007, Theorem
3) and the fact that the modified second characteristics of S and S, V are invariant
w.r.t. equivalent measure changes for continuous S. By the proof of Theorem 5.25,
the formula for the risk premium π′ remains unchanged in this case.

In view of (ČK, Theorems 4.10, 4.12), Theorem 5.25 states that the first order approxi-
mations for ϕq and πq can essentially be computed by solving the quadratic hedging problem
for the contingent claim H under the (non-martingale) measure Pe relative to the original
numeraire. However, this assertion only holds true literally if the optimal strategy ϕ in the
pure investment problem is admissible in the sense of (ČK, Definition 2.2, Corollary 2.5),
i.e. if ϕ • ST ∈ L2(Pe) and (ϕ • S)ZQ is a Pe-martingale for any absolutely continuous
signed σ-martingale measure Q with density process ZQ and dQ

dPe
∈ L2(Pe). More pre-

cisely, one easily verifies that in this case ã is the adjustement process in the sense of (ČK,
Definition 3.8) and the strategy −ã1]]τ,T ]]E (−ã • S)− is efficient on the stochastic interval
]]τ, T ]] in the sense of (ČK, Section 3.1). By (ČK, Corollary 3.4) this in turn implies that L$

is the opportunity process in the sense of (ČK, Definition 3.3). Hence it follows along the
lines of (ČK, Lemma 3.15) that the opportunity neutral measure P ? with density process

ZP? :=
L$

L$
0E (AK)

exists. By (ČK, Lemma 3.17, Theorem 4.10), c̃S?, c̃V ?, c̃S,V ? indeed coincide with the cor-
responding modified second characteristics of (S, V,K) under P ?. Hence (ČK, Theorems
4.10, 4.12) yield that subject to the probability measure Pe, ϕ′ represents the variance-
optimal hedging strategy for H whereas the minimal expected squared hedging error of H
is given by the 2C0v

pC2
-fold of π′.

Admissibility of a given candidate strategy is typically hard to verify even in concrete
models (cf. e.g. Černý & Kallsen (2008a,b) for more details). Nevertheless, Theorem 5.25
ascertains that even if ϕ is not admissible, the corresponding formulas typically still admit
an interpretation in the context of asymptotic expansions for utility-based prices and hedging
strategies.



Chapter 6

Asymptotic utility-based pricing and
hedging in affine volatility models

6.1 Introduction

In this chapter we turn to the computation of asymptotic utility-based prices and hedging
strategies in affine stochastic volatility models. We first provide easy-to-check conditions in
Section 6.2 that ensure the existence of the first-order approximations of utility-based prices
and hedging strategies considered in Chapter 5.

Afterwards, in Section 6.3 we then show how to tackle the computation of these quanti-
ties. As already noted in Chapter 5, this essentially amounts to solving a quadratic hedging
problem under the measure Pe. Affine stochastic volatility models satisfying the structure
condition 4.19 turn out to be (time-inhomogeneously) affine under this measure as well.
Quadratic hedging with no martingale assumption on the underlying is dealt with in affine
stochastic volatility models in the upcoming Ph.D. thesis Vierthauer (2009). These results
can be applied directly here, if the optimal strategy ϕ from the pure investment problem
is admissible in the sense of ČK. However, this is often difficult to show and, as remarked
above, not needed for our purposes. In Section 6.3, we therefore show that for affine models
the approach of Vierthauer (2009) still leads to π(0), π′ and ϕ′, even if admissibility of ϕ is
not guaranteed.

For Lévy processes we show in Section 6.4 that ϕ is always admissible. Hence π(0),
π′ and ϕ′ indeed solve a quadratic hedging problem in this case. Since the Lévy property
is preserved under the change of measure to Pe, the results of Hubalek et al. (2006) lead
directly to semi-explicit formulas in terms of complex integrals.

For more general affine models with stochastic volatility we use the corresponding re-
sults of Vierthauer (2009). Here, we only provide formulas and a numerical example for the
BNS model in Section 6.5 and refer the interested reader to Vierthauer (2009) for the gen-
eral affine case. Note that in this case it is generally unclear whether or not ϕ is admissible,
consequently π(0), π′ and ϕ′ do not necessarily solve a quadratic hedging problem.

Summing up, the purpose of this chapter comprises the following. First, we establish
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that the first-order approximations considered in Chapter 5 actually exist in a wide range of
models allowing for jumps and stochastic volatility. Secondly, we show how to compute the
relevant quantities, by linking our results to quadratic hedging.

6.2 Existence of the first-order approximations

Throughout this chapter, let d = 1 and S = S0 exp(X) for a stochastic volatility model
(y,X) satisfying the structure condition 4.19. We need the following crucial

Assumption 6.1 There exist α1 ∈ C1([0, T ],R) and η ∈ C1([0, T ], (0, 1)) satisfying Con-
ditions 1-5 of Theorem 4.20.

The interval (0, 1) is chosen here, because it allows to accomodate arbitrarily large pos-
itive and negative jumps of the asset price. If the jump measure of X has bounded support,
the interval can be chosen to be larger, whereas one may allow for η ∈ C1([0, T ],R) is X is
continuous. The key point is to ensure the existence of an optimal fraction η of stocks in the
interior of the set of admissible allocations.

Example 6.2 By Examples 4.24 and 4.28, Assumption 6.1 is satisfied in the NIG resp. NIG-
OU models estimated in Chapter 3 for p = 2 and p = 150, but not for p = 1

2
. For the BNS

models it is not needed, since the asset price process is continuous in this case.

Given Assumption 6.1, the strategy ϕ = ηvE (−ã • S)−/S− is optimal with value
process vE (−ã • S) for ã = −η/S− by Theorem 4.20. Moreover, the corresponding
opportunity process is given by L = exp(

∫ T
· ψ

(y,X)
0 (α1(s), 0)ds+ α1y).

Lemma 6.3 Suppose Assumption 6.1 is satisfied. Then Assumptions 4.9, 5.9 and 5.15 hold.

PROOF. Since η is (0, 1)-valued by Assumption 6.1, Condition 3 of Theorem 4.20 is satisfied
with equality. Hence E (−ã • S)−pL/L0 is the density process of the q-optimal martingale
measure by Remark 2 after Theorem 4.20. In particular, Assumption 5.9 is satisfied. Again
by Theorem 4.20, Assumption 4.9 holds as well. We now turn to Assumption 5.15, which
can easily be verified using (Kramkov & Sîrbu, 2006, Lemma 8) for (0, 1)-valued η. Indeed,
since ϕS > 0, we have∣∣∣∣ 1

E (−ã • S)

∣∣∣∣ =
v

V (ϕ)
=

v

(1− η)V−(ϕ) + ϕS
≤ v

(1− η)V−(ϕ)
,

as well as ∣∣∣∣ S

E (−ã • S)

∣∣∣∣ =
S

(1− η)V−(ϕ) + ϕS
≤ 1

ϕ
,

because (1− η)V−(ϕ) > 0. In view of (Kramkov & Sîrbu, 2006, Lemma 8) we are done. �

Note that if S is continuous, η ∈ (0, 1) is not needed, since S and V (ϕ) are predictable
and Condition 3 of Theorem 3 is always satisfied with equality in this case. The following
example shows that in general, S$ does not have to be σ-bounded if η is not (0, 1)-valued.
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Example 6.4 Let p = 1
2

and consider the NIG process X from Example 4.24. Then the
optimal fraction of wealth is η = 1 and we have E (−ã • S)−1 = S0/S = exp(−X).
Since X has arbitrarily large negative jumps with positive probability, one can show that
this process is not σ-bounded.

Next, we consider Assumptions 5.20 and 5.22. As a first step, we provide necessary
conditions for the existence of the measure Pe and calculate the Pe-dynamics of (y,X). In
order to compute the density process of Pe w.r.t. P , we make a similar ansatz as in Chapter
4. Since we are looking for a strictly positive martingale with terminal value E (−ã • S)−1−p

T ,
we have to find Le with LeT = 1 such that LeE (−ã • S)−1−p is a martingale. Because
E (−ã • S)−1−p is exponentially affine, this problem can be tackled by making an affine
ansatz

Let := exp
(
αe0 (t) + αe1 (t)yt

)
with deterministic functions αe0 , α

e
1 satisfying αe0 (T ) = αe1 (T ) = 0. This leads to

Lemma 6.5 Suppose Assumption 6.1 holds and there exists a C1([0, T ],R)-function αe1
such that the following conditions are satisfied up to a dt-null set on [0, T ].

1.
∫∞

1
eα
e
1 (t)z1κ0(dz) <∞.

2. αe1 (T ) = 0 and

0 = αe1 (t)′ + ψ
(y,X)
1 (αe1 (t), 0)− (1 + p)η(t)

(
β2

1 +
γ22

1

2

)
+

(p+ 1)(p+ 2)

2
η2(t)γ22

1

− (1 + p)αe1 (t)η(t)γ12
1 +

∫
(1 + η(t)(ex2 − 1))−1−p − 1 + (1 + p)η(t)h2(x)κ1(dx).

Then LeE (−ã • S)−1−p is a martingale for

Le = exp

(∫ T

t

ψ
(y,X)
0 (αe1 (s), 0)ds+ αe1 (t)yt

)
.

Moreover, under Pe ∼ P with density process E (−ã • S)−1−pLe/Le0 , the stochastic volatil-
ity model (y,X) is a (time-inhomogeneous) affine process relative to triplets (βei , γ

e
i , κ

e
i ),

i = 0, 1, 2 given by

(βe0 , γ
e
0 , κ

e
0 (G)) =

((
β1

0 +
∫
h(z1)(eα

e
1 z1 − 1)κ0(dz)

0

)
, 0,

∫
eα
e
1 z11G(z1, 0)κ0(dz)

)
,

βe1 =

(
β1

1 + γ11
1 α

e
1 − (1 + p)ηγ12

1

β2
1 + αe1 γ

12
1 − (1 + p)ηγ22

1 +
∫

(h2(x)(1 + η(ex2 − 1))−1−p − 1)κ1(dx)

)
,

γe1 =

(
γ11

1 γ12
1

γ12
1 γ22

1

)
,

κe1 (G) =

∫
(1 + η(ex2 − 1))−1−p1G(0, x2)κ1(dx),

(βe2 , γ
e
2 , κ

e
2 ) = (0, 0, 0).

for G ∈ B2.
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PROOF. The differential characteristics of L (LeE (−ã • S)−1−p) can be computed with
Propositions A.3 and A.4. By Condition 1 and since η ∈ C1([0, T ], (0, 1)) we have∫

{|x|>1}
|x|KL (LeE (−ea•S)−1−p)(dx) <∞.

Moreover, we obtain

bL (LeE (−ea•S)−1−p) +

∫
(x− h(x))KL (LeE (−ea•S)−1−p)(dx) = 0

due to Condition 2. Hence L (LeE (−ã • S)−1−p) is a σ-martingale by Lemma A.8. Since
it is also the second component of the affine process

(
y,L

(
LeE (−ã • S)−1−p)) it then

follows from Theorem 2.9 that LeE (−ã • S)−1−p is a true martingale. Since LeT = 1,
this shows that E (−ã • S)Le/L0 coincides with the density process of Pe w.r.t. P . The
Pe-characteristics of (y,X) can now be derived by applying Proposition A.5. �

Again notice that η does not have to (0, 1)-value for continuous S, because we have
κ1 = 0 in this case.

Example 6.6 Consider the model of Carr et al. (2003) from Section 2.3.3. Then conditions
1 and 2 of Lemma 6.5 are satisfied if∫ ∞

1

exp

(
Mp

(
e−λ(T−t) − 1

λ

)
z

)
KZ(dz) <∞ (6.1)

up to a dt-null set on [0,T], for the constant

Mp :=(1 + p)η
(
bB +

cB

2

)
− (p+ 1)(p+ 2)

2
η2cB

−
∫ (

(1 + η(ex − 1))−1−p − 1 + (1 + p)ηh(x)
)
KB(dx)

=
(p− 2)(p+ 1)

2
η2cB

+

∫
(1 + η(ex − 1))1+p − 1− (1 + p)η(ex − 1)(1 + η(ex − 1))

(1 + η(ex − 1))1+p
KB(dx),

where we have used Condition 3 of Theorem 4.20 for the second equality. Furthermore, we
have αe1 (t) = Mp(e

−λ(T−t) − 1)/λ in this case. For the BNS model with KB = 0, cB = 1

and η = (δ + 1
2
)/p, this simplifies to

Mp =
(p− 2)(p+ 1)

2p2

(
δ +

1

2

)2
.

Notice that for p ≥ 2, we have Mp ≥ 0. This is obvious for the BNS model, for the models
of Carr et al. (2003) it follows from differentiation and the Bernoulli inequality. Since KZ

is concentrated on the positive real line, this implies that (6.1) is always satisfied for p ≥ 2.
Combining this with Example 4.28, we find that Lemma 6.5 is applicable in particular for
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p = 2 and p = 150 and for the NIG-Gamma-OU, NIG-IG-OU, BNS-Gamma-OU and
BNS-IG-OU models with parameters as estimated in Chapter 3.

If X is a Lévy process satisfying Assumption 6.1 (e.g. the NIG process from Example
4.24 for p = 2 or p = 150), the conditions of Lemma 6.5 are trivially satisfied because κ0 =

0 in this case (cf. Section 4.4.1). Moreover αe1 is given by αe1 (t) = (t−T )Mp if (bB, cB, KB)

in the definition of Mp are replaced with the Lévy-Khintchine triplet (bX , cX , KX) of X .

We can now provide conditions on the model parameters that ensure the validity of
Assumptions 5.20 and 5.22.

Lemma 6.7 Let Assumption 6.1 and the conditions of Lemma 6.5 be satisfied and suppose
there exists Φ1 ∈ C1([0, T ],R) such that the following conditions hold.

1.
∫∞

1
eΦ1(t)z1κ0(dz) <∞ for t ∈ [0, T ].

2.
∫
{|x|>1} e

2x2κ1(dx) <∞.

3. Φ1(T ) = 0 and d
dt

Φ1(t) = −ψ(y,log(S2E (−ea•S)−1−p))e
1 (t,Φ1(t), 1) for t ∈ [0, T ].

Then Assumptions 5.20 and 5.22 hold.

PROOF. By Assumption 6.1 and Remark 2 after Theorem 4.20 the q-optimal martingale
measure Q0 exists and (1, S) is a Q0-martingale. The density process of Q$ w.r.t. Q0 is
given by E (−ã • S), hence S$ = (1, S)/E (−ã • S) is a Q$-martingale by (JS, III.3.8).
Consequently, it suffices to show S$

T ∈ L2(Q$) for Assumptions 5.20 and 5.22.
Since dQ$

dP
= 1

L0
E (−ã • S)1−p, this is equivalent to showing E (−ã • S)−1−p ∈ L1(P )

and S2E (−ã • S)−1−p ∈ L1(P ). The first assertion has already been established as part of
Lemma 6.5. The second follows from Conditions 1-3 and Theorem 2.24, since η is bounded
away from zero by Assumption 6.1. �

Example 6.8 If X is a Lévy process with Lévy measure KX , Conditions 1-3 of Lemma 6.7
simplify to ∫

{|x|>1}
e2xKX(dx) <∞,

i.e. E(S2
T ) < ∞, because κ0 = 0 and the mapping Φ is always given as a the solution to

a constant ODE in this case. Since Example 6.6 shows that the assumptions of Lemma 6.5
are fulfilled too, Lemma 6.7 is applicable in the NIG model from Example 4.24 for p = 2

or p = 150.
Now consider the model of Carr et al. (2003) with parameters as estimated in Chapter

3. Condition 2 is then equivalent to the existence of the second exponential moment of the
driving Lévy process B, which holds e.g. for the NIG-OU and BNS-OU models estimated
in Chapter 3 (cf. Example 4.28). In view of Example 6.6 the prerequisites of Lemma 6.5 are
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satisfied for p ≥ 2 as well. Since the ODE for Φ1 turns out to be linear here, Conditions 1
and 3 of Lemma 6.7 hold too, if∫ ∞

1

exp

(
Np

(
e−λ(T−t) − 1

λ

)
z

)
KZ(dz) <∞

holds up to a dt-null set on [0, T ] for the constant

Np :=
(
(1 + p)η − 2

)(
bB +

cB

2

)
−
(

1− 2(1 + p)η +
(p+ 1)(p+ 2)

2
η2

)
cB

−
∫ (

e2x

(1 + η(ex − 1))1+p
− 1 + ((1 + p)η − 2)h(x)

)
KB(dx)

=

(
(p− 2)(p+ 1)

2
η2 + 2η − 1

)
cB

+

∫
(1 + η(ex − 1))1+p − e2x − ((1 + p)η − 2)(ex − 1)(1 + η(ex − 1))

(1 + η(ex − 1))1+p
KB(dx),

where we have again used Condition 3 of Theorem 4.20 for the second equality. By inser-
tion (for the BNS models) resp. numerical quadrature (for the NIG models), we obtain that
this holds for the parameters from Examples 3.30, 3.31, 3.32 and p = 2 or p = 150. Con-
sequently, Assumptions 5.20 and 5.22 are satisfied for p = 2 or p = 150 in the discounted
NIG-OU and BNS-OU models with parameters as estimated in Chapter 3.

The validity of Assumption 5.16 depends on the contingent claim under consideration.
For example, it is trivially satisfied for European calls and puts if S$ is a square-integrable
Q$-martingale.

Lemma 6.9 Suppose the assumptions of Lemma 6.7 hold. Then Assumption 5.16 is satisfied
for Europeran call- and put-options with payoff functions (ST −K)+, K > 0 respectively
(K − ST )+, K > 0.

