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UTILITY MAXIMIZATION IN MODELS WITH CONDITIONALLY
INDEPENDENT INCREMENTS

BY J. KALLSEN AND J. MUHLE-KARBE

Christian-Albrechts-Universität zu Kiel and Universität Wien

We consider the problem of maximizing expected utility from terminal
wealth in models with stochastic factors. Using martingale methods and a
conditioning argument, we determine the optimal strategy for power utility
under the assumption that the increments of the asset price are independent
conditionally on the factor process.

1. Introduction. A classical problem in Mathematical Finance is to maxi-
mize expected utility from terminal wealth in a securities market (cf. [20, 22] for
an overview). This is often called the Merton problem, since it was first solved in a
continuous-time setting by Merton [26, 27]. In particular, he explicitly determined
the optimal strategy and the corresponding value function for power and exponen-
tial utility functions and asset prices modeled as geometric Brownian motions.

Since then, these results have been extended to other models of various kinds.
For Lévy processes (cf. [3, 7, 8, 15]), the value function can still be determined
explicitly, whereas the optimal strategy is determined by the root of a real-valued
function. For some affine stochastic volatility models (cf. [19, 21, 23, 25]), the
value function can also be computed in closed form by solving some ordinary
differential equations, while the optimal strategy can again be characterized by the
root of a real-valued function.

For more general Markovian models, one faces more involved partial
(integro-)differential equations that typically do not lead to explicit solutions and
require a substantially more complicated verification procedure to ensure the opti-
mality of a given candidate strategy (cf., e.g., [35] for power and [31] for exponen-
tial utility). A notable exception is given by models where the stochastic volatility
is independent of the other drivers of the asset price process. In this case, it has
been shown that the optimal strategy is myopic, that is, only depends on the local
dynamics of the asset price (cf., e.g., [11] for exponential and [4, 6, 24] for power
utility). In particular, it can be computed without having to solve any differential
equations.

In the present study, we establish that this generally holds for power utility,
provided that the asset price has independent increments conditional on some ar-
bitrary factor process. As in [11], the key idea is to condition on this process,
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which essentially reduces the problem to studying processes with independent in-
crements. This in turn can be done similarly as for Lévy processes in [15]. In the
following, we make this idea precise. We first introduce our setup of processes
with conditionally increments and prove that general Lévy-driven models fit into
this framework if the stochastic factors are independent of the other sources of
randomness. Subsequently, we then state and prove our main result in Section 3.
Given conditionally independent increments of the asset price, it provides a point-
wise characterization of the optimal strategy that closely resembles the well-known
results for logarithmic utility (cf., e.g., [10]). Afterward, we present some exam-
ples. In particular, we show how the present results can be used to study whether
the maximal expected utility that can be achieved in affine models is finite. For the
proof of our main result we utilize that exponentials of processes with condition-
ally independent increments are martingales if and only if they are σ -martingales.
A proof of this result is provided in the Appendix.

For stochastic background, notation and terminology we refer to the monograph
of Jacod and Shiryaev [14]. In particular, for a semimartingale X, we denote by
L(X) the set of X-integrable predictable processes and by ϕ • X the stochastic
integral of ϕ ∈ L(X) with respect to X. Moreover, we write E (X) for the stochas-
tic exponential of a semimartingale X. When dealing with stochastic processes,
superscripts usually refer to coordinates of a vector rather than powers. By I we
denote the identity process, that is, It = t .

2. Setup. Our mathematical framework for a frictionless market model is
as follows. Fix a terminal time T ∈ R+ and a filtered probability space (�,F ,
(Ft )t∈[0,T ],P ). We consider traded securities whose price processes are expressed
in terms of multiples of a numeraire security. More specifically, these securities are
modeled by their discounted price process S, which is assumed to be a (0,∞)d -
valued semimartingale. We consider an investor whose preferences are modeled by
a power utility function u(x) = x1−p/(1 − p) for some p ∈ R+ \ {0,1} and who
tries to maximize expected utility from terminal wealth. Her initial endowment is
denoted by v ∈ (0,∞). Trading strategies are described by R

d -valued predictable
stochastic processes ϕ = (ϕ1, . . . , ϕd) ∈ L(S), where ϕi

t denotes the number of
shares of security i in the investor’s portfolio at time t . A strategy ϕ is called ad-
missible if its discounted wealth process V (ϕ) := v + ϕ • S is nonnegative (no
negative wealth allowed). An admissible strategy is called optimal, if it maximizes
ψ �→ E(u(VT (ψ))) over all competing admissible strategies ψ .