PROOF. Since S$ ∈ H 2(Q$) by the proof of Lemma 6.7, this follows immediately from
(ST −K)+/E (−ã • S) ≤ S/E (−ã • S) resp. (K − ST )+ ≤ K/E (−ã • S). �

Example 6.10 Piecing together Examples 4.28, 6.6 , 6.8 and Lemma 6.9 we obtain that
first-order approximations of utility-based prices and hedging strategies of European call-
and put-options exist for p = 2 and p = 150 in the NIG model, the BNS-Gamma-OU
(resp. BNS-IG-OU) model and in the NIG-Gamma-OU (resp. NIG-IG-OU) model for the
parameters estimated in Chapter 3.

6.3 Computation of the first-order approximations

Having ensured the existence of the first-order approximations in Section 6.2 above, we now
turn to the computation of π(0), π′, ϕ′. The following result reduces the computation of π′

to the calculation of ε2
e.
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Corollary 6.11 Suppose the assumptions of Lemma 6.5 are satisfied. Then we have

pC2

2vC0

=
p

2v
exp

(∫ T

0

(
ψ

(y,X)
0 (αe1 (s), 0)− ψ(y,X)

0 (α1(s), 0)
)
ds+ (αe1 (0)− α1(0))y0

)
,

for C0 and C2 defined as in (5.18) and Assumption 5.22, respectively.

PROOF. Follows immediately from LeT = LT = 1 and the martingale property of LeE (−ã •
S)−1−p and LE (−ã • S)1−p established in Lemma 6.5 and Theorem 4.20, respectively. �

The next step is to calculate the process L$ from Lemma 5.23, which is characterized by
L$
T = 1 and the martingale property of L$E (−ã • S)2 under Pe. Therefore its computation

could in principle be tackled just as in Lemma 6.5 above. However, since (y,X) is a time-
inhomogeneous affine process under Pe, it is in many instances no longer possible to solve
the resulting time-inhomogeneous generalized Riccati equations explicitly. For instance,
this occurs for the Heston model, since even classical Riccati equations typically do not
admit closed-form solutions for time-dependent coefficients. Fortunately, one can sidestep
this problem by using the link to the opportunity process L = exp(

∫ T
· ψ

(y,X)
0 (α1(s))ds +

α1y) of the pure investment problem provided in Remark 5.24. This is done in the following
Lemma.

Lemma 6.12 Suppose the conditions of Lemma 6.5 are satisfied. Then we have

L$ = exp

(∫ T

·
(ψ

(y,X)
0 (α1(s), 0)− ψ(y,X)

0 (αe1 (s), 0))ds+ (α1 − αe1 )y

)
= exp

(∫ T

·
ψ

(y,X)e
0 (s, α$

1(s), 0)ds+ α$
1y

)
for α$

1 := α1 − αe1 . Moreover,

ãt =
1

St−

ψ
(y,X)e
1 (t, α$

1(t), 1)− ψ(y,X)e
1 (t, α$

1(t), 0)

ψ
(y,X)e
1 (t, α$

1(t), 2)− 2ψ
(y,X)e
1 (t, α$

1(t), 1) + ψ
(y,X)e
1 (t, α$

1(t), 0)

as well as α$
1(T ) = 0 and

0 = α$
1(t)′ + ψ

(y,X)e
1 (t, α$

1(t), 0)

− (ψ
(y,X)e
1 (t, α$

1(t), 1)− ψ(y,X)e
1 (t, α$

1(t), 0))2

ψ
(y,X)e
1 (t, α$

1(t), 2)− 2ψ
(y,X)e
1 (t, α$

1(t), 1) + ψ
(y,X)e
1 (t, α$

1(t), 0)

for t ∈ [0, T ].

PROOF. By definition, the process L$ is uniquely determined by L$
T = 1 and L$E (−ã • S)2

being a Pe-martingale. By (JS, III.3.8) and Lemma 6.5 the latter property is equivalent to
L$LeE (−ã • S)1−p being a P -martingale. Since this also holds for L instead of L$Le and
we have L$

TL
e
T = 1 = LT , we obtain L$ = L/Le which combined with Theorem 4.20



118 Chapter 6. Asymptotic utility-based pricing and hedging in affine volatility models

and Lemma 6.5 proves the first equality of the first assertion. The second now follows from
Lemma 6.5 by insertion. The second assertion again follows by insertion by making use of
α$

1 + αe1 = α1 and exploiting that since η is (0, 1)-valued by Assumption 6.1, Condition 3
of Theorem 4.20 is satisfied with equality. We now turn to the third assertion. α$

1(T ) = 0

is a consequence of α1(T ) = αe1 (T ) = 0. Finally, the ODE for α$
1 follows from the ODEs

for α1 and αe1 (cf. Theorem 4.20 and Lemma 6.5, respectively), by using Condition 3 of
Theorem 4.20 once again. �

In view of Lemma 6.12, L$ and ã coincide with the candidates obtained in Vierthauer
(2009) for the opportunity resp. adjustment process of the quadratic hedging problem for the
claim H under the measure Pe. The remainder of the calculation of the joint characteristics
of S, K = L (L$) and V = EQ0(H|F·) then proceeds literally as in Vierthauer (2009),
because the subsequent Lemma shows that for affine models the quantities c̃S?, c̃S,V ?, . . .
indeed coincide with the modified second characteristics of the respective processes under
an equivalent probability measure P ?.

Lemma 6.13 Suppose the prerequisites of Lemma 6.5 are satisfied. Then K := L (L$) is a
special semimartingale and

Z? :=
L$

L$
0E (AKe)

is the density process of a probability measure P ? ∼ Pe. Moreover, the modified second
P ?-characteristics of (S, V ) are given by the formulas preceding Theorem 5.25.

PROOF. After applying Lemma 6.5 and Propositions A.3, A.4, we obtain∫
{|z|>1}

|z|KKe(dz) ≤
∫
{|z|>1}

(eα1z + eα
e
1 z)κ0(dz) <∞,

by Assumption 6.1 and Condition 1 of Lemma 6.5. Together with the continuity of α1 and
αe1 as well as dominated convergence, this implies that Ke is a Pe-special semimartingale
by (Kallsen, 2004, Lemma 3.2). Consequently, its Pe-compensator AKe is unique and
given by

AKe =

∫ ·
0

(
bKet +

∫
(z − h(z))KKe

t (dz)

)
dt.

Since AKe is continuous and of finite variation, Yor’s formula yields Z? = E (K − AKe).
Hence Z? is a positive Pe-σ-martingale. From Lemmas 6.5 and 6.12 as well as Propositions
A.3, A.4 we infer that it is also the stochastic exponential of the second component of the
affine process (y,L (Z?)). It then follows from Theorem 2.9 that it is a true Pe-martingale,
which yields the second assertion. The third then is a consequence of Proposition A.5. �

6.4 Exponential Lévy models

We now consider exponential Lévy models which can be embedded in the affine framework
as in Section 4.4.1 above. In this case without stochastic volatility, Lemma 6.5 shows that
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X also is a Lévy process under Pe with corresponding Lévy exponent

ψXe(u) =

(
bX − (1 + p)ηcX +

∫
h(x)

(
(1 + η(ex − 1))−1−p − 1

)
KX(dx)

)
u

+
1

2
cXu2 +

∫ (
1 + η(ex − 1))−1−p)(eux − 1− uh(x))KX(dx),

which can be evaluated using numerical quadrature if the Lévy measure KX of X is known
in closed form. Piecing together results from Schweizer (1994), Hubalek et al. (2006) and
ČK we show in Theorem 6.17 below that for Lévy processes π(0), π′ and ϕ′ are indeed given
as the solution to a quadratic hedging problem. Solutions to this problem have been obtained
in Hubalek et al. (2006) using the Laplace transform approach put forward in Raible (2000).
The key assumption for this approach is the existence of an integral representation of the
payoff function in the following sense.

Assumption 6.14 Suppose H = f(ST ) for a function f : (0,∞) 7→ R such that

f(s) =

∫ R+i∞

R−i∞
l(z)szdz, s ∈ (0,∞),

for l : C→ C s.t. the integral exists for all s ∈ (0,∞) and R ∈ R s.t. E(eRXT ) <∞.

Remark 6.15 If the (bilateral) Laplace transform f̃e of fe : R → R, x 7→ f(ex) exists for
some R ∈ R and v 7→ f̂e(R + iv) is integrable, Assumption 6.14 holds with l = 1

2πi
f̃e by

(Hubalek et al., 2006, Theorem A.1).

Most European options admit a representation of this kind, see e.g. Hubalek et al. (2006).

Example 6.16 For a European call option with strike K > 0 we have H = (ST −K)+ and,
for s > 0 and R > 1,

(s−K)+ =
1

2πi

∫ R+i∞

R−i∞

K1−z

z(z − 1)
szdz.

Theorem 6.17 SupposeX is a Lévy process s.t.E(e2XT ) <∞, ψXe(2)−2ψXe(1) 6= 0 and
Assumption 6.1 holds. For a contingent claim H satisfying Assumptions 5.16 and 6.14 the
marginal utility-based price and a marginal utility-based hedging strategy are then given by

π(0) = V0,

ϕ′t = ξt − (V0 + ϕ′ • St− − Vt−) ã,

with

Ψ(z) := ψXe(z)− ψXe(1)
ψXe(z + 1)− ψXe(z)− ψXe(1)

ψXe(2)− 2ψXe(1)
,

ã :=
1

St−

ψXe(1)

ψXe(2)− 2ψXe(1)
,

Vt :=

∫ R+i∞

R−i∞
Szt e

Ψ(z)(T−t)l(z)dz,

ξt :=

∫ R+i∞

R−i∞
Sz−1
t−

ψXe(z + 1)− ψXe(z)− ψXe(1)

ψXe(2)− 2ψXe(1)
eΨ(z)(T−t)l(z)dz.
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Moreover, we have

ε2
e =

∫ R+i∞

R−i∞

∫ R+i∞

R−i∞
J(z1, z1)l(z1)l(z2)dz1dz2,

where

k(z1, z2) := Ψ(z1) + Ψ(z2)− ψXe(1)2

ψXe(2)− 2ψXe(1)
,

j(z1, z2) := ψXe(z1 + z2)− ψXe(z1)− ψXe(z2)

− (ψXe(z1 + 1)− ψXe(z1)− ψXe(1))(ψXe(z2 + 1)− ψXe(z2)− ψXe(1))

ψXe(2)− 2ψXe(1)
,

J(z1, z2) :=

S
z1+z2
0 j(z1, z2)

ek(z1,z2)T − eψXe(z1+z2)T

k(z1, z2)− ψXe(z1 + z2)
if k(z1, z2) 6= ψXe(z1 + z2),

Sz1+z2
0 j(z1, z2)Teψ

Xe(z1,z2)T if k(z1, z2) = ψXe(z1, z2).

PROOF. First notice that Assumption 5.16 implies H ∈ L2(Pe). It then follows from
Lemma 6.5, (Hubalek et al., 2006, Proposition 3.1) and the proof of (Hubalek et al., 2006,
Lemma 3.1) that (Schweizer, 1994, Theorem 3) is applicable under Pe. By (Schweizer,
1994, Proposition 13), the proof of (Hubalek et al., 2006, Lemma 3.1) and Lemma 6.12 this
yields that the optimal strategy ϕ from the pure investment problem represents the variance-
optimal hedging strategy of the constant payoff 1 for initial endowment 0 under Pe. In
particular, ϕ is admissible in the sense of Schweizer (1994) and hence in the sense of ČK
as well by (ČK, Corollary 2.9). As remarked at the end of Chapter 5 above, this shows
that the marginal utility-based price π(0) and a marginal utility-based hedging strategy are
given by the variance-optimal initial capital resp. hedging strategy for the claim H hedged
with S under Pe. Moreover, ε2

e coincides with the corresponding minimal expected squared
hedging error in this case. Notice that this refers to the solution of the quadratic hedging
problem w.r.t. the set of admissible strategies from ČK. However, (ČK, Corollary 2.9) shows
that the terminal portfolio values of admissible strategies in the sense of Schweizer (1994)
are L2-dense in the set of terminal portfolio values of admissible strategies in the sense of
ČK. Hence it follows that the minimal expected squared hedging error ε2

e coincides with the
one obtained in (Hubalek et al., 2006, Theorem 3.2) using Schweizer’s notion of admissibil-
ity. By ČK, Lemma 2.11 the value process of the corresponding hedging strategy is unique,
which shows that π(0) and a marginal utility-based hedging strategy are given by the initial
endowment resp. optimal hedging strategy from (Hubalek et al., 2006, Theorem 3.1). This
proves the assertion. �

6.5 Barndorff-Nielsen & Shephard (2001)

For ease of exposition, we only consider here the BNS model as a first example and refer the
reader to Vierthauer (2009) for the general affine case as well as the corresponding proofs. If
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Lemmas 6.5 is applicable, as e.g. for p ≥ 2 and the BNS-Gamma-OU (resp. BNS-IG-OU)
model with parameters as estimated in Chapter 3 (cf. Examples 4.28, 6.10), Example 6.6
shows that

αe1 (t) =
(p− 2)(p+ 1)

2p2

(δ + 1/2)2

λ

(
e−λ(T−t) − 1

)
, t ∈ [0, T ].

Lemma 6.5 then yields that the characteristics of (y,X) under Pe are affine relative to

(βe0 , γ
e
0 , κ

e
0 (G)) =

((
bZ +

∫
h(z)(eα

e
1 z − 1)KZ(dz)

0

)
, 0,

∫
eα
e
1 z1G(z, 0)KZ(dz)

)
,

(βe1 , γ
e
1 , κ

e
1 ) =

((
−λ

−(2δ + 1 + p)/2p

)
,

(
0 0

0 1

)
, 0

)
,

(βe2 , γ
e
2 , κ

e
2 ) = (0, 0, 0),

for t ∈ [0, T ] and G ∈ B2, since η = δ+1/2
p

. In particular,

ψZe(t, u1) = ψ
(y,X)e
0 (t, u1, u2) = ψZ(u1 + αe1 (t))− ψZ(αe1 (t)),

ψ
(y,X)e
1 (u1, u2) = −λu1 − u2(2δ + 1 + p)/2p+

1

2
u2

2.

Moreover, by the formula for αe1 and Remark 5 after Corollary 4.27,

α$
1(t) = α1(t)− αe1 (t) =

(δ + 1/2)2

p2λ
(e−λ(T−t) − 1), t ∈ [0, T ].

π(0), ϕ′ and ε2
e are now given by the formulas derived in Vierthauer (2009) using the Laplace

transform approach. Suppose Assumptions 5.16, 6.14 hold and Lemmas 6.5, 6.7 are appli-
cable. One can then prove the following result subject to further technical regularity condi-
tions. For more details we refer to Pauwels (2007) and Vierthauer (2009).

Theorem 6.18 The marginal utility-based price and hedging strategy are given by

π(0) = V0,

ϕ′t = ξt − (V0 + ϕ′ • St− − Vt−)ãt,

with

Ψ1(t, T, z) =
(1− z)z

2λ
(e−λ(T−t) − 1),

Ψ0(t, T, z) =

∫ T

t

(
ψZ(α1(s) + Ψ1(s, T, z))− ψZ(α1(s))

)
ds

Vt =

∫ R+i∞

R−i∞
Szt exp

(
Ψ0(t, T, z) + Ψ1(t, T, z)yt

)
l(z)dz,

ξt =

∫ R+i∞

R−i∞
zSz−1

t exp
(
Ψ0(t, T, z) + Ψ1(t, T, z)yt−

)
l(z)dz.
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Moreover, we have

ε2
e =

∫ T

0

∫ R+i∞

R−i∞

∫ R+i∞

R−i∞
J(t, z1, z2)l(z1)l(z2)dz1dz2dt,

for

j(t, z1, z2) =ψZe(t, α$
1(t) + Ψ1(t, T, z1) + Ψ1(t, T, z2)) + ψZe(t, α$

1(t))

− ψZe(t, α$
1(t) + Ψ1(t, T, z1))− ψZe(t, α$

1(t) + Ψ1(t, T, z2)),

g(z1, z1) =
2δ + 1 + p

2p
(z1 + z2)− 1

2
(z1 + z2)2,

Υ1(s, t, T, z1, z2) =(α$
1(t) + Ψ1(t, T, z1) + Ψ1(t, T, z2))eλ(s−t) + g(z1, z2)

eλ(s−t) − 1

λ
,

Υ0(s, t, T, z1, z2) =

∫ t

s

ψZe(r,Υ1(r, t, T, z1, z2))dr,

J(t, z1, z2) =Sz1+z2
0 j(t, z1, z2) exp

(
Υ0(0, t, T, z1, z2) + Υ1(0, t, T, z1, z2)y0

)
× exp

( ∫ T

t

ψZe(s, α$
1(s))ds+ Ψ0(t, T, z1) + Ψ0(t, T, z2)

)
.

PROOF. Vierthauer (2009). �

Remarks.

1. Notice that if one can swap the order of differentiation and integration, the pure hedge
coefficient ξ is given by the derivative w.r.t. S of the marginal utility-based option
price V for the BNS model. Consequently, the initial value of the marginal utility-
based hedging strategy ϕ′ is given by a kind of Delta-hedge. This ceases to hold for
processes with jumps (cf. e.g. Section 6.4).

2. Theorem 6.18 can be generalized to other affine stochastic volatility models satisfying
Assumption 4.19. More details on this will be provided in Vierthauer (2009), where
the present results are also compared to other hedging approaches.

If y is chosen to be a Γ-OU process, all expressions involving the characteristic exponent
ψZe(t, u) = ψZ(u+ αe1 (t))− ψZ(αe1 (t)) can be computed in closed form as well

Lemma 6.19 Let y be a Γ-OU process with mean reversion λ and stationary Γ(a, b)-distribution
and

m(s) := c1

(
e−λ(et−s) − 1

)
+ c2e

−λ(et−s) + c3, t̃ ∈ [0, T ],

for constants c1, c2, c3 ∈ C. Then if m(s) 6= b, s ∈ [t, T ] we have, for 0 ≤ t1 ≤ t2 ≤ T ,∫ t2

t1

ψZ(m(s))ds =
−a

b+ c1 − c3

(
λ(t2 − t1)(c1 − c3)− b log

(
−b+m(t1)

−b+m(t2)

))
,

where log denotes the distinguished logarithm in the sense of (Sato, 1999, Lemma 7.6).
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PROOF. Follows by inserting ψZ(u) = λau
b−u , which is analytic on C\{b}, and integration

using decomposition into partial fractions. �

For the BNS-Gamma-OU model one therefore has to evaluate a complex integral each
for the marginal utility-based price and hedging strategy as well as a complex triple integral
for the corresponding risk premium. Notice that all integrands are known in closed form
here, whereas for Lévy processes the Lévy exponent ψXe of X under Pe typically has to
be evaluated numerically. We now present a numerical example.

Example 6.20 Consider the discounted BNS-Gamma-OU model with parameters as esti-
mated in Chapter 3, i.e. δ = 0.904, λ = 2.54, a = 0.847 and b = 17.5. We let y0 = 0.0485,
S0 = 100 and put v = 241, which implies that indifference prices and utility-based hedging
strategies exist for S0 ∈ [80, 120] and q ∈ [−2, 2]. By Example 6.10, first-order approxima-
tions of the utility-indifference price and the utility-based hedging strategy exist for p = 2

and p = 150 by Lemma 5.8 resp. Theorem 5.10. Moreover, Assumptions Assumption 5.16
and 6.14 hold for European call-options by Example 6.16. Let R = 1.2. Then one can
verify that all expressions in Theorem 6.17 are well-defined. The formulas of Theorem 6.18
can now be evaluated using numerical quadrature. The resulting first-order approximations
for p = 2 resp. p = 150 and q = −2,−1, 0, 1, 2 are shown below.

The initial hedges for p = 2 and p = 150 in Figure 6.1 below cannot be distinguished
by eye. Indeed, the maximal relative difference between the two strategies is 0.4% for
80 ≤ S0 ≤ 120, which implies that the utility-based hedging strategy is very robust w.r.t.
the investor’s risk aversion. Moreover, both strategies are quite close to the Black-Scholes
hedging strategy, the maximal relative difference being about 8.7%.
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Figure 6.1: Initial Black-Scholes hedge and initial utility-based BNS-hedges for p = 2,
p = 150 and a European call with strike K = 100 and maturity T = 0.25
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For p = 2, the effect of the first-order risk adjustment is rather small (cf. Figures 6.2,
6.3 below). This resembles similar findings of Henderson (2002) and Henderson & Hobson
(2002) on utility-based pricing and hedging in the presence of basis risk.
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Figure 6.2: Black-Schoples price and approximate indifference price π(0) + qπ′ in the BNS
model for p = 2 and a European call with strike K = 100 and maturity T = 0.25
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Figure 6.3: Difference between the approximate indifference price π(0) + qπ′ in the BNS
model for p = 2 and the Black-Scholes price for a European call with strike K = 100 and
maturity T = 0.25
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On the contrary, for higher risk aversions as e.g. p = 150 in Figures 6.4, 6.5 below,
the first-order risk adjustment leads to a bid-price below and an ask-price above the Black-
Scholes price for one option.
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Figure 6.4: Black-Schoples price and approximate indifference price π(0) + qπ′ in the BNS
model for p = 150 and a European call with strike K = 100 and maturity T = 0.25
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Figure 6.5: Difference between the approximate indifference price π(0) + qπ′ in the BNS
model for p = 150 and the Black-Scholes price for a European call with strike K = 100

and maturity T = 0.25
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Chapter 7

On the existence of shadow prices in
finite discrete time

7.1 Introduction

When considering problems in Mathematical Finance, one classically works with a friction-
less market, i.e. one assumes that securities can be purchased and sold for the same price
S. This is clearly a strong modeling assumption, since in reality one usually has to pay a
higher ask price when purchasing securities, whereas one only receives a lower bid price
when selling them. In addition, the introduction of even miniscule transaction costs often
fundamentally changes the structure of the problem at hand (cf. e.g. Magill & Constan-
tinides (1976), Davis & Norman (1990) and Shreve & Soner (1994) for portfolio optimiza-
tion, Cvitanić et al. (1995), Levental & Skorohod (1997), Cvitanić et al. (1999), Kabanov
(1999) and Jakubėnas et al. (2003) for super-replication, Hodges & Neuberger (1989), Davis
et al. (1993), Whalley & Wilmott (1997), Barles & Soner (1998) and Zakamouline (2006)
for utility based option pricing and hedging as well as Jouini & Kallal (1995), Kabanov
et al. (2002), Schachermayer (2004), Guasoni (2006) and Guasoni et al. (2008a,b) for no-
arbitrage). Therefore models with transaction costs have been extensively studied in the
literature.

Problems involving transaction costs are usually tackled by one of two different ap-
proaches. The first employs methods from stochastic control theory (cf. e.g. Davis & Nor-
man (1990), Shreve & Soner (1994)), whereas the second reformulates the task at hand as a
similar problem in a frictionless market. This second approach goes back to the pioneering
paper of Jouini & Kallal (1995). They showed that under suitable conditions, a market with
bid/ask prices S, S is arbitrage free if and only if there exists a shadow price S̃ lying within
the bid/ask bounds, such that the frictionless market with price process S̃ is arbitrage free.
The same idea has since been employed extensively leading to various other versions of the
fundamental theorem of asset pricing in the presence of transaction costs (cf. e.g. Guasoni
et al. (2008b) and the references therein). It has also found its way into other branches of
Mathematical Finance. For example, Lamberton et al. (1998) have shown that bid/ask prices

129
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can be replaced by a shadow price in the context of local risk-minimization, whereas Cvi-
tanić & Karatzas (1996), Cvitanić & Wang (2001) and Loewenstein (2002) prove that the
same is true for certain Itô process settings when dealing with optimal portfolios.

In this chapter we establish that in finite discrete time, this general principle holds true
literally for investment/consumption problems. After introducing our finite market model
with proportional transaction costs in Section 7.2, the main result concerning the existence
of shadow prices is then stated and proved in Section 7.3.

7.2 Utility maximization with transaction costs in finite dis-
crete time

We study the problem of maximizing expected utility from consumption in a finite mar-
ket model with proportional transaction costs. Our general framework is as follows. Let
(Ω,F , (Ft)t∈{0,1,...,T}, P ) be a filtered probability space, where Ω = {ω1, . . . , ωK} and the
time set {0, 1, . . . , T} are finite. In order to avoid lengthy notation, we let F = P(Ω),
F0 = {∅,Ω}, and assume that P ({ωk}) > 0 for all k ∈ {1, . . . , K}. However, one can
show that all following statements remain true without these restrictions.

The financial market we consider consists of a risk-free asset 0 (also called bank ac-
count) with price process S0 normalized to S0

t = 1, t = 0, . . . , T , and risky assets 1, . . . , d

whose prices are expressed in multiples of S0. More specifically, they are modelled by their
(discounted) bid price process S = (S1, . . . , Sd) and their (discounted) ask price process
S = (S

1
, . . . , S

d
), where we naturally assume S ≥ S > 0. Their meaning should be obvi-

ous: if one wants to purchase security i at time t, one must pay the higher price S
i

t whereas
one receives only Sit for selling it.

Remark 7.1 This setup amounts to assuming that the risk-free asset can be purchased and
sold without incurring any transaction costs. This assumption is commonly made in the
literature dealing with optimal portfolios in the presence of transaction costs (cf. Davis &
Norman (1990), Shreve & Soner (1994)), and seems reasonable when thinking of security 0

as a bank account.
For foreign exchange markets where it appears less plausible, a numeraire free approach

has been introduced by Kabanov (1999). This approach would, however, require the use of
multidimensional utility functions as in Deelstra et al. (2001) in our context.

Definition 7.2 A trading strategy is an Rd+1-valued predictable stochastic process ϕ =

(ϕ0, ϕ1, . . . , ϕd), where ϕit, t = 0, . . . , T denotes the number of shares held in security i
until time t after rearranging the portfolio at time t−1. A (discounted) consumption process
is an R-valued, adapted stochastic process c, where ct, t = 0, . . . , T represents the amount
consumed at time t. A pair (ϕ, c) of a trading strategy ϕ and a consumption process c is
called portfolio/consumption pair.
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To capture the notion of a self-financing strategy, we use the intuition that no funds are
added or withdrawn. More specifically, this means that the proceeds of selling stock must be
added to the bank account while the expenses from consumption and the purchase of stock
have to be deducted from the bank account whenever the portfolio is readjusted from ϕt to
ϕt+1 and an amount ct is consumed at time t ∈ {0, . . . , T − 1}. Defining purchases and
sales at t as

∆ϕ↑,i := (∆ϕi)+, ∆ϕ↓,i := (∆ϕi)−, i = 1, . . . , d, (7.1)

this leads to the following

Definition 7.3 A portfolio/consumption pair (ϕ, c) is called self-financing (orϕ c-financing)
if

∆ϕ0
t+1 =

d∑
i=1

(
Sit∆ϕ

↓,i
t+1 − S

i

t∆ϕ
↑,i
t+1

)
− ct, t = 0, . . . , T − 1. (7.2)

Remark 7.4 For i = 1, . . . , d, define the total purchases ϕ↑,i and sales ϕ↓,i as

ϕ↑,i := (ϕi0)+ +
·∑

t=1

∆ϕ↑,it , ϕ↓,i := (ϕi0)− +
·∑

t=1

∆ϕ↓,it .

Then the self-financing condition (7.2) can equivalently be represented as

ϕ0 = ϕ0
0 +

∫ ·
0

St−dϕ
↓
t −

∫ ·
0

St−dϕ
↑
t −

∫ ·
0

ctdAt,

or, using integration by parts in the sense of (JS, I.4.45, I.4.49b), as

ϕ0 + S
>
ϕ↑ − S>ϕ↓ = ϕ0

0 +
(
S
>
0 ϕ
↑
0 − S>0 ϕ

↓
0

)
+

(∫ ·
0

ϕ↑tdSt −
∫ ·

0

ϕ↓tdSt

)
−
∫ ·

0

ctdAt

for At =
∑

s≤t 1N(s). This means that the pair
(
(ϕ0, ϕ↑,−ϕ↓), c

)
is self-financing in the

usual sense for a frictionless market with 2d + 1 securities (1, S, S). Note that for S = S,
we recover the usual self-financing condition for frictionless markets (cf. e.g. (Karatzas &
Shreve, 1988, Section 5.8)). Moreover, this alternative formulation also makes sense in
continuous time, where it can be used to define self-financing strategies (cf. Chapter 8).

We consider an investor who disposes of an initial endowment (ζ0, . . . , ζd) ∈ Rd+1
+ ,

referring to the initial number of securities of type i, i = 0, . . . , d, respectively. To rule out
infinite consumption at time T , we require that the investor is able to cover her consumption
by liquidating her portfolio at the terminal time T . Again this corresponds to admissibility
without transaction costs if S = S (c.f. e.g. Pliska (1997)).

Definition 7.5 The (liquidation) value process of a self-financing portfolio/consumption
pair (ϕ, c) is defined as

V (ϕ) := ϕ0 +
d∑
i=1

(
(ϕi)+Si − (ϕi)−Si

)
.
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A self-financing portfolio/consumption pair (ϕ, c) is called admissible if (ϕ0
0, ϕ

1
0, . . . , ϕ

d
0) =

(ζ0, ζ1, . . . , ζd) and cT = VT (ϕ). An admissible portfolio/consumption pair (ϕ, c) is called
optimal if it maximizes

κ 7→ E

(
T∑
t=0

ut(κt)

)
(7.3)

over all admissible portfolio/consumption pairs (ψ, κ), where the utility process u is a
mapping u : Ω × {0, . . . , T} × R → [−∞,∞), such that (ω, t) 7→ ut(ω, x) is predictable
for any x ∈ R and x 7→ ut(ω, x) is a proper, upper-semicontinuous, concave function for
any (ω, t) ∈ Ω × {0, . . . , T}, which is strictly increasing on its effective domain {x ∈ R :

ut(ω, x) > −∞}.

Remark 7.6 Since we allow the utility process to be random, assuming S0
t = 1, t =

0, . . . , T does not entail a loss of generality in the present setup. More specifically, let
S0 be an arbitrary strictly positive, predictable process. In this undiscounted case a portfo-
lio/consumption pair (ϕ, c) should be called self-financing if

∆ϕ0
t+1S

0
t =

d∑
i=1

(
Sit∆ϕ

↓,i
t+1 − S

i

t∆ϕ
↑,i
t+1

)
− ct,

for t = 0, . . . , T − 1. Admissibility is defined as before but in terms of the liquidation value
process

V (ϕ) := ϕ0S0 +
d∑
i=1

(
(ϕi)+Si − (ϕi)−S

i
)
.

By direct calculations, one easily verifies that (ϕ, c) is self-financing resp. admissible if
and only if (ϕ, ĉ) = (ϕ, c/S0) is self-financing resp. admissible relative to the discounted
processes Ŝ0 := S0/S0 = 1, Ŝ := S/S0 and Ŝ := S/S0. In view of

E

(
T∑
t=0

ut(ct)

)
= E

(
T∑
t=0

ût(ĉt)

)
for the utility process ût(x) = ut(S

0x), the problem of maximizing undiscounted utility
with respect to u is equivalent to maximizing discounted expected utility with respect to û.

7.3 Existence of shadow prices

We now introduce the central concept of this part of the thesis.

Definition 7.7 We call an adapted process S̃ shadow price process if

S ≤ S̃ ≤ S

and if the maximal expected utilities in the market with bid/ask-prices S, S and in the market
with price process S̃ without transaction costs coincide.
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The following theorem shows that in our finite market model, shadow price processes
exist if there is an optimal portfolio with finite expected utility.

Theorem 7.8 Suppose an optimal portfolio/consumption pair (ϕ, c) exists for the market
with bid/ask prices S, S. Then if E(

∑T
t=0 ut(ct)) > −∞, a shadow price process S̃ exists.

PROOF. First step: Demanding the consumption of the liquidation value of the portfolio at
time T is equivalent to requiring the portfolio to be liquidated at T in a self-financing way.
More specifically, it follows by insertion that we can identify the set of admissible portfo-
lio/consumption pairs ((φt)t=0,...,T , (κt)t=0,...,T ) with the set of all ((φ̃t=0,...,T+1), (κ̃)t=0,...T ),
where (φ̃t)t=0,...,T+1 is an Rd+1-valued predictable process with φ̃i0 = ζi, φ̃iT+1 = 0 for
i = 0, . . . , d and (κ̃t)t=0,...,T is a consumption process such that (7.2) holds for t = 0, . . . , T .

Second step: Next, notice that since the given utility process is increasing, no utility can
be gained by allowing sales and purchases of the same asset at the same time. Formally, by
the first step and since x 7→ ut(x) is increasing for fixed t, maximizing (7.3) over all admis-
sible portfolio/consumption pairs yields the same maximal expected utility as maximizing
(7.3) over all ((φ0, φ↑, φ↓), κ), where (φ0(t))t=0,...,T+1 is an R-valued predictable process
with φ0

0 = ζ0 and φ0
T+1 = 0, the increasing, Rd-valued predictable processes (φ↑t )t=0,...,T+1

and (φ↓t )t=0,...,T+1 satisfy φ↑,i0 = (ζi)
+, φ↓,i0 = (ζi)

−, φ↑,iT+1 − φ
↓,i
T+1 = 0 for i = 1, . . . , d and

(κt)t=0,...,T is a consumption process such that (7.2) holds for t = 0, . . . , T . Moreover, if we
define ∆ϕ↑ and ∆ϕ↓ as in (7.1) above and set

ϕ↑ := ((ζ1)+, . . . , (ζd)+) +
·∑

t=1

(∆ϕ↑,1t , . . . ,∆ϕ↑,dt ),

ϕ↓ := ((ζ1)−, . . . , (ζd)−) +
·∑

t=1

(∆ϕ↓,1t , . . . ,∆ϕ↓,dt ),

then ((ϕ0, ϕ↑, ϕ↓), c) is an optimal strategy in this set.
Third step: Denote byFt,1, . . . , Ft,mt the partition of Ω that generates Ft, t ∈ {0, . . . , T}.

Since a mapping is Ft-measurable if and only if it is constant on the sets Ft,j , j = 1, . . . ,mt,
we can identify the set of all ((φ0, φ↑, φ↓), κ), where (φ0

t )t=0,...,T+1 is R-valued and pre-
dictable with φ0

0 = ζ0, (φ↑t )t=0,...,T+1 and (φ↓t )t=0,...,T+1 are increasing, Rd-valued and pre-
dictable with φ↑,i0 = (ζi)

+, φ↓,i0 = (ζi)
− and (κt)t=0,...,T is a consumption process such that

(7.2) holds for t = 0, . . . , T with

R2dn
+ × Rn := (Rm0d

+ × . . .× RmT d
+ )× (Rm0d

+ × . . .× RmT d
+ )× (Rm0 × . . .× RmT ),

and vice versa, namely with

(∆φ↑,∆φ↓, c) := (∆φ↑,1,11 , . . . ,∆φ↑,d,mTT+1 ,∆φ↓,1,11 , . . . ,∆φ↓,d,mTT+1 , c1
0, . . . , c

mT
T ),

where we use the notation ∆φ↑,i,jt := ∆ϕ↑,it (ω) for i = 1, . . . , d, t = 0, . . . , T , j = 1, . . . ,mt

and ω ∈ Ft,j (and analogously for ∆φ↓, c, S, S). Using this identification, we can then define
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mappings f : R2dn
+ ×Rn → R ∪ {∞}, kj : R2dn

+ ×Rn → R and hi,j : R2dn
+ ×Rn → R (for

i = 1, . . . , d, j = 1, . . . ,mT ) by

f(∆φ,∆φ, c) := −E

(
T∑
t=1

ut(ct)

)
,

kj(∆φ,∆φ, c) := ζ0 +
T∑
t=1

(
d∑
i=1

Si,jt−1∆φ↓,i,jt − Si,jt−1∆φ↑,i,jt

)
−

T∑
t=0

cjt ,

hi,j(∆φ↑,∆φ↓, c) := ζj +
T+1∑
t=1

(
∆φ↑,i,jt −∆φ↓,i,jt

)
.