We need the following very mild assumption. Since the asset price process is
positive, it is equivalent to NFLVR by the fundamental theorem of asset pricing.

ASSUMPTION 2.1. There exists an equivalent local martingale measure, that
is, a probability measure Q ∼ P such that the S is a local Q-martingale.
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Since the asset price process S is positive, Assumption 2.1 and [14], I.2.27, im-
ply that S− > 0 as well. By [14], II.8.3, this means that there exists an R

d -valued
semimartingale X such that Si = Si

0E (Xi) for i = 1, . . . , d . We interpret X as
the returns that generate S in a multiplicative way. To solve the utility maximiza-
tion problem, we make the following crucial structural assumptions on the return
process X.

ASSUMPTION 2.2.

1. The semimartingale characteristics (BX,CX, νX) (cf. [14]) of X relative to
some truncation function such as h(x) = x1{|x|≤1} can be written as

BX
t =

∫ t

0
bX
s ds, CX

t =
∫ t

0
cX
s ds, νX([0, t] × G) =

∫ t

0
KX

s (G)ds,

with predictable processes bX, cX and a transition kernel KX from (� ×
R+,P) into (Rd,Bd). The triplet (bX, cX,KX) is called differential or local
characteristics of X.

2. There is a process y such that X also is a semimartingale with local character-
istics (bX, cX,KX) relative to the augmented filtration G := (Gt )t∈[0,T ] given
by

Gt := ⋂
s>t

σ
(
Fs ∪ σ

(
(yr)r∈[0,T ]

))
, 0 ≤ t ≤ T ,

and such that bX
t , cX

t and KX
t (G) are G0-measurable for fixed t ∈ [0, T ] and

G ∈ Bd . By [14], II.6.6, this means that X has G0-conditionally independent
increments, that is, it is a G0-PII.

REMARKS.

1. In the present general framework, modelling the stock prices as ordinary expo-
nentials Si = Si

0 exp(X̃i), i = 1, . . . , d for some semimartingale X̃ leads to the
same class of models (cf. [17], Propositions 2 and 3).

2. The first part of Assumption 2.2 essentially means that the asset price process
has no fixed times of discontinuity. This condition is typically satisfied, for
example, for diffusions, Lévy processes and affine processes.

3. The second part of Assumption 2.2 is the crucial one. It means that the local
dynamics of the asset returns at time t are determined by the evolution up to
time t of the process y, which can therefore be interpreted as a stochastic factor
process.

In general, a semimartingale X will not remain a semimartingale with respect to
an enlarged filtration (cf., e.g., [30], Chapter VI, and the references therein). Even
if the semimartingale property is preserved, the characteristics generally do not
remain unchanged. Nevertheless, we now show that some fairly general models
satisfy this property if the factor process y is independent of the other sources of
randomness in the model.
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Integrated Lévy models. In this section, we assume that X is modeled as

X = y • B(2.1)

for an R
d×n-valued process y ∈ L(B) and an independent R

n-valued Lévy process
B with Lévy triplet (bB, cB,KB). Furthermore, we suppose that the underlying
filtration F is generated by B and y (or equivalently by X and y if d = n and
y takes values in the invertible R

d×d -matrices). The following result shows that
Assumption 2.2 is satisfied in this case.

LEMMA 2.3. Relative to both F and G, X is a semimartingale with G0-
measurable local characteristics (bX, cX,KX) given by

bX = ybB +
∫ (

h(yx) − yh(x)
)
KB(dx), cX = ycBy	,

KX(G) =
∫

1G(yx)KB(dx) ∀G ∈ Bd \ {0}.
In particular, Assumption 2.2 is satisfied.