With this notion, (∆ϕ↑,∆ϕ↓, c) is optimal if and only if it minimizes f over R2dn
+ × Rn

subject to the constraints kj = 0 and hi,j = 0 (for i = 1, . . . , d, j = 1, . . . ,mT ). Since
all mappings are actually convex functions on R(2d+1)n, this is equivalent to (∆ϕ↑,∆ϕ↓, c)

minimizing f over R(2d+1)n subject to the constraints kj = 0, hi,j = 0 (for i = 1, . . . , d and
j = 1, . . . ,mT ) and g↑,i,jt , g↓,i,jt ≤ 0 (for t = 0, . . . , T , i = 1, . . . , d and j = 1, . . . ,mt),
where the convex mappings g↑,i,jt , g↓,i,jt : R(2d+1)n → R are given by

g↑,i,jt (∆φ↑,∆φ↓, c) := −∆φ↑,i,jt+1 , g↓,i,jt (∆φ↑,∆φ↓, c) := −∆φ↓,i,jt+1 .

In view of (Rockafellar, 1970, Theorems 28.2 and 28.3) (∆ϕ↑,∆ϕ↓, c) is therefore optimal
if and only if there exists a Lagrange multiplier, i.e. real numbers νj , µi,j (for i = 1, . . . , d

and j = 1, . . . ,mT ) and λ↑,i,jt , λ↓,i,jt (for t = 0, . . . , T , i = 1, . . . , d and j = 1, . . . ,mt) such
that the following holds.

1. λ↑,i,jt , λ↓,i,jt ≥ 0, λ↑,i,jt g↑,i,jt (∆ϕ↑,∆ϕ↓, c) = 0 and λ↓,i,jt g↓,i,jt (∆ϕ↑,∆ϕ↓, c) = 0

for t = 0, . . . , T , i = 1, . . . , d and j = 1, . . . ,mt.

2. kj(∆ϕ↑,∆ϕ↓, c) = 0 and hi,j(∆ϕ↑,∆ϕ↓, c) = 0 for i = 1, . . . , d, j = 1, . . . ,mT .

3.

0 ∈∂f(∆ϕ↑,∆ϕ↓, c) +

mT∑
j=1

νj∂kj(∆ϕ↑,∆ϕ↓, c) +
d∑
i=1

mT∑
j=1

µi,j∂hi,j(∆ϕ↑,∆ϕ↓, c)

+
T∑
t=0

d∑
i=1

mt∑
j=1

λ↑,i,jt ∂g↑,i,jt (∆ϕ↑,∆ϕ↓, c) +
T∑
t=0

d∑
i=1

mt∑
j=1

λ↓,i,jt ∂g↓,i,jt (∆ϕ↑,∆ϕ↓, c).

Here, ∂ denotes the subdifferential of a convex mapping R(2d+1)n → R (cf. Rockafellar
(1970) for more details).

Fourth step: By (Rockafellar & Wets, 1998, Proposition 10.5) we can split Statement
3 into many similar statements where the subdifferentials on the right-hand side are re-
placed with partial subdifferentials relative to ∆ϕ↑,1,11 , . . . ,∆ϕ↑,d,mTT+1 , ∆ϕ↓,1,11 , . . . ,∆ϕ↓,d,mTT+1 ,
c1
t , . . . , c

mT
T , respectively. In particular, for cjT , j ∈ {1, . . . ,mT}, we obtain

0 ∈ ∂cjT f(∆ϕ↑,∆ϕ↓, c)− νj, (7.1)
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where ∂x denotes the partial subdifferential of a convex function relative to a vector x.
Hence νj < 0, j = 1, . . . ,mT , because f is strictly decreasing in cjT . Furthermore, since
the mappings g↑,i,jt , g↓,i,jt (for t = 0, . . . , T , i = 1, . . . , d and j = 1, . . . ,mt) and kj, hi,j (for
i = 0, . . . , d and j = 1, . . . ,mT ) are differentiable, their partial subdifferentials coincide
with the respective partial derivatives by (Rockafellar, 1970, Theorem 25.1). Hence, taking
partial derivatives with respect to ∆ϕ↑,i,jt+1 resp. ∆ϕ↓,i,jt+1 , i ∈ {0, . . . , d}, t ∈ {0, . . . , T},
j ∈ {1, . . . ,mt}, Statement 3 above implies that

0 =
∑

k:ωk∈Ft,j

µi,j −
( ∑
k:ωk∈Ft,j

νk
)
S
i,j

t − λ
↑,i,j
t

=
∑

k:ωk∈Ft,j

µi,j −
∑

k:ωk∈Ft,j

νk

1 +
λ↑,i,jt

S
i,j

t

∑
k:ωk∈Ft,j ν

k

S
i,j

t ,

(7.2)

and likewise

0 =
∑

k:ωk∈Ft,j

µi,j −
∑

k:ωk∈Ft,j

νk

(
1− λ↓,i,jt

Si,jt
∑

k:ωk∈Ft,j ν
k

)
Si,jt . (7.3)

In particular we have, for i = 1, . . . , d, t = 0, . . . , T , j = 1, . . . ,mt,1 +
λ↑,i,jt

S
i,j

t

∑
k:ωk∈Ft,j ν

k

S
i,j

t =

(
1− λ↓,i,jt

Si,jt
∑

k:ωk∈Ft,j ν
k

)
Si,jt =: S̃i,jt .

Since S̃ is constant on Ft,j by definition, this defines an adapted process. Furthermore, we
have S ≤ S̃ ≤ S, by Statement 1 above and because νk < 0 for k = 1, . . . ,mT . Moreover,
Statement 1 above also implies that

S̃ = S on {∆ϕ↑ > 0}, S̃ = S on {∆ϕ↓ > 0}. (7.4)

Set µ̃i,j := µi,j (for i = 1, . . . , d, j = 1, . . . ,mT ), ν̃j := νj (for j = 1, . . . ,mT ) and
λ̃↑,i,jt , λ̃↓,i,jt := 0 (for i = 1, . . . , d, t = 0, . . . , T , j = 1, . . . ,mt). It then follows from
Statements 1,2,3 above, Equations (7.2), (7.3), (7.4) and the definition of S̃ that

1. λ̃↑,i,jt , λ̃↓,i,jt ≥ 0 and λ̃↑,i,jt g̃↑,j,it (∆ϕ↑,∆ϕ↓, c), λ̃↓,j,it g̃↓,i,jt (∆ϕ↑,∆ϕ↓, c) = 0

for t = 0, . . . , T , i = 1, . . . , d and j = 1, . . . ,mt−1,

2. h̃i,j(∆ϕ↑,∆ϕ↓, c) = 0 and k̃j(∆ϕ↑,∆ϕ↓, c) = 0 for i = 1, . . . , d, j = 1, . . . ,mT ,

3.

0 ∈∂f(∆ϕ↑,∆ϕ↓, c) +

mT∑
j=1

ν̃j∂k̃j(∆ϕ↑,∆ϕ↓, c) +
d∑
i=1

mT∑
j=1

µ̃i,j∂hi,j(∆ϕ↑,∆ϕ↓, c)

−
T∑
t=0

d∑
i=1

mt∑
j=1

λ̃↑,i,jt ∂g↑,i,jt (∆ϕ↑,∆ϕ↓, c)−
T∑
t=0

d∑
i=1

mt∑
j=1

λ̃↓,i,jt ∂g↓,i,jt (∆ϕ↑,∆ϕ↓, c),
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where the mappings f̃ , k̃j , h̃i,j , g̃↑,i,jt , g̃↓,i,jt are defined by setting S = S = S̃ in the definition
of the mappings f , kj , hi,j , g↑,i,jt , g↓,i,jt above. In view of (Rockafellar, 1970, Theorem 28.3)
and Steps 1-3 above, (ϕ, c) is therefore not only optimal in the market with bid/ask prices
S, S, but in the market with bid-ask prices S̃, S̃ (i.e. in the frictionless market with price
process S̃) as well. Hence S̃ is a shadow price process and we are done. �

Remark 7.9 An analogue of Theorem 7.8 for utility from terminal wealth can be obtained
by considering the objective function f((∆ϕ,∆ϕ), c)) := −E(uT (cT )) subject to the addi-
tional constraints c1 = . . . = cT−1 = 0.

Corollary 7.10 (Fundamental Theorem of Utility Maximization with transaction costs)
Let (ϕ, c) be an admissible portfolio consumption pair for the market with bid/ask prices
S, S satisfying E(

∑T
t=0 ut(ct)) > −∞. Then we have equivalence between:

1. (ϕ, c) is optimal in the market with bid/ask prices S, S.

2. There exists an adapted process S̃ with S ≤ S̃ ≤ S, a number κ ∈ (0,∞) and an
probability measure Q0 ∼ P such that S̃ is a Q-martingale and

E

(
dQ

dP

∣∣∣∣Ft

)
∈ 1

κ
∂ut(ct), t = 0, . . . , T.

PROOF. 1 ⇒ 2: This follows from Theorem 7.8 combined with Kallsen (1998), Theorem
3.5, Remark 3 after Theorem 3.7 and Definition 2.3.

2 ⇒ 1: By (Kallsen, 1998, Theorem 3.5), Statement 2 above is equivalent to (ϕ, c)

being optimal in the frictionless market with price process S̃. Let (φ, k) be any admissible
portfolio consumption pair in the market with bid/ask prices S, S. Define ∆φ↑,it := (∆φit)

+,
∆φ↓,it := (∆φit)

−, t = 1, . . . , T as above and let

k̃(t) := k(t) +
d∑
i=1

(
∆φ↑,it (S

i

t − S̃it) + ∆φ↓,it (S̃it − Sit)
)
.

Then k̃ ≥ k since S ≤ S̃ ≤ S and (φ, k̃) is a self-financing portfolio/consumption pair in
the frictionless market with price process S̃, i.e. with bid/ask-prices S̃, S̃. Since (ϕ, c) is
optimal in this market, we have

E

(
T∑
t=0

ut(kt)

)
≤ E

(
T∑
t=0

ut(k̃t)

)
≤ E

(
T∑
t=0

ut(ct)

)
.

Therefore ((ϕ, ϕ), c) is optimal in the market with bid/ask prices S, S. �

Remarks.

1. If, for fixed (ω, t) ∈ Ω × R+, x 7→ ut(ω, x) is differentiable on its effective domain
with derivative u′, E(dQ

dP
|Ft) ∈ 1

κ
∂ut(ct) reduces to E(dQ

dP
|Ft) = 1

κ
u′t(ct).

2. The pair (S̃, Q) consisting of the shadow price process S̃ and the corresponding dual
martingale measure Q is called a consistent price system by Guasoni et al. (2008b).



Chapter 8

On using shadow prices in utility
maximization with transaction costs

8.1 Introduction

In this chapter we consider a continuous-time version of the Merton problem with transac-
tion costs introduced in Chapter 7 for finite probability spaces. More precisely, we deal with
maximizing utility from consumption over an infinite horizon in the presence of proportional
transaction costs.

As for the related problem of maximizing utility from terminal wealth, this problem
was was solved in frictionless markets by Merton (1969, 1971) for power and logarithmic
utility functions in a Markovian Itô process model. In a market with a riskless bank account
and one risky asset following a geometric Brownian motion, the optimal strategy turns out to
invest a constant fraction η∗ of wealth in the risky asset and to consume at a rate proportional
to current wealth. This means that it is optimal for the investor to keep her portfolio holdings
in bank and stock on the so-called Merton line with slope η∗/(1− η∗).

Since then, this problem has been generalized in several ways. One direction has been to
consider different market models (cf. Chapter 4 and the references therein). In this case solu-
tions to utility maximization problems are generally obtained by two different methods. One
approach is to use stochastic control theory, which leads to Hamilton-Jacobi-Bellman equa-
tions. Alternatively, one can turn to martingale methods which appear in different forms,
both in actual computations and in general structural results.

A different generalization of the Merton problem is the introduction of proportional
transaction costs. In a continuous time setting this was first done by Magill & Constantinides
(1976). Their paper contains the fundamental insight that it is optimal to refrain from trans-
acting while the portfolio holdings remain in a wedge-shaped no-transaction region, i.e.
while the fraction of wealth held in stock lies inside some interval [η∗1, η

∗
2]. However, their

solution is derived in a somewhat heuristic way and also did not show how to compute the
location of the boundaries η∗1 , η∗2 .

Mathematically rigorous results were first obtained in the seminal paper of Davis & Nor-

137
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man (1990). They show that it is indeed optimal to keep the proportion of total wealth held
in stock between fractions η∗1 , η∗2 and they also prove that these two numbers can be deter-
mined as the solution to a free boundary value problem. The theory of viscosity solutions
to Hamilton-Jacobi-Bellman equations was introduced to this problem by Shreve & Soner
(1994) who succeeded in removing several assumptions needed in Davis & Norman (1990).
Since then, this approach has also been used to compute optimal portfolios in several vari-
ants of the Merton problem with proportional transaction costs, e.g. in the finite horizon case
(cf. Akian et al. (1995), Liu & Loewenstein (2002), Dai et al. (2009)), the case of multiple
stocks (cf. Akian et al. (1995)) and stocks modelled as jump diffusions (cf. Framstad et al.
(2001)).

All these articles aiming for the computation of the optimal portfolio employ tools from
stochastic control. It seems that martingale methods have so far only been used to obtain
structural existence results in the presence of transaction costs. In this context the martingale
and duality theory for frictionless markets is often applied to a shadow price process S̃
lying within the bid-ask bounds of the real price process S. Economically speaking, the
frictionless price process S̃ and the original price process S with transaction costs lead to
identical decisions and gains for the investor under consideration. We refer the reader to
Chapter 7 and the references therein for a brief survey of applications of this concept in
different areas of Mathematical Finance. For the particular case of utility maximization, the
existence of a shadow price has been established in finite discrete time (cf. Theorem 7.8) as
well as for certain Itô process settings (cf. Cvitanić & Karatzas (1996), Cvitanić & Wang
(2001) and Loewenstein (2002)).

In this chapter, we reconsider Merton’s problem for logarithmic utility and under pro-
portional transaction costs as in Davis & Norman (1990). Our goal is threefold. Most
importantly, we show that the shadow price approach can be used to come up with a can-
didate solution to the utility maximization problem under transaction costs. Moreover, the
ensuing verification verification procedure appears — at least for the problem at hand — to
be surprisingly simple compared to the very impressive and non-trivial reasoning in Davis
& Norman (1990) and Shreve & Soner (1994). Finally, we also construct the shadow price
as part of the solution.

The more involved case of power utility is treated in Davis & Norman (1990), Shreve
& Soner (1994) as well. The application of the present approach to this case is subject of
current research. While it is still possible to come up with a candidate for the shadow price,
the corresponding free boundary problem appears to be more difficult than its counterpart in
Davis & Norman (1990). This stems from the fact that it may be more difficult to determine
the shadow price than the optimal strategy for power utility (cf. Remark 8.14 for more
details).

This chapter is organized as follows. The setup is introduced in Section 8.2. Subse-
quently, we heuristically derive the free-boundary problem that characterizes the solution.
Verification is done in Section 8.4. Finally, we present some numerical results.
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8.2 The Merton Problem with transaction costs

We study the problem of maximizing expected logarithmic utility from consumption over
an infinite horizon in the presence of proportional transaction costs. Except for a slightly
larger class of admissible strategies we work in the setup of Davis & Norman (1990).

The mathematical framework is as follows: Let (Ω,F , (Ft)t∈R+ , P ) be a fixed com-
plete, filtered probability space in the sense of (JS, I.1.2), supporting a standard Brownian
motion (Wt)t∈R+ . Our market consists of two investment opportunities: a bank account or
bond with constant value 1 and a risky asset ("stock") whose discounted price process S is
modelled as a geometric Brownian motion, i.e.

St := S0E (µI + σW )t = S0 exp

((
µ− σ2

2

)
t+ σWt

)
(8.1)

with It := t and constants S0, σ > 0, µ ∈ R. We consider an investor who disposes of an
initial endowment (ζB, ζS) ∈ R2

+, referring to the number of bonds and stocks, respectively.
Whenever stock is purchased or sold, transaction costs are imposed equal to a constant
fraction of the amount transacted, the fractions being λ ∈ [0,∞) on purchase and λ ∈
[0, 1) on sale, not both being equal to zero. Since transactions of infinite variation lead to
instantaneous ruin, we limit ourselves to the following set of strategies.

Definition 8.1 A trading strategy is an R2-valued predictable process ϕ = (ϕ0, ϕ1) of finite
variation, where ϕ0

t and ϕ1
t denote the number of shares held in the bank account and in stock

at time t respectively. A (discounted) consumption rate is an R+-valued, adapted stochastic
process c satisfying

∫ t
0
csds <∞ a.s. for all t ≥ 0. A pair (ϕ, c) of a trading strategy ϕ and

a consumption rate c is called portfolio/consumption pair.

As in Chapter 7, we use the intuition that no funds are added or withdrawn to capture
the notion of a self-financing strategy. To this end, we write the second component ϕ1 of
any strategy ϕ as difference ϕ1 = ϕ↑ − ϕ↓ of two increasing processes ϕ↑ and ϕ↓ which do
not grow at the same time. Moreover, we denote by

S := (1− λ)S, S := (1 + λ)S (8.2)

the bid and ask price of the stock, respectively. The proceeds of selling stock must be added
to the bank account while the expenses from consumption and the purchase of stock have to
be deducted from the bank account in any infinitesimal period (t− dt, t], i.e. we require

dϕ0
t = St−dϕ

↓
t − St−dϕ

↑
t − ctdt. (8.3)

for self-financing strategies. Written in integral terms this amounts to

ϕ0 = ϕ0
0 +

∫ ·
0

St−dϕ
↓
t −

∫ ·
0

St−dϕ
↑
t −

∫ ·
0

ctdt. (8.4)

In our setup (8.1,8.2) we obviously have S− = S and S− = S but the above definition
makes sense for discontinuous bid and ask price processes S, S as well. The second and
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third term on the right-hand side represent the cumulative amount of wealth gained selling
respectively spent buying stock, while the last term represents cumulated consumption.

At this stage it may not be entirely obvious how the integrals in (8.4) are defined because
ϕ↑, ϕ↓ are generally neither left nor right continuous. Continuing on an intuitive level, we
write the second term on the right-hand side of (8.3) as

St−dϕ
↑
t = St−dt(ϕ

↑
t − ϕ

↑
t−dt)

= ϕ↑tSt − ϕ
↑
t−dtSt−dt − ϕ

↑
t (St − St−dt)

= d(ϕ↑S)t − ϕ↑tdSt,

which means ∫ ·
0

St−dϕ
↑
t = ϕ↑S − ϕ↑0S0 −

∫ ·
0

ϕ↑tdSt (8.5)

in integral terms. More precisely, we use the integration by parts formula (8.5) as a definition
for the integral on the left-hand side. Accordingly, we set∫ ·

0

St−dϕ
↓
t := ϕ↓S − ϕ↓0S0 −

∫ ·
0

ϕ↓tdSt. (8.6)

For right-continuous ϕ↑ resp. ϕ↓ the definition in (8.5,8.6) coincides with the usual Stieltjes
integral by (JS, I.4.49b). For general strategies we have the following alternative represen-
tation.

Lemma 8.2 Write

ϕ↑t = ϕ↑,ct +
∑

0<s≤t

∆−ϕ↑s +
∑

0≤s<t

∆+ϕ↑s, t ≥ 0

with a continuous process ϕ↑,c and jumps

∆−ϕ↑t := ϕ↑t − lim
s↑t

ϕ↑s, ∆+ϕ↑t := lim
s↓t

ϕ↑s − ϕ
↑
t .

Then the right-hand side of (8.5) can be written as∫ t

0

Ss−dϕ
↑
s =

∫ t

0

Ss−dϕ
↑,c
s +

∑
0<s≤t

Ss−∆−ϕ↑s +
∑

0≤s<t

Ss∆
+ϕ↑s. (8.7)

A parallel statement holds for (8.6).

PROOF. If we define right-continuous processes

J−t :=
∑

0<s≤t

∆−ϕ↑s, J+
t :=

∑
0≤s≤t

∆+ϕ↑s,

then ϕ↑t = ϕ↑,ct + J−t + J+
t−. Setting ψt := ϕ↑,ct + J−t + J+

t = ϕ↑t + ∆+ϕ↑t , we have
ψt− := ϕ↑t −∆−ϕ↑t and the right-hand side of (8.5) can be written as

ϕ↑tSt − ϕ
↑
0S0 −

∫ t

0

ϕ↑sdSs

= ψtSt − ψ0S0 −
∫ t

0

ψs−dSs − (∆+ϕ↑t )St + (∆+ϕ↑0)S0 −
∫ t

0

∆−ϕ↑sdSs.
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Using integration by parts as in (JS, I.4.49a), the first three terms yield∫ t

0

Ssdψs =

∫ t

0

Ssdϕ
↑,c
s +

∫ t

0

SsdJ
−
s +

∫ t

0

SsdJ
+
s

=

∫ t

0

Ss−dϕ
↑,c
s +

∑
0<s≤t

Ss∆
−ϕ↑s +

∑
0<s≤t

Ss∆
+ϕ↑s. (8.8)

The remaining three terms can be written as

−St∆+ϕ↑t + S0∆+ϕ↑0 −
∑

0<s≤t

(∆−ϕ↑s)∆Ss. (8.9)

The sum of (8.8) und (8.9) equals the right-hand side of (8.7) as claimed. �

Piecing together (8.4–8.6), we end up with the following

Definition 8.3 Let (ϕ, c) be a portfolio/consumption pair with ϕ = (ϕ0, ϕ↑ − ϕ↓). We call
(ϕ, c) self-financing (or ϕ c-financing) if (8.4) holds in the sense of (8.5,8.6) or, equivalently,

ϕ0 + (ϕ↑S −ϕ↓S) = ϕ0
0 + (ϕ↑0S0−ϕ↓0S0) +

(∫ ·
0

ϕ↑tdSt −
∫ ·

0

ϕ↓tdSt

)
−
∫ ·

0

ctdt. (8.10)

(8.10) means that the pair ((ϕ0, ϕ↑,−ϕ↓), c) is self-financing in the usual sense for a
frictionless market with three securities (1, S, S). The validity of (8.10) does not depend
on the choice of the initial values ϕ↑0, ϕ

↓
0. Note that for S = S = S we recover the usual

self-financing condition for frictionless markets.
The value of a portfolio is not obvious either because securities have no unique price.

As is common in the literature, we use the value that would be obtained if the portfolio were
to be liquidated immediately.

Definition 8.4 The (liquidation) value process of a trading strategy ϕ is defined as

V (ϕ) := ϕ0 + (ϕ1)+S − (ϕ1)−S,

A self-financing portfolio/consumption pair (ϕ, c) is called admissible if (ϕ0
0, ϕ

1
0) = (ζB, ζS)

and V (ϕ) ≥ 0. An admissible pair is called optimal if it maximizes

κ 7→ E

(∫ ∞
0

e−δt log(κt)dt

)
(8.11)

over all admissible portfolio/consumption pairs (ψ, κ), where δ > 0 denotes a fixed given
impatience rate.

Note that the “true” price process S is irrelevant for the problem as it does not appear in
the definitions; only the bid and ask prices S, S matter. Moreover, since δ > 0, the value
function of the Merton problem without transaction costs is finite by (Davis & Norman,
1990, Theorem 2.1). Hence it follows that this holds in the present setup with transaction
costs as well.
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Remark 8.5 Let us briefly discuss what happens to Merton’s problem if the bank account is
modelled as Bt = ert for some r ∈ R+. In this undiscounted case a portfolio/consumption
pair (ϕ, c) should be called self-financing if

ϕ0B + ϕ↑S − ϕ↓S

= ϕ0
0B0 + ϕ↑0S0 − ϕ↓0S0 +

∫ ·
0

ϕ0
tdBt +

∫ ·
0

ϕ↑tdSt −
∫ ·

0

ϕ↓tdSt −
∫ ·

0

ctdt.

Admissibility is defined as before but in terms of the liquidation value process

V (ϕ) := ϕ0B + (ϕ1)+S − (ϕ1)−S.

Obviously, these notions reduce to the definitions above for B = 1.
Using integration by parts similarly as in (Goll & Kallsen, 2000, Proposition 2.1) or

(Goll & Kallsen, 2001, Lemma 2.3), one easily verifies that (ϕ, c) is self-financing resp.
admissible if and only if (ϕ, c/B) is self-financing resp. admissible relative to the discounted
processes B̂ = B/B = 1, Ŝ := S/B, Ŝ := S/B. In view of

E

(∫ ∞
0

e−δt log
( ct
B t

)
dt

)
= E

(∫ ∞
0

e−δt log(ct) dt

)
− E

(∫ ∞
0

e−δt log(Bt) dt

)
it does not really matter whether one considers the investment and consumption problem for
logarithmic utility in undiscounted or discounted terms because the expected utilities differ
only by a constant.

Our notion of admissible strategies is slightly more general than that in Davis & Norman
(1990), Shreve & Soner (1994). However, it will turn out later on that the optimal strategies
in both sets coincide.

Lemma 8.6 For any admissible policy (c, L, U) in the sense of Davis & Norman (1990)
there exists a corresponding trading strategy ϕ = (ϕ0, ϕ1) such that (ϕ, c) is an admissible
portfolio/consumption pair.

PROOF. The initial endowment in Davis & Norman (1990) is expressed in terms of wealth
as (x, y) = (ζB, ζSS0). Define s0, s1 as in (Davis & Norman, 1990, Equation (3.1)) and set

ϕ0
t := s0(t−), ϕ1

t :=
s1(t−)

St
.

The value process of ((ϕ0, ϕ1), c) is nonnegative by admissibility in the sense of Davis &
Norman (1990). Furthermore, by definition of s0, s1 and (Revuz & Yor, 1999, IX.2.3), we
have

ϕ0
t = x−

∫ t

0

csds− (1 + λ)Lt− + (1− λ)Ut−,

ϕ1
t =

y

S0

+

∫ t−

0

1

Ss
dLs −

∫ t−

0

1

Ss
dUs.

Thus ϕ is of finite variation. Since it is left-continuous, it is also predictable. Using Lemma
8.2, a straightforward computation shows that ((ϕ0, ϕ1), c) satisfies the self-financing con-
dition (8.4) as well. �
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8.3 Heuristic derivation of the solution

As indicated in the introduction, the martingale approach relies decisively on shadow price
processes, which we define as follows.

Definition 8.7 We call a semimartingale S̃ shadow price process if

S ≤ S̃ ≤ S (8.12)

and if the maximal expected utilities for S, λ, λ and for the price process S̃ without transac-
tion costs coincide.

Obviously, the maximal expected utility for any frictionless price process S̃ satisfying
(8.12) is at least as high as for the original market with transaction costs. Indeed, trading S̃
an investor is always buying at S̃t ≤ St and selling for S̃t ≥ St. A shadow price process can
be interpreted as a kind of least favourable frictionless market extension. The corresponding
optimal portfolio trades only when the shadow price happens to coincide with the bid or
ask price, respectively. Otherwise it would achieve higher profits with S̃ than with S and
transaction costs.

Let us assume that such a shadow price process S̃ exists. If it were known in the first
place, it would be of great help because portfolio selection problems without transaction
costs are considerably easier to solve. But it is not known at this stage. Hence we must solve
the problems of determining S̃ and of portfolio optimization relative to S̃ simultaneously.

To this end, we parametrize the shadow price process in the following form:

S̃ = S exp(C) (8.13)

with some [C,C]-valued process C where

C := log(1− λ) and C := log(1 + λ).

Since S is an Itô process, we expect S̃ and hence C to be Itô processes as well. We even
guess that C is an Itô diffusion, i.e.

dCt = µ̃(Ct)dt+ σ̃(Ct)dWt (8.14)

with some deterministic functions µ̃, σ̃. Any admissible portfolio/consumption pair (ϕ, c) is
completely determined by c and the fraction of wealth invested in stocks

η̃ :=
ϕ1S̃

ϕ0 + ϕ1S̃
, (8.15)

where bookkeeping is done here relative to shadow prices S̃. Hence we must determine four
unknown objects, namely the ansatz functions µ̃, σ̃ as well as the optimal consumption rate
c and the optimal fraction η̃ of wealth in stocks.
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Standard results yield the optimal strategy for the frictionless price process S̃. E.g. by
(Goll & Kallsen, 2000, Theorem 3.1) we have

η̃ =
µ− σ2

2
+ µ̃(C)

(σ + σ̃(C))2
+

1

2
, c = δṼ (ϕ), (8.16)

where
Ṽ (ϕ) = ϕ0 + ϕ1S̃ (8.17)

denotes the value process of ϕ in the frictionless market with price process S̃. This already
determines the optimal consumption rate. To simplify the following calculations, we assume
η̃ > 0 and work with

β := log

(
η̃

1− η̃

)
instead of η̃. By (8.15) this implies β := log(ϕ1) + log(S̃) − log(ϕ0). Since the optimal
strategy trades the shadow price process only when it coincides with bid or ask price, ϕ1

must be constant on ]]0, T [[ with

T := inf
{
t > 0 : Ct ∈ {C,C}

}
.

By (8.3) and Itô’s formula we have

d log(ϕ0
t ) =

−ct
ϕ0
t

dt =
−δṼt(ϕ)

Ṽt(ϕ)− η̃tṼt(ϕ)
dt =

−δ
1− η̃t

dt

on ]]0, T [[, hence insertion of (8.16) yields

dβt = d log(ϕ1
t ) + d log(S̃t)− d log(ϕ0

t ) (8.18)

=

(
µ− σ2

2
+ µ̃(Ct) +

δ(σ + σ̃(Ct))
2

1
2
(σ + σ̃(Ct))2 − (µ− σ2

2
+ µ̃(Ct))

)
dt+ (σ + σ̃(Ct))dWt.

On the other hand, we know from (8.16) that η̃ is a function of C, which in turn yields
β = f(C) for some function f . By Itô’s formula this implies

dβt =

(
f ′(Ct)µ̃(Ct) + f ′′(Ct)

σ̃(Ct)
2

2

)
dt+ f ′(Ct)σ̃(Ct)dWt. (8.19)

From (8.18), (8.19) and (8.16) we now obtain three conditions for the three functions µ̃, σ̃, f :

1

1 + e−f
=
µ− σ2

2
+ µ̃

(σ + σ̃)2
+

1

2
, (8.20)

µ− σ2

2
+ µ̃+

δ(σ + σ̃)2

1
2
(σ + σ̃)2 − (µ− σ2

2
+ µ̃)

= f ′µ̃+ f ′′
σ̃2

2
, (8.21)

σ + σ̃ = f ′σ̃. (8.22)
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Equations (8.22) and (8.20) yield

σ̃ =
σ

f ′ − 1
, µ̃ = −

(
µ− σ2

2

)
+
σ2

2

(
f ′

f ′ − 1

)2
1− e−f

1 + e−f
. (8.23)

By inserting into (8.21) we obtain the following ordinary differential equation (ODE) for f :

f ′′(x) =
2δ

σ2
(1 + ef(x)) +

(
2µ

σ2
− 1− 4δ

σ2
(1 + ef(x))

)
f ′(x) (8.24)(

−4µ

σ2
+

2

1 + e−f(x)
+ 1 +

2δ

σ2
(1 + ef(x))

)
(f ′(x))2 +

(
2µ

σ2
− 2

1 + e−f(x)

)
(f ′(x))3.

Because of missing boundary conditions, (8.24) does not yet yield the solution. We ob-
tain such conditions heuristically as follows. In order to lead to finite maximal expected
utility, the shadow price process should be arbitrage-free and hence allow for an equivalent
martingale measure. This in turn means that S̃ and hence also C should not have any sin-
gular part in their semimartingale decomposition. Put differently, we expect the Itô process
representation (8.14) to hold even when C reaches the boundary points C,C.

The number of shares of stock ϕ1, on the other hand, changes only when C hits the
boundary. As this is likely to happen only on a Lebesgue-null set of times, ϕ1 must have
a singular part in order to move at all. In view of the connection between ϕ1 and β, this
suggests that β has a singular part as well. This means that f cannot be a C2 function on the
closed interval [C,C] because otherwise β = f(C) would be an Itô process, too. A natural
way out is the ansatz f ′(C) = −∞ = f ′(C) in order for β to have a singular part at the
boundary. Hence we complement ODE (8.24) by boundary conditions

lim
x↓C

f ′(x) = −∞ = lim
x↑C

f ′(x). (8.25)

In order to avoid infinite derivatives we consider instead the inverse function g := f−1.
Equation (8.24) turns into

g′′(y) =

(
−2µ

σ2
+

2

1 + e−y

)
+

(
4µ

σ2
− 2

1 + e−y
− 1− 2δ

σ2
(1 + ey)

)
g′(y)

+

(
−2µ

σ2
+ 1 +

4δ

σ2
(1 + ey)

)
(g′(y))2 − 2δ

σ2
(1 + ey)(g′(y))3

(8.26)

on the a priori unknown interval [β, β] := [f(C), f(C)] and (8.25) translates into free bound-
ary conditions

g(β) = C, g(β) = C, g′(β) = 0, g′(β) = 0. (8.27)

(8.26,8.27) together with (8.13–8.17) and f = g−1 constitute our ansatz for the portfolio
optimization problem.

In summary, the solution to the free boundary problem (8.26,8.27) — or equivalently
(8.24,8.25) — leads to the optimal strategy. The ODE itself is derived based on the optimal-
ity of η̃ for S̃ and the constancy of ϕ1 on ]]0, T [[. In the next section we show that this ansatz
indeed yields the true solution.
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Our result resembles Davis & Norman (1990) in that the solution is expressed in terms of
a free boundary problem. However, both the ODE and the boundary conditions are different,
since the function g refers to the shadow price process from the present dual approach and
therefore does not appear explicitly in the framework of Davis & Norman (1990) (but cf.
Remark 8.14).

8.4 Construction of the shadow price process

We turn now to verification of the candidate solution from the previous section. The idea
is rather simple. Using (8.13,8.14) we define a candidate shadow price process S̃. In order
to prove that it is indeed a shadow price process, we show that the optimal portfolio rela-
tive to S̃ trades only at the boundaries S, S . However, existence of a solution to stochastic
differential equation (SDE) (8.14) is not immediately obvious. Therefore we consider in-
stead the corresponding Skorohod SDE for β = f(C) with instantaneous reflection at some
boundaries β < β. The process C = g(β) is then defined in a second step.

We begin with an existence result for the free boundary value problem derived above.
We make the following assumption which guarantees that the fraction of wealth held in
stock remains positive and which is needed in Davis & Norman (1990) as well (Equation
5.1 in that paper).

Standing assumption:
0 < µ < σ2. (8.28)

Remark 8.8 It is shown in Shreve & Soner (1994) that this condition is not needed to ensure
the existence of an optimal strategy characterized by a wedge-shaped no-transaction region.
If the transformation β = log(η̃/(1− η̃)) was not used in our approach, we would still obtain
a free boundary problem, but as in Davis & Norman (1990) it is less obvious whether or not
it admits a solution.