PROOF. Since B is independent of y and F is generated by y and B , it fol-
lows from [2], Theorem 15.5, that B remains a Lévy process (and in particular a
semimartingale), if its natural filtration is replaced with either F or G. Since the
distribution of B does not depend on the underlying filtration, we know from the
Lévy–Khintchine formula and [14], II.4.19, that B admits the same local character-
istics (bB, cB,KB) with respect to its natural filtration and both F and G. Hence it
follows from [14], III.6.30, III.6.19, that y belongs to L(B) and X is a semimartin-
gale with respect to F and G. Its characteristics can be derived by applying [17],
Proposition 2. The G0-measurability is obvious. �

In particular, the prerequisites of Lemma 2.3 are satisfied for an R
m-valued

predictable process ỹ independent of a standard Brownian motion B , and a mea-
surable function f such that (yt )0≤t≤T = (f (t, (ỹs)0≤s≤t ))0≤t≤T belongs to L(B).
This exemplifies that the dynamics of the asset returns can depend on the whole
history of the factor process.

Time-changed Lévy models. We now show that Assumption 2.2 also holds for
time-changed Lévy models. For Brownian motion, stochastic integration and time
changes lead to essentially the same models by the Dambis–Dubins–Schwarz the-
orem. For general Lévy processes with jumps, however, the two classes are quite
different. More details concerning the theory of time changes can be found in [13],
whereas their use in modeling is dealt with in [5, 17]. Here, we assume that the
process X is given by

X =
∫ ·

0
μ(ys) ds + B∫ ·

0 ys ds(2.2)
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for a (0,∞)-valued predictable process y and a measurable mapping μ : R → R
d

such that
∫ T

0 ys ds < ∞ and
∫ T

0 |μ(ys)|ds < ∞, P -a.s., and an independent R
d -

valued Lévy process B with Lévy–Khintchine triplet (bB, cB,KB). Moreover, we
suppose that the underlying filtration is generated by X and y. We have the fol-
lowing analogue of Lemma 2.3.

LEMMA 2.4. Relative to both F and G, X is a semimartingale with G0-
measurable local characteristics (bX, cX,KX) given by

bX = μ(y) + bBy, cX = cBy, KX(G) = KB(G)y ∀G ∈ Bd .

In particular, Assumption 2.2 is satisfied.

PROOF. Relative to F, the assertion follows exactly as in the proof of [29],
Proposition 4.3. For the corresponding statement relative to the augmented filtra-
tion G, let Y = ∫ ·

0 ys ds and Ur := inf{q ∈ R+ :Yq ≥ r}. Define the σ -fields

Ht := ⋂
s>t

σ
(
(Bq)q∈[0,s], (Ur)0∈R+

)
.

Since B is independent of y and hence Y , it remains a Lévy process relative to
the filtration H := (Ht )t∈R+ . Its distribution does not depend on the underlying
filtration, and hence we know from the Lévy–Khintchine formula and [14], II.4.19,
that it is a semimartingale with local characteristics (bB, cB,KB) relative to H.
By [17], Proposition 5, the time-changed process (B̃ϑ)ϑ∈[0,T ] := (BYϑ )ϑ∈[0,T ] is
a semimartingale on [0, T ] relative to the time-changed filtration (H̃ϑ)ϑ∈[0,T ] :=
(HYϑ )ϑ∈[0,T ] with differential characteristics (b̃, c̃, F̃ ) given by

b̃ϑ = bByϑ, c̃ϑ = cByϑ, K̃ϑ(G) = KB(G)yϑ ∀G ∈ Bd .

Furthermore, it follows as in the proof of [29], Proposition 4.3, that H̃t = Gt for
all t ∈ [0, T ]. The assertion now follows by applying [17], Propositions 2 and 3.

�

REMARKS.

1. For the proof of Lemma 2.4 we had to assume that the given filtration is gen-
erated by the process (y,X) or equivalently (Y,X). In reality, though, the in-
tegrated volatility Y and the volatility y typically cannot be observed directly.
Therefore the canonical filtration of the return process X would be a more nat-
ural choice. Fortunately, Y and y are typically adapted to the latter if B is an
infinite activity process (cf., e.g., [34]).

2. A natural generalization of (2.2) is given by models of the form

X =
∫ ·

0
μ

(
y(1)
s , . . . , y(n)

s

)
ds +

n∑
i=1

B
(i)

Y (i)
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for μ : (0,∞)n → R
d , strictly positive predictable processes y(i), Y (i) =∫ ·

0 y
(i)
s ds and independent Lévy processes B(i), i = 1, . . . , n. If one allows

for the use of the even larger filtration generated by all y(i), B
(i)

Y (i) , i = 1, . . . , n,

the proof of Lemma 2.4 remains valid. If Y (i) is interpreted as business time
in some market i, this class of models allows assets to be influenced by the
changing activity in different markets.

3. Optimal portfolios. For asset prices with conditionally independent incre-
ments we can now characterize the solution to the Merton problem as follows.

THEOREM 3.1. Suppose Assumptions 2.1, 2.2 hold, and assume there exists
an R

d -valued process π ∈ L(X) such that the following conditions are satisfied up
to a dP ⊗ dt-null set on � × [0, T ]:
1. KX({x ∈ R

d : 1 + π	x ≤ 0}) = 0.
2.

∫ |x(1 + π	x)−p − h(x)|KX(dx) < ∞.
3. For all η ∈ R

d such that KX({x ∈ R
d : 1 + η	x < 0}) = 0, we have

(η	 − π	)

(
bX − pcXπ +

∫ (
x

(1 + π	x)p
− h(x)

)
KX(dx)

)
≤ 0.

4.
∫ T

0 |αs |ds < ∞, where

α := (1 − p)π	bX − p(1 − p)

2
π	cXπ

+
∫ (

(1 + π	x)1−p − 1 − (1 − p)π	h(x)
)
KX(dx).

Then there exists a G0-measurable process π̃ satisfying conditions 1–4 such that
the strategy ϕ = (ϕ1, . . . , ϕd) defined as

ϕi
t := π̃ i(t)

vE (π̃ • X)t−
Si

t−
, i = 1, . . . , d, t ∈ [0, T ],(3.1)

is optimal with value process V (ϕ) = vE (π̃ • X). The corresponding maximal ex-
pected utility is given by

E(u(VT (ϕ))) = v1−p

1 − p
E

(
exp

(∫ T

0
αs ds

))
.

In particular, if π is G0-measurable, it is possible to choose π̃ = π .

PROOF. Step 1: In view of conditions 1–4, the measurable selection theo-
rem [32], Theorem 3, and [13], Proposition 1.1, show the existence of π̃ , since
(bX, cX,KX) are G0-measurable by Assumption 2.2. Hence we can assume with-
out loss of generality that π is G0-measurable, because we can otherwise pass to
π̃ instead.
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Step 2: Since π and hence ϕ is F-predictable by assumption and Ft ⊂ Gt for all
t ∈ [0, T ], it follows that ϕ is G-predictable as well. In view of Assumption 2.2,
the local characteristics of X relative to F coincide with those relative to G. To-
gether with [14], III.6.30, this implies that we have π ∈ L(X) and hence ϕ ∈ L(S)

w.r.t. G, too.
Step 3: The wealth process associated to ϕ is given by

V (ϕ) = v + ϕ • S = v
(
1 + E (π • X)− • (π • X)

) = vE (π • X).

Since condition 1 and [14], I.4.61, imply V (ϕ) > 0, the strategy ϕ is admissible.
Step 4: Let ψ be any admissible strategy. Together with Assumption 2.1 and

[14], I.2.27, admissibility implies V (ψ) = 0 on the predictable set {V−(ψ) = 0}.
Hence we can assume without loss of generality that ψ = 0 on {V−(ψ) = 0},
because we can otherwise consider ψ̃ := 1{V−(ψ)>0}ψ without changing the wealth
process. Consequently, we can write ψi = ηiV−(ψ)/Si− for i = 1, . . . , d and some
R

d -valued F-predictable process η. The admissibility of ψ implies η	
t �Xt ≥ −1

which in turn yields

KX({x ∈ R
d : 1 + η	

t x < 0}) = 0(3.2)

outside some dP ⊗dt null set. Moreover, it follows as above that ψ ∈ L(S) w.r.t. G
as well. Since

∫ T
0 |αs |ds < ∞ outside some P -null set by condition 4, the process

Lt := exp
(∫ T

t
αs ds

)
= L0E

(∫ T

·
αs ds

)
t

is indistinguishable from a càdlàg process of finite variation and hence a G-
semimartingale because π and (bX, cX,KX) are G0-measurable. The local G-
characteristics (b, c,K) of (L/L0)V (ϕ)−pV (ψ) can now be computed with [17],
Propositions 2 and 3. In particular, we get

K(G) =
∫

1G

(
L−
L0

V−(ϕ)−pV−(ψ)