Proposition 8.9 There exist β < β and a strictly decreasing mapping g : [β, β] → [C,C]

satisfying the free boundary problem (8.26,8.27).

PROOF. Since we have assumed 0 < µ
σ2 < 1, there is a unique solution y to 2

1+e−y
− 2µ

σ2 = 0,
namely y0 = − log(σ

2

µ
− 1). For any β∆ := y0−∆ with ∆ > 0, there exists a local solution

g∆ of the initial value problem corresponding to (8.26) and initial values g∆(β∆) = C and
g′∆(β∆) = 0. Set

M ′ := max

{
3

√
4(µ+ σ2)

δ
,

√
8µ

δ
, 8 +

4µ+ 2σ2

δ

}
.

Then we have g′′∆(y) > 0 for g′∆(y) < −M ′ and g′′∆(y) < 0 for g′∆ > M ′ by (8.26).
Therefore g′∆ only takes values in [−M ′,M ′], which implies that g∆ does not explode.
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From (8.26) and ∆ > 0 it follows that g′′∆(y) < 0 in a neighbourhood U of β∆ and
hence g′∆(y) < 0 in U . For sufficiently large y and g′∆(y) < 0, the right-hand side of
(8.26) is positive and bounded away from zero by a positive constant. Hence a comparison
argument shows that there exist further zeros of g′∆, the first of which we denote by β∆.
Note that by definition g∆ is strictly decreasing on [β∆, β∆].

It remains to show that for properly chosen ∆, we can achieve g(β∆) = C for any
C < C.

Step 1: We first show g∆(β∆) → C as ∆ → 0. This can be seen as follows. Observe
that for |y − y0| < 1, (8.26) and g′∆(y) ∈ [−M ′,M ′] yield

|g′′∆(y)| < M ′′ :=
2µ

σ2
+ 2 +

(
4µ

σ2
+ 3 +

2δ

σ2

(
1 + ey0+1

))
M ′

+

(
2µ

σ2
+ 1 +

4δ

σ2

(
1 + ey0+1

))
(M ′)2 +

2δ

σ2

(
1 + ey0+1

)
(M ′)3.

Hence |g′∆(y)| ≤ 2M ′′∆ for y ∈ [y0 −∆, y0 + ∆] and ∆ < 1. Combined with (8.26), this
yields

sup
y∈[y0−∆,y0+∆]

|g′′∆(y)| → 0, for ∆→ 0. (8.29)

For ∆ sufficiently small, y ∈ [y0 + ∆, y0 + 1], and

|g′∆(y)| < m∆ :=

max


1
3

(
− µ
σ2 + 1

1+e−(y0+∆)

)
4µ
σ2 + 3 + 2δ

σ2 (1 + ey0+1)
,

√√√√ 1
3

(
− µ
σ2 + 1

1+e−(y0+∆)

)
2µ
σ2 + 1 + 4δ

σ2 (1 + ey0+1)
,

3

√√√√ 1
3

(
− µ
σ2 + 1

1+e−(y0+∆)

)
2δ
σ2 (1 + ey0+1)

 ,

(8.26) and a first order Taylor expansion imply

g′′∆(y) >
µ

σ2
+

1

1 + e−(y0+∆)
>

e−y0

2(1 + e−y0)2
∆ > 0. (8.30)

(8.29) yields

|g′∆(y0 + ∆)| ≤ 2∆ sup
y∈[y0−∆,y0+∆]

|g′′∆(y)| < m∆

for sufficiently small ∆. By (8.30) we have that if g′∆ does not have a zero on [y0−∆, y0+∆],
i.e. g′(y0 + ∆) < 0, then g′′∆(y) > e−y0

2(1+e−y0 )2 ∆ on [y0 + ∆,min{β∆, y0 + 1}]. Using (8.29)
this yields

β∆ − β∆
< 2∆ +

2∆ supy∈[y0−∆,y0+∆] |g′′(y)|
e−y0

2(1+e−y0 )2 ∆
→ 0

for ∆ → 0. Since |g′∆(y)| < M ′, an application of the mean value theorem completes the
first step.
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Step 2: We now establish β∆ ≥ y0 and g(β∆) → −∞ as ∆ → ∞. To this end, let
y∗ < y0. Then we have g′′∆(y) < − µ

σ2 + 1
1+ey∗

< 0 if y ≤ y∗ and

|g′∆(y)| < m′ :=

max


1
3

∣∣∣− µ
σ2 + 1

1+e−y∗

∣∣∣
4µ
σ2 + 3 + 2δ

σ2 (1 + ey∗)
,

√√√√ 1
3

∣∣∣− µ
σ2 + 1

1+e−y∗

∣∣∣
2µ
σ2 + 1 + 4δ

σ2 (1 + ey∗)
,

3

√√√√ 1
3

∣∣∣− µ
σ2 + 1

1+e−y∗

∣∣∣
2δ
σ2 (1 + ey∗)

 .

Since g′′∆(β∆) < 0, this implies g′∆(y) < 0 for y ≤ y∗ as well as |g′∆(y)| ≥ m′ for y ∈
[y0−∆+ m′

µ/σ2−(1+e−y∗ )−1 , y
∗]. By the first statement and since y∗ < y0 was chosen arbitrarily,

we have β∆ ≥ y0. In addition, the second statement and the mean value theorem show that
g∆(β∆)→ −∞ as ∆→∞.

Step 3: We now establish β∆ > y0. By Step 2 it remains to show that β∆ 6= y0. Suppose
that β∆ = y0. Then g′∆(y0) = 0 = g′′∆(y0) and it follows from a Taylor expansion around y0

that

g′′∆(y) =
2e−y0

(1 + e−y0)2
(y − y0) +O((y − y0)2) < 0

for y ∈ (y0 − ε, y0) and sufficiently small ε > 0, hence g′(y) > 0 for some y < y0. By
the intermediate value theorem there exists a zero of g′ on (β∆, y0), in contradiction to the
definition of β∆. Therefore we have β∆ > y0 as claimed.

Step 4: Next, we prove that (g∆, g
′
∆) converges toward (g∆0 , g

′
∆0

) uniformly on compacts
as ∆→ ∆0. To this end, we consider the solution f∆ : R+ → R3 to the initial value problem

d

dy
(f∆

1 , f
∆
2 , f

∆
3 )(y) =

(
1, f∆

3 (y), h
(
f∆

1 (y), f∆
3 (y)

) )
with

h(y, z) :=

(
−2µ

σ2
+

2

1 + e−y

)
+

(
4µ

σ2
− 2

1 + e−y
− 1− 2δ

σ2
(1 + ey)

)
z

+

(
−2µ

σ2
+ 1 +

4δ

σ2
(1 + ey)

)
z2 − 2δ

σ2
(1 + ey)z3

and initial values (f∆
1 , f

∆
2 , f

∆
3 )(0) = (y0 −∆, C, 0). The solution to this problem is

(f∆
1 , f

∆
2 , f

∆
3 )(y) =

(
y + y0 −∆, g∆(y + y0 −∆), g′∆(y + y0 −∆)

)
.

Note that

|g∆(y)− g∆0(y)| =
∣∣f∆

2 (y − y0 + ∆)− f∆0
2 (y − y0 + ∆0)

∣∣
≤

∣∣f∆
2 (y − y0 + ∆)− f∆0

2 (y − y0 + ∆)
∣∣+M ′|∆−∆0|

and similarly for g′′. Hence it suffices to show that f∆ depends uniformly on compacts on
its initial value f∆(0).
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h is locally Lipschitz and hence globally Lipschitz in z on [−M ′,M ′] and in y on com-
pacts. The desired uniform convergence follows now from the corollary to (Birkhoff &
Rota, 1962, Theorem V.3.2).

Step 5: In view of Steps 1 and 2 as well as the intermediate value theorem, it remains
to show that g(β∆) depends continuously on ∆. Fix ∆0 > 0. Since β∆0

> y0 by Step 3,
a Taylor expansion around β∆0

yields that g′∆0
is strictly increasing in a sufficiently small

neighbourhood W of β∆0
. Now consider ∆ sufficiently close to ∆0. Recall that g′∆(y) does

not vanish for β∆ < y ≤ y0. By the uniform convergence from Step 4, the first zero β∆ of
g′∆ after β∆ is close to the first zero β∆0

of g′∆0
after β∆0 . In view of∣∣g∆(β∆)− g∆0(β∆0

)
∣∣ ≤ ∣∣g∆(β∆)− g∆0(β∆)

∣∣+
∣∣g∆0(β∆)− g∆0(β∆0

)
∣∣

and Step 4, this completes the proof. �

We now construct the process β as the solution to an SDE with instantaneous reflection.
The coefficients a and b in (8.31) below are chosen in line with (8.18) and (8.23).

Lemma 8.10 Let β0 ∈ [β, β] and

a(y) :=
σ2

2

(
1− e−y

1 + e−y

)(
1

1− g′(y)

)2

+ δ (1 + ey) , b(y) :=
σ

1− g′(y)

for β ∈ [β, β]. Then there exists a solution to the Skorohod SDE

dβt = a(βt)dt+ b(βt)dWt

with instantaneous reflection at β, β, i.e. a continuous, adapted, [β, β]-valued process β and
nondecreasing adapted processes Φ, Ψ such that Φ and Ψ increase only on the sets {β = β}
and {β = β}, respectively, and

βt = β0 +

∫ t

0

a(βs)ds+

∫ t

0

b(βs)dWs + Φt −Ψt (8.31)

holds for all t ∈ R+.

PROOF. In view of Skorokhod (1961, 1962), it suffices to prove that the coefficients a(·) and
b(·) are globally Lipschitz on [β, β]. By the mean value theorem it is enough to show that
their derivatives are bounded on (β, β). Let y ∈ (β, β) be fixed. Then we have

b′(y) = σ
g′′(y)

(1− g′(y))2
. (8.32)

g′(y) ≤ 0 implies |1 − g′(y)| ≥ max{1, |g′(y)|}. Moreover, g′ is bounded on [β, β] by the
proof of Proposition 8.9. Boundedness of b′ now follows from (8.26) and (8.32). Bounded-
ness of a′ is shown along the same lines. �

We now define C and the shadow price process S̃ as motivated in Section 8.3.
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Lemma 8.11 For β0 ∈ [β, β] let β be the process from Lemma 8.10. Then C := g(β) is a
[C,C]-valued Itô process of the form

Ct = g(β0) +

∫ t

0

(
−µ+

σ2

2
+
σ2

2

(
1− e−βs
1 + e−βs

)(
1

1− g′(βs)

)2
)
ds+

∫ t

0

σg′(βs)

1− g′(βs)
dWs

and the Itô process S̃ := S exp(C) satisfies

S̃t = S0e
C0 exp

(∫ t

0

σ2

2

(
1− e−βs
1 + e−βs

)(
1

1− g′(βs)

)2

ds+

∫ t

0

σ

1− g′(βs)
dWs

)
.

PROOF. g can be extended to aC2-function on an open set containing [β, β], e.g. by attaching
suitable parabolas at β, β. Since Φ and Ψ are of finite variation and g′ vanishes on the support
of the Stieltjes measures corresponding to Φ and Ψ, Itô’s formula yields

dCt =

(
g′(βt)a(βt) +

1

2
g′′(βt)b(βt)

2

)
dt+ g′(βt)b(βt)dWt.

The claims follow by inserting the definitions of a and b, (8.26), and the definition of S. �

Next, we show that S̃ is indeed a shadow price process, i.e. the same portfolio/consump-
tion pair (ϕ, c) is optimal with the same expected utility both in the frictionless market
with price process S̃ and in the market with price process S and proportional transaction
costs λ, λ. In the frictionless market with price process S̃, standard results yield the optimal
strategy and consumption rate.

Lemma 8.12 Set

β0 :=

{
β if ζSS0

ζB+ζSS0
< 1

1+e−β
,

β if ζSS0

ζB+ζSS0
> 1

1+e−β
.

(8.33)

Otherwise, let β0 denote the [β, β]-valued solution y to

ζSS0e
g(y)

ζB + ζSS0eg(y)
=

1

1 + e−y
.

For processes β and S̃ as in Lemma 8.11 define

Ṽt := (ζB + ζSS̃0)E

(∫ ·
0

1

(1 + e−βs)S̃s
dS̃s −

∫ ·
0

δds

)
t

,

ct := − δṼt,

ϕ1
t :=

1

1 + e−βt
Ṽt

S̃t
, ϕ0

t := Ṽt − ϕ1
t S̃t.

Then

ϕ0
t = ϕ0

0 −
∫ t

0

csds−
∫ t

0

Ṽse
−βs

(1 + e−βs)2
dΦs +

∫ t

0

Ṽse
−βs

(1 + e−βs)2
dΨs,

ϕ1
t = ϕ1

0 +

∫ t

0

ϕ1
se
−βs

1 + e−βs
dΦs −

∫ t

0

ϕ1
se
−βs

1 + e−βs
dΨs,

(8.34)
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and (ϕ, c) is an optimal portfolio/consumption pair with value process Ṽ for initial wealth
ζB + ζSS̃0 in the frictionless market with price process S̃.

PROOF. Unless (8.33) holds, β0 is the root of the continuous, strictly increasing function

h(y) :=
ζBe

−g(y) + ζSS0

1 + e−y
− ζSS0.

If h does not have a root in [β, β], then either h(β) > 0 or h(β) < 0, i.e. either

ζSS0

ζB + ζSS0

<
1

1 + e−β
or

ζSS0

ζB + ζSS0

>
1

1 + e−β
.

Hence β0 is well defined.
We have

log(ϕ1
t ) = log(Ṽt)−

(
µ− σ2

2

)
t− σWt − Ct − log(1 + e−βt). (8.35)

By (JS, I.4.61)

d log(Ṽt)

=

(
σ2

2(1 + e−βt)2

(
1

1− g′(βt)

)2

− δ

)
dt+

σ

1 + e−βt

(
1

1− g′(βt)

)
dWt.

C is given in Lemma 8.11 and for the last term in (8.35), Itô’s formula yields

−d log(1 + e−βt)) =
e−βt

1 + e−βt
dβt −

1

2

e−βt

(1 + e−βt)2
d[β, β]t.

Summing up terms, we have

d log(ϕ1
t ) =

e−βt

1 + e−βt
dΦt −

e−βt

1 + e−βt
dΨt.

Hence log(ϕ1) is of finite variation and another application of Itô’s formula yields the
claimed representation for ϕ1. Obviously, Ṽ is the value process of ϕ relative to S̃. By
definition we have

dṼt = ϕ1
tdS̃t − ctdt, (8.36)

which means that (ϕ, c) is a self-financing portfolio/consumption pair for price process S̃.
The integral representation of ϕ0 now follows from

dϕ0
t = d(Ṽt − ϕ1

t S̃t) = −ctdt− S̃tdϕ1
t ,

where we used integration by parts in the sense of (JS, I.4.49b). For t ∈ R+ set

Kt :=

∫ t

0

e−δsds, κt := eδtct, ψ0
t := ϕ0

t +

∫ t

0

csds, ψ1
t := ϕ1

t .
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Then (ϕ, c) is optimal in the sense of Definition 8.4 (adapted to frictionless markets where
the restriction to strategies of finite variation is dropped) if and only if (ψ, κ) is optimal in
the sense of (Goll & Kallsen, 2000, Definition 2.2). From Propositions A.3 and A.4 we
derive that the differential characteristics (̃b, c̃, F̃ ) of S̃ are given by F̃ = 0 and

b̃t = S̃tσ
2 1

1 + e−βt

(
1

1− g′(βt)

)2

, c̃t = S̃2
t σ

2

(
1

1− g′(βt)

)2

.

Hence (Goll & Kallsen, 2000, Theorem 3.1) with Ht = b̃t/c̃t, K∞ = 1/δ and K∞ −Kt =
1
δ
e−δt yields the optimality of (ϕ, c). �

If (8.33) holds, then (ϕ0
0, ϕ

1
0) 6= (ζB, ζS). In this case we can and do modify the initial

portfolio to
(ϕ0

0, ϕ
1
0) := (ζB, ζS) (8.37)

without affecting the initial wealth, gains, or optimality. From now on, ϕ refers to this
slightly changed strategy. The case (8.33) happens if the initial portfolio is not situated
in the no-trade region of the transaction costs model, which makes an initial bulk trade
necessary.

(8.34) implies that the optimal strategy ϕ is of finite variation and constant until S̃ visits
the boundary {S, S} the next time. Since sales and purchases take place at the same prices
as in the market with transaction costs λ, λ and price process S, the portfolio/consumption
pair (ϕ, c) is admissible in this market as well. Conversely, since shares can be bought at
least as cheaply and sold at least as expensively, any admissible consumption rate in the
market with price process S and transaction costs is admissible in the frictionless market
with price process S̃, too. Hence (ϕ, c) is optimal in the market with transaction costs as
well. Made precise, this is stated in the following theorem.

Theorem 8.13 The portfolio/consumption pair (ϕ, c) defined in Lemma 8.12 and (8.37) is
also optimal in the market with price process S and proportional transaction costs λ, λ. In
particular, S̃ is a shadow price process in this market.

PROOF. Let ((ψ0, ψ↑ − ψ↓), κ) be an admissible portfolio/consumption pair in the market
with price process S and transaction costs λ, λ. By S ≤ S̃ ≤ S and Lemma 8.2 we have

ψ̃0 := ψ0
0 +

∫ ·
0

S̃tdψ
↓
t −

∫ ·
0

S̃tdψ
↑
t −

∫ ·
0

ctdt

≥ ψ0
0 +

∫ ·
0

Stdψ
↓
t −

∫ ·
0

Stdψ
↑
t −

∫ ·
0

ctdt

= ψ0.