(
1 + η	x

(1 + π	x)p
− 1

))
KX(dx)

for all G ∈ B \ {0}, which combined with condition 2 yields∫
{|x|>1}

|x|K(dx) < ∞(3.3)

outside some dP ⊗ dt-null set. Moreover, insertion of the definition of α leads to

b =
∫ (

h(x) − x
)
K(dx) + L−

L0
V−(ϕ)−pV−(ψ)(η	 − π	)

(3.4)

×
(
bX − pcXπ +

∫
x

(1 + π	x)p
− h(x)KX(dx)

)
,

and hence

b +
∫ (

x − h(x)
)
K(dx) ≤ 0(3.5)
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dP ⊗ dt-almost everywhere on � × [0, T ] by (3.2) and condition 3. In view of
(3.3) and (3.5) the process (L/L0)V (ϕ)−pV (ψ) is therefore a G-supermartingale
by [18], Lemma A.2, and [16], Proposition 3.1.

Step 5: For ψ = ϕ, (3.3), (3.4) and [18], Lemma A.2, show that Z := (L/L0) ×
(V (ϕ)/v)1−p is a strictly positive σ -martingale. By [17], Proposition 3, log(Z) is
a G0-PII, hence Z and in turn (L/L0)V (ϕ)1−p are G-martingales by Lemma A.1.

Step 6: Now we are ready to show that ϕ is indeed optimal. Since u is concave,
we have

u(VT (ψ)) ≤ u(VT (ϕ)) + u′(VT (ϕ))
(
VT (ψ) − VT (ϕ)

)
(3.6)

for any admissible ψ . This implies

E(u(VT (ψ))|G0)

≤ E(u(VT (ϕ))|G0) + L0E

(
LT

L0
VT (ϕ)−pVT (ψ) − LT

L0
VT (ϕ)1−p

∣∣∣G0

)
≤ E(u(VT (ϕ))|G0),

because (L/L0)V (ϕ)−pV (ψ) is a G-supermartingale and (L/L0)V (ϕ)1−p is a
G-martingale, both starting at v1−p . Taking expectations, the optimality of ϕ fol-
lows. Likewise, the G-martingale property of (L/L0)V (ϕ)1−p yields the maximal
expected utility. �

REMARKS.

1. The first condition ensures that the wealth process of the optimal strategy is
positive. It is satisfied automatically if the asset price process is continuous. In
the presence of unbounded positive and negative jumps it rules out short sell-
ing and leverage. The second condition is only needed to formulate the crucial
condition 3, which characterizes the optimal strategy. A sufficient condition for
its validity is given by

bX − pcXπ +
∫ (

x

(1 + π	x)p
− h(x)

)
KX(dx) = 0.

While one does not have to require NFLVR if this stronger condition holds as
well, it is less general than condition 3 in the presence of jumps (cf. [12] for a
related discussion).

2. The fourth condition ensures that the maximal conditional expected utility is
finite. By [14], III.6.30, it is automatically satisfied for π ∈ L(X) if X is con-
tinuous. Let us emphasize that the maximal unconditional expected utility does
not necessarily have to be finite for p ∈ (0,1). On the contrary, for p ∈ (1,∞),
the maximal expected utility is always finite because u(x) = x1−p/(1 − p) is
bounded from above in this case. Indeed, this can also be seen directly from
Theorem 3.1, since conditions 1 and 3 combined with the Bernoulli inequality
show that α ≥ 0, respectively, α ≤ 0 for p ∈ (0,1), respectively, p ∈ (1,∞).
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3. Given the mild regularity condition 4, the optimal strategy at t is completely
described by the local characteristics at t , that is, it is myopic. This parallels
well-known results for logarithmic utility (cf., e.g., [10]). It is important to note,
however, that whereas the optimal strategy is myopic in the general semimartin-
gale case for logarithmic utility, this only holds for power utility if the return
process X has conditionally independent increments. Otherwise an additional
nonmyopic term appears (see, e.g., [21, 23, 35]).

4. In the proof of Theorem 3.1 it is shown that the components of any admissi-
ble strategy ψ can be written as ψi = ηiV (ψ)−/Si−, where ηi represents the
fraction of wealth invested into asset i. This parametrization allows one to in-
troduce convex constraints to the present setup by requiring these fractions to
lie inside some nonempty convex set C ⊂ R

d . The most prominent example is
given by the set C = [0,1]d , which rules out short selling and leverage. If there
exists a C-valued process π as in Theorem 3.1, it is optimal for the constrained
problem as soon as condition 3 is satisfied for all η ∈ C.

4. Examples. We now consider some concrete models where the results of
the previous section can be applied. For ease of notation, we consider only a single
risky asset (i.e., d = 1), but the extension to multivariate versions of the corre-
sponding models is straightforward.

Generalized Black–Scholes models. Let B be a standard Brownian motion, y

an independent adapted càdlàg process and again denote by I the identity process
It = t . Consider measurable functions μ : R → R and σ : R → (0,∞) such that
μ(y−) ∈ L(I) and σ(y−) ∈ L(B) and suppose the discounted stock price S is
given by

S = S0E
(
μ(y−) • I + σ(y−) • B

)
.

For X := μ(y−) • I + σ(y−) • B , [14], II.4.19, and [17], Proposition 3, yield
bX = μ(y−) as well as cX = σ 2(y−) and KX = 0. In view of Lemma 2.3, As-
sumption 2.2 is satisfied. Define

π := μ(y−)

pσ 2(y−)
.

By Theorem 3.1 and the second remark succeeding it, the strategy ϕ := πvE (π •

X)/S is optimal provided that π ∈ L(X). If y− is E-valued for some E ⊂ R, this
holds true, for example, if the mapping x �→ μ(x)/σ 2(x) is bounded on compact
subsets of E.

REMARK 4.1. This generalizes results of [6] by allowing for an arbitrary
semimartingale factor process instead of a Lévy-driven Ornstein–Uhlenbeck
(henceforth OU) process. Notice, however, that unlike [6] we only consider util-
ity from terminal wealth and do not obtain a solution to more general consump-
tion problems. Finiteness of the maximal expected utility is ensured in the case



MAXIMAL UTILITY FOR CONDITIONALLY INDEPENDENT INCREMENTS 2171

p > 1 in our setup, which complements the results of [6]. They consider the case
p ∈ (0,1) and prove that the maximal expected utility is finite subject to suitable
linear growth conditions on the coefficient functions μ(·) and σ(·) and an expo-
nential moment condition on the driver of the OU process.

Barndorff-Nielsen and Shephard [1]. If we set μ(x) := κ + δx for constants
κ, δ ∈ R, let σ(x) := √

x and choose an OU process

dyt = −λyt− + dZλt , y0 ∈ (0,∞),(4.1)

for a constant λ > 0 and some subordinator Z in the generalized Black–Scholes
model above, we obtain the model of Barndorff-Nielsen and Shephard [1]. Since
yt ≥ y0e

−λT > 0 in this case,

π := μ(y−)

pσ 2(y−)
= κ

py−
+ δ

p

is bounded and hence belongs to L(X). Consequently, ϕt = πV (ϕ)/S is optimal.

REMARK 4.2. This recovers the optimal strategy obtained by [4]. Similarly
to [6], Benth, Karlsen and Reikvam [4] consider the case p ∈ (0,1) and prove that
the maximal expected utility is finite subject to an exponential moment condition
on the Lévy measure KZ of Z. Our results complement this by ascertaining that
the same strategy is always optimal (with not necessarily finite expected utility),
as well as optimal with finite expected utility in the case p > 1.

Carr et al. [5]. In this section we turn to the time-changed Lévy models pro-
posed by [5], that is, we let

Xt = μt + B∫ t
0 ys ds, μ ∈ R,(4.2)

for a Lévy process B with Lévy–Khintchine triplet (bB, cB,KB) and an indepen-
dent OU process y given by (4.1). By Lemma 2.4, Assumption 2.2 holds. Hence
we obtain the following corollary.

COROLLARY 4.3. Suppose B has both positive and negative jumps and as-
sume there exists a process π such that the following conditions are satisfied:

1. KB({x ∈ R
d : 1 + πx ≤ 0}) = 0.

2.
∫ T

0 (
∫ |x(1 + πx)−p − h(x)|KB(dx)) dt < ∞.

3. For all η ∈ R
d such that KB({x ∈ R

d : 1 + ηx < 0} = 0, we have

(η − π)

((
μ

y−
+ bB

)
− pcBπ +

∫ (
x

(1 + πx)p
− h(x)

)
KB(dx)

)
≤ 0.