Together with S ≤ S̃ ≤ S it follows that ((ψ̃0, ψ1), κ) is an admissible portfolio/consump-
tion pair in the frictionless market with price process S̃. By optimality of (ϕ, c) defined in
Lemma 8.12, this implies

E

(∫ ∞
0

e−δt log(ct)dt

)
≥ E

(∫ ∞
0

e−δt log(κt)dt

)
.
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Therefore it remains to prove that (ϕ, c) is admissible in the market with price process S and
proportional transaction costs λ, λ. Let us begin with ϕ as in Lemma 8.13, i.e. without the
modification from (8.37). Since Φ and Ψ increase only on the sets {S̃ = S} and {S̃ = S},
respectively, the self-financing condition for (ϕ, c) and (8.34) yield

ϕ0 = ϕ0
0 +

∫ ·
0

S̃tdϕ
↓
t −

∫ ·
0

S̃tdϕ
↑
t −

∫ ·
0

ctdt

= ϕ0
0 +

∫ ·
0

Stdϕ
↓
t −

∫ ·
0

Stdϕ
↑
t −

∫ ·
0

ctdt.

This shows that (ϕ, c) is self-financing in the market with price process S and transaction
costs λ, λ. We now turn back to ϕ as in (8.37). Both sides of (8.10) are unaffected by this
modification, at least if the initial values of ϕ↑, ϕ↓ are chosen accordingly. This implies that
the slightly changed (ϕ, c) is self-financing for S, λ, λ as well. By ϕ0, ϕ1 ≥ 0 it is also
admissible. This completes the proof. �

In the language of Davis & Norman (1990), the optimal policy is (c, L, U) with

Lt =
(
ϕ1

0 − ζS
)+
S0 +

∫ t

0

ϕ1
sSse

−βs

1 + e−βs
dΦs,

Ut =
(
ϕ1

0 − ζS
)−
S0 +

∫ t

0

ϕ1
sSse

−βs

1 + e−βs
dΨs.

In particular, it belongs to the slightly smaller set of admissible controls in Davis & Norman
(1990), Shreve & Soner (1994), where the cumulative values L,U of purchases and sales
are supposed to be right continuous. Therefore the optimal strategies in our and their setup
coincide.

Remark 8.14 In the case of logarithmic utility, it is possible to recover the shadow price S̃
from the results of Davis & Norman (1990). General results on logarithmic utility maximiza-
tion in frictionless markets show that the optimal consumption rate c equals the 1/δ-fold of
the investor’s current wealth measured in terms of the shadow price. Hence the consumption
rate calculated in Davis & Norman (1990) determines the shadow value process Ṽ , which
in turn allows to back out the shadow price S̃. More precisely, the shadow price can be con-
structed in a very subtle way using the results of Davis & Norman (1990), as was pointed
out to us by the very insightful comments of an anonymous referee: In the proof of (Davis
& Norman, 1990, Theorem 5.1) it is shown that the value function is of the form

v(x, y) =
1

δ
log

(
p

(
x

y

)(
x+ q

(
x

y

)
y

))
(8.38)

with functions p, q related through the identity

p′(x) = −p(x)q′(x)/(x+ q(x)). (8.39)

Differentiating (8.38) and inserting (8.39) leads to

1

vx(x, y)
= δ

(
x+ q

(
x

y

)
y

)
.
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In view of (Davis & Norman, 1990, Theorem 4.3), this shows that the optimal consumption
policy is given by c = δ(s0 +q( s0

s1
)s1). By (Goll & Kallsen, 2000, Theorem 3.1) this implies

that the optimal value process w.r.t the shadow price is given by

Ṽ = s0 + q

(
s0

s1

)
s1. (8.40)

A close look at the construction of the function q in the proof of (Davis & Norman, 1990,
Theorem 5.1) reveals that q is increasing with q( s0

s1
) = 1−λwhen s0

s1
hits the lower boundary

resp. q( s0
s1

) = 1 +λ for the upper boundary of the no-trade region. Therefore it follows from
(Davis & Norman, 1990, (3.1)) that

Ṽ = (ϕ0 + ∆s0) + q

(
s0

s1

)
(ϕ1S + ∆s1) = ϕ0 + ϕ1q

(
s0

s1

)
S

for the optimal trading strategy

ϕ0
t = s0(t−), ϕ1

t :=
s1(t−)

S

corresponding to the optimal policy (L,U) of Davis & Norman (1990). This shows that
q( s0

s1
)S coincides with the shadow price process S̃ constructed above.

However, if one wants to verify that q( s0
s1

)S indeed is a shadow price without using the
results provided in this chapter, the ensuing verification procedure turns out to be as involved
as our approach of dealing with the utility optimization problem and the computation of the
shadow price process simultaneously. More specifically, one knows by construction that
q( s0

s1
)S is [(1 − λ)S, (1 + λ)S]-valued and positioned at the respective boundary whenever

the strategy ϕ trades. By the proof of Theorem 8.13 it therefore suffices to show that (ϕ, c)

is optimal w.r.t. S̃ = q( s0
s1

)S in order for q( s0
s1

)S to be a shadow price. In view of (Goll &
Kallsen, 2000, Theorem 3.1) this amounts to verifying that

ϕ1q(s0/s1)S

s0 + q(s0/s1)s1

=
b

c
(8.41)

for the differential semimartingale characteristics (b, c, 0) of the continuous process q( s0
s1

)S.
In particular one has to prove that the properties of the function q ensure that S is an Itô
process and calculate its Itô decomposition. The optimality condition (8.41) then has to be
verified using (Davis & Norman, 1990, (5.7)), which leads to rather tedious computations.

As a side remark, it is interesting to note that this link between the optimal policy and the
shadow price is only apparent for logarithmic utility. Therefore it is not possible to extract
the shadow price from the results of Davis & Norman (1990) for power utility functions
of the form u(x) = x1−p/(1 − p). Using the present approach of solving for the optimal
strategy and the shadow price simultaneously still leads to equations for the optimal strategy
and the shadow price if combined with the notion of an opportunity process from Chapter
4. However, the corresponding free boundary problem appears to be substantially more
complicated than its counterpart in Davis & Norman (1990).
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At this stage it is not clear whether this additional complexity can be removed through a
suitable transformation as in the proof of (Davis & Norman, 1990, Theorem 5.1), or whether
the shadow price is indeed more difficult to obtain than the optimal policy for power utility.

8.5 Numerical illustration

The key free boundary value problem (8.26) can be readily solved with just a few lines of
standard e.g. MATLAB code. For the remainder of this section, we use

λ = λ = 0.01, µ = 0.05, σ = 0.4, δ = 0.1.

as in (Davis & Norman, 1990, Section 7). For these parameters the functions g and g′ are
shown in Figure 8.1.
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Figure 8.1: The functions g and g′

Having determined g and g′, the reflected process β can be simulated using a simple
Euler scheme (cf. e.g. Lépingle (1995)). By applying g this yields C and hence the shadow
price process S̃. We already know the fraction η̃ = 1/(1 + e−β) of wealth held in stocks,
computed relative to S̃. To calculate the liquidation value process V of the optimal portfolio,
notice that

V = ϕ0 + ϕ1S = (1− η̃)Ṽ + η̃Ṽ e−C(1− λ) =
(
1 + ((1− λ)e−C − 1)η̃

)
Ṽ .

For the fraction η of liquidation wealth held in stocks we obtain

η :=
ϕ1S

V
=

1− λ
(η̃−1 − 1)eC + 1− λ

.

It moves within the limits 0.225 and 0.397 in our example. The path of the bivariate process
(Vt, ηtVt) in the wedge-shaped no-transaction region is shown in Figure 8.2.
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Figure 8.2: (Liquidation wealth, liquidation wealth in stock) with upper boundary, Merton
line and lower boundary

Moreover, the ratio S̃/S and the optimal fraction η are plotted with the corresponding
lower respectively upper bounds in Figure 8.3.
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Figure 8.3: Shadow price/real price (above), optimal fraction of stock (below)

One can see that these processes are decreasing functions of one another. Nevertheless,
the process in the upper graph is an Itô process whereas the lower one is not because of
reflection at the boundary.



Appendix A

Tools from Stochastic Calculus

A.1 Semimartingale calculus

This thesis relies heavily on the calculus of semimartingale characteristics. For the conve-
nience of the reader we summarize here a few basic definitions and properties that are used
throughout the thesis. For more details the interested reader is referred to JS.

To any Rd-valued semimartingale X there is associated a triplet (B,C, ν) of character-
istics, where B resp. C denote Rd- resp. Rd×d-valued predictable processes and ν a random
measure on R+×Rd (cf. (JS, II.2.6) for more details). The first characteristic B depends on
a truncation function h : Rd → Rd. In view of Definition 2.2 and Remark 2.3, we assume it
to be of the form h = (h1, ..., hd) with

hk(x) := χ(xk) :=

{
0 if xk = 0,

(1 ∧ |xk|) xk
|xk|

otherwise,

unless X is a special semimartingale, in which case it is possible to use h(x) = x. Instead
of the characteristics themselves, we typically use the following notion.

Definition A.1 Let X be an Rd-valued semimartingale with characteristics (B,C, ν) rela-
tive to some truncation function h on Rd. In view of (JS, II.2.9), there exist a predictable
process A ∈ A +

loc, an Rd-valued predictable process b, an Rd×d-valued predictable process c
and a transition kernel K from (Ω× R+,P) into (Rd,Bd) such that

Bt = b • At, Ct = c • At, ν([0, t]×G) = K(G) • At for t ∈ [0, T ], G ∈ Bd,

where we implicitly assume that (b, c,K) is a good version in the sense that the values of c
are non-negative symmetric matrices, Ks({0}) = 0 and

∫
(1 ∧ |x|2)Ks(dx) < ∞. We call

(b, c,K,A) differential characteristics of X .

If (b, c,K,A) denote differential characteristics of some semimartingale X , we write

c̃ := c+

∫
xx>K(dx),

157
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provided that the integral exists and call c̃ the modified second characteristic of X . This no-
tion is motivated by the fact that 〈X,X〉 = c̃ • A by (JS, I.4.52) if the angle bracket process
exists. From now on, we write (bX , cX , KX , A) and c̃X for the differential characteristics
and the modified second characteristic of a semimartingale X . If they refer to some prob-
ability measure P ? rather than P , we write instead (bX?, cX?, FX?, A) and c̃X?. The joint
differential characteristics of two semimartingales X , Y are denoted by

(b(X,Y ), c(X,Y ), K(X,Y ), A) =

((
bX

bY

)
,

(
cX cX,Y

cY,X cY

)
, K(X,Y ), A

)
and likewise

c̃(X,Y ) =

(
c̃X c̃X,Y

c̃Y,X c̃Y

)
,

if the modified second characteristic of (X, Y ) exists. The decomposition in Definition A.1
is of course not unique, for example (2bX , 2cX , 2KX , 1

2
A) yields another version. Save for

discrete-time processes (where one typically chooses At =
∑

s≤t 1N(s)), the characteristics
are usually absolutely continuous in time, i.e. one may choose At = t. In this case the
triplet (bX , cX , KX) is unique up to some dP ⊗ dt-null set and we denote it by ∂X :=

(bX , cX , KX).

Proposition A.2 (Lévy process) An Rd-valued semimartingale X with X0 = 0 is a Lévy
process if and only if there is a version (bX , cX , KX) of ∂X which does not depend on (ω, t).
In this case (bX , cX , KX) is equal to the Lévy-Khintchine triplet.

PROOF. (JS, II.4.19). �

For At = t, one can interpret the differential characteristics as a local Lévy-Khintchine
triplet. Very loosely speaking, a semimartingale with ∂X = (bX , cX , KX) resembles locally
after t a Lévy process with triplet (bX , cX , KX)(ω, t), i.e. with drift rate b, diffusion matrix
c, and jump measure K. Starting from e.g. Lévy processes as building blocks, a number of
rules allow to compute the differential characteristics of more complicated processes.

Proposition A.3 (Stochastic integration) Let X be an Rd-valued semimartingale with dif-
ferential characteristics (bX , cX , KX , A) and H an Rn×d-valued predictable process with
Hj· ∈ L(X), j = 1, . . . , n. Then differential characteristics of the Rn-valued integral pro-
cess H • X := (Hj· • X)j=1,...,n are given by (bH•X , cH•X , KH•X , A), where

bH
•X

t = Htb
X
t +

∫
(h̃(Htx)−Hth(x))KX

t (dx),

cH
•X

t = Htc
X
t H

>
t ,

KH•X
t (G) =

∫
1G(Htx)KX

t (dx) ∀G ∈ Bn with 0 /∈ G.

Here h̃ : Rn → Rn denotes the truncation function which is used on Rn.
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PROOF. (Kallsen & Shiryaev, 2002, Lemma 3). �

The combination of Propositions A.2 and A.3 yields that we have

bXt = µt, cXt = σ2
t , KX

t = 0

for the differential characteristics of an Itô process X of the form dXt = µtdt+σtdWt. Itô’s
formula for differential characteristics reads as follows:

Proposition A.4 (C2-function) Let X be an Rd-valued semimartingale with differential char-
acteristics (bX , cX , KX , A). Suppose that f : U → Rn is twice continuously differentiable
on some open subset U ⊂ Rd such that X ,X− are U -valued. Then the Rn-valued semi-
martingale f(X) has differential characteristics (bf(X), cf(X), Kf(X), A), where

b
f(X),i
t =

d∑
k=1

Dkf
i(Xt−)bX,kt +

1

2

d∑
k,l=1

Dklf
i(Xt−)cX,kll

+

∫ (
h̃i(f(Xt− + x)− f(Xt−))−

d∑
k=1

Dkf
i(Xt−)hk(x)

)
KX
t (dx),

c
f(X),ij
t =

d∑
k,l=1

Dkf
i(Xt−)cX,klt Dlf

j(Xt−),

K
f(X)
t (G) =

∫
1G(f(Xt− + x)− f(Xt−))KX

t (dx) ∀G ∈ Bn with 0 /∈ G.

PROOF. Follows immediately from (Goll & Kallsen, 2000, Corollary A.6). �

The Girsanov-Jacod-Memin theorem (cf. (JS, III.3.24)) allows to compute the effect of
equivalent measure changes on the characteristics. Here we state a version put forward
in Kallsen (2004) that is convenient for applications. Let P ? loc∼ P be a probability mea-
sure with density process Z. Since P ? loc∼ P , Z, Z− are strictly positive by (JS, I.2.27).
Hence the stochastic logarithm N := L (Z) = 1

Z−
• Z is a well-defined semimartin-

gale. We now have the following result, which relates the differential P ?-characteristics
(b(X,N)?, c(X,N)?, K(X,N)?, A) of (X,N) to the characteristics (b(X,N), c(X,N), K(X,N), A) of
(X,N) under P .

Proposition A.5 (Equivalent change of measure) Differential P ?-characteristics of the pro-
cess (X,N) are given by

b(X,N)? = b(X,N) + c(X,N),N +

∫
h(x)xd+1K

(X,N)(dx),

c(X,N)? = c(X,N),

K(X,N)? =

∫
1G(x)(1 + xd+1)K(X,N)(dx) ∀G ∈ Bd.
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PROOF. (Kallsen, 2004, Lemma 5.1). �

The next result considers the effect of absolutely continuous time changes. For ease of
exposition we only consider the case of absolutely continuous characteristics (i.e. At = t),
which suffices for our needs here.

Proposition A.6 (Absolutely continuous time-change) LetX be an Rd-valued semimartin-
gale with differential characteristics (bX , cX , KX , I). Suppose that (Tϑ)ϑ∈R+ is a finite, ab-
solutely continuous time change (i.e. Tϑ is a finite stopping time for any ϑ and Tϑ =

∫ ϑ
0
Ṫ%d%

with non-negative derivative Ṫϑ).
Then the time-changed process (X̃ϑ)ϑ∈R+ := (XTϑ)ϑ∈R+ is a semimartingale relative

to the time-changed filtration (F̃ϑ)ϑ∈R+ := (FTϑ)ϑ∈R+ with differential characteristics
(b

eX , c eX , K eX , I) given by

b
eX
ϑ = bXTϑṪϑ, c

eX
ϑ = cXTϑṪϑ, K

eX
ϑ (G) = KX

Tϑ
(G)Ṫϑ, ∀G ∈ Bd.

PROOF. (Kallsen, 2006, Proposition 5). �

The following Lemma shows how the characteristics are affected by stopping.

Lemma A.7 (Stopping) Let τ be a stopping time andX an Rd-valued semimartingale with
characteristics (B,C, ν). Then the stopped process Xτ has characteristics (Bτ , Cτ , ντ ),
where ντ here refers to the random measure given by

1G ∗ ντ := 1{G∩ [[0,τ ]]} ∗ ν, ∀G ∈P.

IfX admits differential characteristics (bX , cX , KX , A), thenXτ has differential character-
istics (bX1[[0,τ ]], c

X1[[0,τ ]], K
X(dx)1[[0,τ ]], A).

PROOF. By (JS, II.2.42) we have A(u) ∈Mloc for u ∈ Rd, where

A(u) := eiu
>X−eiu>X− •

(
iu>B − 1

2
u>Cu+

∫
[0,·]×Rd

(eiu
>x − 1− iu>h(x))ν(d(t, x))

)
.

Since Mloc is stable under stopping, we have Aτ ∈Mloc. Moreover, (JS, I.4.37) yields

Aτ (u) = eiu
>Xτ

− eiu>Xτ
− •

(
iu>Bτ − 1

2
u>Cτu+

∫
[0,·]×Rd

(eiu
>x − 1− iu>h(x))ντ (d(t, x))

)
.

Again by (JS, II.2.42) the characteristics of Xτ have the desired form. The second part of
the claim now follows from (b1[[0,τ ]]) • A = Bτ , (c1[[0,τ ]]) • A = Cτ and

(K(G)1[[0,τ ]]) • At = ντ ([0, t]×G)

for all G ∈ Bd. �

The σ-martingale property of a semimartingale can be directly read from its characteris-
tics (cf. Kallsen (2004) for further background).
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Lemma A.8 (σ-(super-)martingales) Let X be a semimartingale with differential charac-
teristics (b, c,K,A). Then X is a σ-martingale (resp. σ-supermartingale) if and only if∫
{|x|>1} |x|K(dx) <∞ and

b+

∫
(x− h(x))K(dx) = 0 (resp. ≤ 0)

hold outside some dP ⊗ dA-null set.