Then there exists a G0-measurable process π̃ ∈ L(X) satisfying conditions 1–3
such that ϕ = π̃vE (π • X)−/S− is optimal.
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PROOF. Since B has both positive and negative jumps, the model satisfies As-
sumption 2.1 by [28], Lemma 4.42. Moreover, π is bounded by condition 1. Hence
it belongs to L(X) and condition 2 implies that condition 4 of Theorem 3.1 is also
satisfied. By Lemma 2.4, conditions 1–3 imply conditions 1–3 of Theorem 3.1.
Consequently, the assertion immediately follows from Theorem 3.1. �

For μ = 0 one recovers [19], Theorem 3.4, where the optimal fraction π of
wealth invested into stocks can be chosen to be deterministic. For μ �= 0, the op-
timal fraction depends on the current level of the activity process y. As for the
generalized Black–Scholes models above, it is important to emphasize that the
optimal strategy ϕ is only ensured to lead to finite expected utility in the case
p > 1. However, the results provided here allow us to complete the study of the
case p ∈ (0,1) for μ = 0 started in [19]. Using Corollary 4.3, we can now show
that if there exists π ∈ R satisfying conditions 1–3, the exponential moment con-
dition in [19], Theorem 3.4, is necessary and sufficient for the maximal expected
utility to be finite. The key observation is that the random variable

∫ T
0 αs ds from

Theorem 3.1 turns out to be infinitely divisible for μ = 0.

COROLLARY 4.4. Let μ = 0 and suppose there exists π ∈ R satisfying the
conditions of Corollary 4.3. Then the maximal expected utility corresponding to
the optimal strategy ϕ := πvE (πX)−/S− is always finite for p > 1, whereas for
p ∈ (0,1) it is finite if and only if

∫ T

0

∫ ∞
1

exp
(e−λt − 1

λ
Cz

)
KZ(dz) dt < ∞,(4.3)

where

C := (p − 1)bBπ + p(1 − p)

2
cBπ2

−
∫ (

(1 + πx)1−p − 1 − (1 − p)πh(x)
)
KB(dx).

If the maximal expected utility is finite, it is given by

E(u(VT (ϕ)))

= v1−p

1 − p
exp

(∫ T

0

(
λbZα̃(s)

+
∫ (

eα̃(s)z − 1 − α̃(s)h(z)
)
λKZ(dz)

)
ds + α̃(0)y0

)

for α̃(t) = C(e−λ(T −t) − 1)/λ.
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PROOF. After inserting the characteristics of X, Theorem 3.1 shows that the
maximal expected utility is given by

E(u(VT (ϕ))) = v1−p

1 − p
E

(
exp

(
−C

∫ T

0
yt dt

))
.(4.4)

The process (y,
∫ ·

0 ys ds) is an affine semimartingale by [17], Proposition 2,
hence [17], Corollary 3.2, implies that the characteristic function of the random
variable

∫ T
0 ys ds is given by

E

(
exp

(
iu

∫ T

0
ys ds

))
= exp

(
ibu +

∫ (
eiux − 1 − iuh(x)

)
K(dx)

)
,

for all u ∈ R, with

K(G) :=
∫ T

0

∫
1G

(
1 − e−λt

λ
z

)
λKZ(dz) dt ∀G ∈ B

and

b := λbZ

(
e−λT − 1 + λT

λ2

)
+ y0

(
1 − e−λT

λ

)

+
∫ T

0

∫ (
h

(
1 − e−λt

λ
z

)
− 1 − e−λt

λ
h(z)

)
λKZ(dz) dt.

Since KZ is a Lévy measure, that is, satisfies KZ({0}) = 0 and integrates 1 ∧ |x|2,
one easily verifies that b is finite and K is a Lévy measure, too. By the Lévy–
Khintchine formula, the distribution of

∫ T
0 ys ds is therefore infinitely divisible.

Consequently (4.4) and [33], Theorems 7.10 and 25.17, yield that E(u(VT (ϕ))) is
finite if and only if∫

{|x|>1}
e−CxK(dx) =

∫ T

0

∫
{|(1−e−λt )z/λ|>1}

exp
(

e−λt − 1

λ
Cz

)
λKZ(dz) dt

is finite. Since λ > 0 and the Lévy measure KZ of the subordinator Z is con-
centrated on R+ by [33], 21.5, the assertion follows. For p > 1, condition 3 of
Corollary 4.3 and the Bernoulli inequality show that C is positive. Consequently,
(4.3) is always satisfied. �

Since the exponential moment condition in Corollary 4.4 depends on the time
horizon, it is potentially only satisfied if T is sufficiently small. This resembles
the situation in the Heston model, where the maximal expected utility can be in-
finite for some parameters and sufficiently large T , if p ∈ (0,1) (cf. [19]). How-
ever, a qualitatively different phenomenon arises here. Whereas expected utility
can only tend to infinity continuously in the Heston model, it can suddenly jump
to infinity here. This means that the utility maximization problem is not stable with
respect to the time horizon in this case.
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EXAMPLE 4.5 (Sudden explosion of maximal expected utility). In the setup
of Corollary 4.4 consider p ∈ (0,1), KB = 0, bB �= 0, cB = 1 and hence C =
(bB)2(p − 1)/2p < 0. Define the Lévy measure

KZ(dz) := 1(1,∞)(z) exp
(

C

2λ
z

)
dz

z2 ,

and let bZ = 0 relative to the truncation function h(z) = 0 on R. Setting T∞ :=
log(2)/λ, we obtain∫ ∞

1
exp

(
e−λt − 1

λ
Cz

)
KZ(dz)

{≤ 1, for t ≤ T∞,
= ∞, for t > T∞.

Consequently, by Corollary 4.4, the maximal expected utility that can be obtained
by trading on [0, T ] is finite for T ≤ T∞ and satisfies

E(u(VT (ϕ))) ≤ v1−p

1 − p
exp

(
log(2)/λ + |C/2λ|y0

)
< ∞.

Hence the maximal expected utility is actually bounded from above for T ≤ T∞.
For T > T∞, however, is is infinite by Corollary 4.4.

Since u(VT (ϕ)) = VT (ϕ)1−p/(1 − p) is an exponentially affine process for
μ = 0, the finiteness of the maximal expected utility is intimately linked to mo-
ment explosions of affine processes (cf. [9] and the references therein for more
details).

APPENDIX: EXPONENTIAL MARTINGALES

In the proof of Theorem 3.1 we used that exponentials of processes with
conditionally independent increments are martingales if and only if they are σ -
martingales. In this appendix, we give a proof of this result.

LEMMA A.1. Let X be an R-valued process with conditionally independent
increments relative to some σ -field H . If X admits local characteristics (b, c,K)

with respect to some truncation function h, the following are equivalent:

1. exp(X) is a martingale on [0, T ].
2. exp(X) is a local martingale on [0, T ].
3. exp(X) is a σ -martingale on [0, T ].
4. Up to a dP ⊗ dt-null set, we have

∫
{x>1} exK(dx) < ∞ and

b + c

2
+

∫ (
ex − 1 − h(x)

)
K(dx) = 0.(A.1)

PROOF. The implications 1 ⇒ 2 ⇒ 3 follow from [16], Lemma 3.1. More-
over, [16], Lemma 3.1, and [17], Proposition 3, yield 3 ⇔ 4. Consequently, it
remains to show 4 ⇒ 1.
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By [16], Proposition 3.1, the σ -martingale exp(X) is a supermartingale. There-
fore it suffices to show E(exp(XT )) = 1. In view of [2], Satz 44.3, a regular ver-
sion R(ω,dx) of the conditional distribution of XT w.r.t. H exists. From [2],
Section 44, and [14], II.6.6, we get∫

eiuxR(ω,dx)

= E(exp(iuXT )|H )(ω)

= exp
(
iuBT (ω) − 1

2
uCT (ω)u

+
∫
[0,T ]×Rd

(
eiux − 1 − iuh(x)

)
ν(ω,dt, dx)

)
,

where B = b • I , C = c • I and ν = K ⊗ I denote the semimartingale character-
istics of X. By the Lévy–Khintchine formula [33], Theorem 8.1, R(ω, ·) is there-
fore a.s. infinitely divisible. Since any supermartingale is a special semimartingale
by [13], Proposition 2.18, it follows from [16], Corollary 3.1, that exp(Xi) is a
local martingale. Hence∫

[0,T ]×{x>1}
exν(dt, dx) < ∞, P -a.s.(A.2)

by [17], Proposition 3, and [16], Lemma 3.1. By [33], Theorems 7.10 and 25.17,
(A.1) and (A.2) show that

∫
exR(ω,dx) = 1, P -a.s. and hence

E(exp(XT )) =
∫ ∫

exR(ω,dx)P (dω) = 1.

This proves the assertion. �
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