PROOF. (Kallsen & Kühn, 2004, Lemma A.2). �

Proposition A.9 Let X be a nonnegative σ-supermartingale with E(X0) < ∞. Then X is
a supermartingale.

PROOF. (Kallsen, 2004, Proposition 3.1). �

A.2 Affine processes

In this section we state a time-inhomogeneous version of (Duffie et al., 2003, Lemma 9.2),
i.e. a sufficient criterion for a strongly regular affine Markov process to be conservative.
Here we use the notation and terminology of Duffie et al. (2003) and Filipović (2005).

Lemma A.10 Let (a, α, b, β, c, γ,m, µ) be strongly admissible parameters and denote by
X the corresponding strongly regular affine Markov process. Suppose c = 0, γ = 0, and

sup
t∈[0,T ]

∫
D\{0}

(
|η| ∧ |η|2

)
µi(t, dξ) <∞, ∀T ∈ R+, ∀i ∈ I . (A.1)

Then X is conservative.

PROOF. The proof is a modification of Lemma 9.2 and the first part of Lemma 9.1 in Duffie
et al. (2003). By definition of conservativeness and (Filipović, 2005, Definition 2.1), X is
conservative if φ(t, T, 0) = 0 and ψ(t, T, 0) = 0 for 0 ≤ t ≤ T < ∞. Since γ = 0 by
assumption, g = 0 is an Rm

− -valued solution of the initial value problem

∂

∂t
g(t) = RY (T − t, (g(t), 0)), g(0) = 0. (A.2)

By (Filipović, 2005, Theorem 2.13), ψY (T − ·, T, 0) also solves (A.2) on [0, T ]. From
(Filipović, 2005, Proposition 4.1) it follows that ψY (T − ·, T, (v, 0)) is Rm

−−-valued for
v ∈ Rm

−−. Therefore it is Rm
− -valued for v ∈ Rm

− by (Filipović, 2005, Lemma 3.1 and
Proposition 4.3). Similarly as in (Duffie et al., 2003, Lemma 5.3), it follows from (A.1)
that RY (t, (v, 0)) is locally Lipschitz continuous in v ∈ Rm

− for t ∈ R+. Hence we have
ψY (t, T, 0) = 0 for t ∈ [0, T ] and ψ(t, T, 0) = 0 from (Filipović, 2005, (2.26)). Since
c = 0, inserting into (Filipović, 2005, (2.24)) establishes φ(t, T, 0) = 0, which completes
the proof. �
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A.3 Measure changes

In this section, we state two technical results related to measure changes. First we recall a
statement on the existence of probability measures on the Skorohod space which are defined
in terms of their density process.

Lemma A.11 Let (Dd,Dd,Dd, P ) denote the Skorohod space of càdlàg functions endowed
with some probability measure P and Z some nonnegative martingale on that space with

E(Z0) = 1. Then there exists a probability measure Q
loc
� P with density process Z.

PROOF. For any t ∈ R+ there exists a probability measure Qt on Dd
t with density Zt. The

family (Qt)t∈R+ is consistent in the sense that Qt|Dd
s

= Qs for s ≤ t. The assertion follows
now along the same lines as (Revuz & Yor, 1999, Theorem 6.1 in the appendix) by slight
modification of the proof in Stroock & Varadhan (1979). �

The next lemma shows that expectations under an equivalent probability measure can
sometimes be expressed in terms of a stochastic integral of the density process.

Lemma A.12 Let (Ω,F , (Ft)t∈R+ , P ) be a filtered probability space and Q ∼ P with
density process Z. Then for any increasing, predictable process A with A0 = 0 we have

EQ(AT ) = EP (Z− • AT ).

PROOF. Since Z is a P -martingale and A is predictable and of finite variation, A • Z =

∆A • Z + A− • Z is a local P -martingale by (JS, I.4.49, I.4.34). If (Tn)n∈N denotes a
localizing sequence for A • Z, then A • ZT∧Tn is a martingale starting at 0. By (JS, III.3.4,
I.4.49), this implies

EQ(AT∧Tn) = EP (ZT∧TnAT∧Tn)

= EP (Z− • AT∧Tn + A • ZT∧Tn)

= EP (Z− • AT∧Tn).

Hence monotone convergence yields EQ(AT ) = EP (Z− • AT ) as claimed. �
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Moore-Penrose pseudoinverses

The Moore-Penrose pseudoinverse of an arbitrary matrix or matrix valued process c is a
particular matrix c−1 such that cc−1c = c and c−1cc−1 = c−1 (cf. Albert (1972) for more de-
tails). The proof of Theorem 5.25 uses some technical arguments involving pseudoinverses,
due to Richhard Vierthauer, which are provided here.

Throughout, let S−, ã ∈ Rd and denote by c̃S? a positive semidefinite d× d-matrix. Set

R := Ed + S−ã
>, C = Rc̃S?R>, b = Rc̃S?ã, d = ã>c̃S?ã

and denote by A the positive semidefinite matrix

A =

(
C b

b> d

)
.

We start with some identities that are needed later on.

Proposition B.1 The following identities hold:

CC−1b = b, (B.1)

bS>− +Rc̃S?R>C−1Rc̃S? = Rc̃S?R>,

Rc̃S?(Ed −R>C−1Rc̃S?) = 0, (B.2)

R(Ed − c̃S?R>C−1R)c̃S? = 0,

c̃S?(Ed −R>C−1Rc̃S?)R> = 0, (B.3)

(Ed − c̃S?R>C−1R)c̃S?R> = 0. (B.4)

PROOF. The first identity follows from (Albert, 1972, Theorem 9.1.6) and in turn implies
the others by straightforward calculations. �

We can now prove the principal result of this section.

Lemma B.2 Let l := (R>, ã) and r := (Rc̃S?, ã>c̃?)>. Then we have

Rc̃S?lA−1r = Rc̃S?.
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PROOF. Define

Cm :=

(
C

b>

)
, um :=

(
b

d

)
.

In order to use Greville’s theorem (cf. (Albert, 1972, Theorem 4.3)) for the computation of
the pseudoinverse A−1, we have to distinguish the following two cases:

1. (Ed+1 − CmC−1
m )um = 0.

2. (Ed+1 − CmC−1
m )um 6= 0.

In Case 1, which is equivalent to d = b>C−1b, Greville’s theorem and (B.1) yield

A−1 =

(
(I − w1C

−1bb>C−1)C−1(I − w1C
−1bb>C−1) (I − w1C

−1bb>C−1)w1C
−1C−1b

w1b
>C−1C−1(I − w1C

−1bb>C−1) w2
1b
>C−1C−1C−1b

)
,

with
w1 =

1

1 + b>C−1C−1b
.

In Case 2, we get

A−1 =

(
(I − w2C

−1bb>)C−1 w2C
−1b

w2b
>C−1 −w2

)
,

where
w2 =

1

b>C−1b− d
.

In Case 1, we now obtain

lA−1r = R>C−1Rc̃S? + w2
1b
>C−1C−1C−1bA1 + w1A2,

for

A1 := (R>C−1Rc̃S? − Ed)ãã>(c̃S?R>C−1R− Ed)c̃S?,
A2 := A1

2 + A2
2,

A1
2 := R>C−1C−1Rc̃S?ãã>(Ed − c̃S?R>C−1R)c̃S?,

A2
2 := (Ed −R>C−1Rc̃S?)ãã>c̃S?R>C−1C−1Rc̃S?.

By (B.2) we have Rc̃S?A1 = 0 and Rc̃S?A2
2 = 0. Moreover, if the matrix R is invertible, it

follows from (B.4) that A1
2 = 0. If R is not invertible one easily verifies that there exists a

basis of Rd consisting of ã and d−1 linearly independent vectors orthogonal to S−. Together
with d = b>C−1b, this implies A1

2 = 0. Consequently, we have

Rc̃S?lA−1r = Rc̃S?R>C−1Rc̃S? = Rc̃S?

by (B.2) in Case 1. We now consider Case 2. For A1 as above, we have

lA−1r = R>C−1Rc̃S? − w2A1

and therefore
Rc̃S?lA−1r = Rc̃S?

by (B.2) as claimed. �
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General Notation

N, N∗ {0, 1, 2, 3, . . .}, {1, 2, 3, . . .}
R, R+, R++ (−∞,∞), [0,∞), (0,∞)

x ∧ y, x ∨ y min{x, y}, max{x, y} for x, y ∈ R
x+, x− x ∨ 0, −x ∨ 0

bxc max{n ∈ N : n ≤ x}
Rd, Cd the Euclidean resp. unitary d-dimensional space
|x|, |z| the Euclidean resp. unitary norm of x ∈ Rd, z ∈ Cd

Re(z), Im(z) the real resp. imaginary part of z ∈ Cd

Rd
− {x ∈ Rd : xi ≤ 0, i = 1, . . . , d}

Rd
−− {x ∈ Rd : xi < 0, i = 1, . . . , d}

Cd
− {z ∈ Cd : Re(z) ∈ Rd

−},
Rm×n the set of m× n-matrices with real-valued entries
A> the transpose of the matrix A
A−1 the Moore-Penrose pseudoinverse of the matrix A
ei the i-th unit vector (0, . . . , 0, 1, 0, . . . , 0)> in Rd

Ed the identity matrix (e1, . . . , ed) in Rd×d

F , G , H σ-fields
P, Pe, P ? probability measures
Q,Q0, Q

$ equivalent martingale measures

Q
loc
� P , Q� P (local) absolute continuity of Q w.r.t. P

Q
loc∼ P , Q ∼ P (local) equivalence of Q w.r.t. P

dQ
dP

the Radon-Nickodym derivative of Q� P

P |G the restriction of the measure P to the σ-field G

F = (Ft)t∈R+ , G = (Gu)u∈R+ filtrations
(Ω,F ,F, P ) filtered probability space
EP (X), VarP (X) expectation, variance of the random variable X under P
Lp(P ) the random variables s.t. EP (|X|p) <∞, p ∈ [1,∞)

CovP (X) the covariance of random variables X , Y under P
EP (X|G ) the conditional expectation of X given G under P
µi, mi i-th centered resp. uncentered moment
µ̂i, m̂i i-th centered resp. uncentered empirical moment
ci i-th cumulant
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PX the distribution of X under P
P -a.s. P -a.e. almost surely, almost everywhere w.r.t P
a.s.−→, d−→ a.s. convergence, convergence in distribution
⊗ the product of σ-fields or measures
σ(Xi : i ∈ I) the σ-field generated by {Xi : i ∈ I}
B, Bd the Borel σ-field on R resp. Rd

P the predictable σ-field
P̃ P ⊗Bd

D d the Skorohod space {α : R+ → Rd : α càdlàg}
πt the projection πt(α) := αt for α ∈ D d

D0
t (Rd), Dd, Dd

t σ(πs : s ≤ t), σ
( ⋃
t∈R+

D0
t (Rd)

)
,
⋂
s>t

D0
s (Rd)

εx the Dirac-measure in x ∈ Rd

IG(a, b) the inverse Gaussian distribution with parameters a, b > 0

Γ(a, b) the gamma distribution with parameters a, b > 0

K1 the modified Bessel function of the third kind with index 1

AC the complement of the set A
1A the indicator function of the set A
A1 × A2 the Cartesian product of the sets A1 and A2

o(·), O(·) the Landau order symbols
Ck([0, T ],Rd) the spaces of k-times continuously differentiable functions

f : [0, T ]→ Rd

C∞([0, T ],Rd)
⋂
k∈NC

k([0, T ],Rd)

f ′ the derivative of the real function f
f |A the restriction of the function f to the set A
arg minx∈A f the point where f |A attains its minimum
ry the autocorrelation function of a stationary process y
γ the autocovariance function of a stationary process
(αy(k))k∈N the mixing coefficients of an α-mixing process (yn)n∈N

Mloc the set of local martingales
H 2 the set of square-integrable martingales
H 2

0 the set of square-integrable martingales starting in 0

H 2
loc the set of locally square-integrable martingales

A +
loc the set of cádlág, adapted processes, starting in 0 that are

locally integrable and increasing
L(X) the set of processes integrable w.r.t. the semimartingale X
Y • X· the stochastic integral

∫ ·
0
Ys dXs of Y ∈ L(X) w.r.t. the

semimartingale X ,
X = X0 + AX +MX the semimartingale decomposition of the semimartingale X
Xt− the left limit lims↑tXs of the semimartingale X
∆Xt the jump Xt −Xt− of the semimartingale X
X(n) the increment Xn∆ −X(n−1)∆ of the semimartingale X



General Notation 179

E (X) the stochastic exponential of the semimartingale X
L (X) the stochastic logarithm of the semimartingale X
Xc the continuous martingale part of the semimartingale X
[X, Y ] the quadratic covariation of the semimartingales X , Y
〈X, Y 〉 the predictable quadratic covariation (angle bracket

process) of the semimartingales X and Y
XY time-changed process
(GYt)t∈R+ time-changed filtration
Xτ the process X stopped at τ , i.e. Xτ

t = Xτ∧t

[[τ, τ̃ ]], [[τ, τ̃ [[ etc. stochastic intervals of τ , τ̃
µX the random measure of jumps of the semimartingale X
νX the compensator of µX

W ∗ µ the integral process of the P̃-measurable function W
w.r.t. the random measure µ

W ∗ (µX − νX) the integral process of the P̃-measurable function W
w.r.t. the compensated random measure µX − νX

h, χ truncation functions
(BX , CX , νX) the integral characteristics of the semimartingale X
(bX , cX , KX , A) the differential characteristics of the semimartingale X
I the identity process It = t

∂X the differential characteristics of X w.r.t. A = I or
the subdifferential of a convex function in 7.8, 7.10

(bL, cL, KL) the Lévy-Khintchine triplet of the Lévy process L
ψL the Lévy exponent of the Lévy process L, i.e.

ψL(u) u>bL + 1
2
u>cLu+

∫
Rd

(
eu
>x − 1− u>h(x)

)
KL(dx)

ψXi the Lévy exponent corresponding to (βi, γi, κi) for a
process X affine w.r.t. Lévy-Khintchine triplets
(βi, γi, κi), i = 0, . . . ,m





Index of Terminology

ČK, 56

adjustment process, 110, 118
affine Markov process

conservative, 9
homogeneous, 9
inhomogeneous, 9

affine process, 161
affine semimartingale, 10
affine stochastic volatility model, 12

BNS (2001), 13
Carr et al. (2003), 14
Heston (1993), 13
Lévy model, 67

ask-price, 125, 130, 139
asymptotic normality, 36

bid-price, 125, 130, 139
Black-Scholes model, 70

generalized, 89

certainty equivalence value, 103
change of measure

equivalent, 159
locally absolutely continuous, 22

complete market, 55
conditional characteristic function, 11
consistent price system, 136
consumption process, 130
consumption rate, 139
contingent claim, 100
convex constraints, 62
cumulant, 30

decomposition
Galtchouk-Kunita-Watanabe, 98, 104

semimartingale, 107
discrete-time model, 130
dual minimizer, 60

EMM, 97
equivalent local martingale measure, 102
estimation algorithm, 33, 46
exponential moments, 24
exponentially affine martingales

independent increments, 22
time-homogeneous, 20
time-inhomogeneous, 14

free boundary value problem, 146
Fundamental Theorem

of Asset Pricing, 58
of Utility Maximization, 59, 60, 136

Girsanov-Jacod-Memin theorem, 159

hedging strategy
marginal utility-based, 97, 103
utility-based, 102
variance-optimal, 98

incomplete market, 56
initial endowment, 57

variance-optimal, 98
instantaneous reflection, 149
integrated Lévy process, 84

JS, 7

Kalman filter, 42
extended, 53

Lévy exponent, 10
Lévy-driven OU process
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182 Index of Terminology

gamma marginals, 39, 52
inverse gaussian marginals, 39

Lévy-Khintchine triplet
strongly admissible, 10

leverage effect, 27, 38
logarithm

distinguished, 52, 122
stochastic, 159

marginal utility-based price, 96, 103
martingale problem, 8

affine, 9
solution, 9
uniqueness, 9

Merton problem, 55
modified second characteristic, 158

NFLVR, 58
NIG process, 32, 40

opportunity neutral measure, 110
opportunity process, 62, 110, 118
OU process, 13

payment function, 100
PII, 22
portfolio/consumption pair, 130, 139

admissible, 131, 141
optimal, 132, 141
self-financing, 131, 141

process with
conditionally independent increments, 79
independent increments, 22

proportional transaction costs, 130, 139
pseudoinverse, 163
pure hedge coefficient, 122

q-optimal martingale measure, 61

reservation price, 100
Riccati equation, 72

generalized, 11
risk premium, 97, 103

SDE, 13

semimartingale characteristics, 157
differential, 157

shadow price, 132, 143
σ-martingale, 161
σ-supermartingale, 161
simulation study, 41, 50
Skorohod SDE, 149
Skorohod space, 9
square-root process, 13
state-space representation, 42
stochastic volatility, 13
strong consistency, 36
stylized facts, 27
subdifferential, 134
subordinator, 13
superposition, 34

time-change, 160
time-changed Lévy process, 85
trading strategy, 57, 130, 139

c-financing, 131, 141
acceptable, 100
admissible, 57, 110
efficient, 110
maximal, 100
optimal, 57
self-financing, 57
superhedging, 100

truncation function, 9, 157

utility function, 57
exponential, 62
logarithmic, 58
power, 58

utility indifference price, 95, 100
utility process, 132
utility-based hedging strategy, 95

value function, 62
VG process, 32
volatility clustering, 27

weak equivalent local martingale measure, 58
weakly continuous, 10


