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Option Pricing in Multivariate Stochastic Volatility Models of OU Type*

Johannes Muhle-Karbe!, Oliver Pfaffelf, and Robert Stelzer?

Abstract. We present a multivariate stochastic volatility model with leverage, which is flexible enough to
recapture the individual dynamics as well as the interdependencies between several assets, while
still being highly analytically tractable. First, we derive the characteristic function and give condi-
tions that ensure its analyticity and absolute integrability in some open complex strip around zero.
Therefore we can use Fourier methods to compute the prices of multiasset options efficiently. To
show the applicability of our results, we propose a concrete specification, the Ornstein—Uhlenbeck
(OU)-Wishart model, where the dynamics of each individual asset coincide with the popular I'-OU
Barndorff-Nielsen—Shepard model. This model can be well calibrated to market prices, which we
illustrate with an example using options on the exchange rates of some major currencies. Finally,
we show that covariance swaps can also be priced in closed form.
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1. Introduction. This paper deals with the pricing of options depending on several under-
lying assets. While there is a vast amount of literature on the pricing of single-asset options
(see, e.g., [9, 42] for an overview), the amount of literature considering the multiasset case is
rather limited. This is most likely due to the fact that the trade-off between flexibility and
tractability is particularly delicate in a multivariate setting. On the one hand, the model un-
der consideration should be flexible enough to recapture stylized facts observed in real option
prices. When dealing with multiple underlyings, this becomes challenging, since not only the
individual assets but also their joint behavior has to be taken into account. On the other
hand, one needs enough mathematical structure to calculate option prices in the first place
and to be able to calibrate the model to market prices. Due to an increasing number of state
variables and parameters, this is also not an easy task in a multidimensional framework. In
this article we propose the multivariate Ornstein—Uhlenbeck (OU)-type stochastic volatility
model of Pigorsch and Stelzer [38] in the generalized form introduced by Barndorff-Nielsen
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and Stelzer [4], which seems to present a reasonable compromise between these competing
requirements.

The log-price processes Y = (Y'!,...,Y?) of d financial assets are modeled as
1
(L1) 4Y; = (u -+ B(S0)) dt + 7 W, + p(dLy),
(1.2) d%; = (A% + S AT) dt + dLy,

where 1 € R%, A is a real d x d matrix, and 3, p are linear operators from the real d x d
matrices to R%. Moreover, W is an R%valued Wiener process and L is an independent matrix
subordinator, i.e., a Lévy process which has only positive semidefinite increments. Hence, the
covariance process X is an OU-type process with values in the positive semidefinite matrices; cf.
Barndorff-Nielsen and Stelzer [3]. Thus we call (1.1), (1.2) the multivariate stochastic volatil-
ity model of OU-type. The positive semidefinite OU-type process ¥ introduces a stochastic
volatility and, which is difficult to achieve using several univariate models, a stochastic corre-
lation between the assets. Moreover, ¥ is mean reverting and increases only by jumps. The
jumps represent the arrival of new information that results in positive shocks in the volatility
and positive or negative shocks in the correlation of some assets. Due to the leverage term
p(dL;) they are correlated with price jumps. The present model is a multivariate generaliza-
tion of the non-Gaussian OU-type stochastic volatility model introduced by Barndorff-Nielsen
and Shephard [2] (henceforth the Barndorff-Nielsen—Shephard (BNS) model). For one under-
lying, these models are found to be both flexible and tractable in Nicolato and Venardos [37].
The key reason is that the characteristic function of the return process can often be computed
in closed form, which allows European options to be be priced efficiently using the Fourier
methods introduced by Carr and Madan [8] as well as Raible [39]. In the present study, we
show that a similar approach is also applicable in the multivariate case. Recently, Benth and
Vos [5] have discussed a somewhat similar model in the context of energy markets. However,
they do not establish conditions for the applicability of Fourier pricing and, more importantly,
do not calibrate their model to market prices.

Alternatively, the covariance process ¥ can also be modeled by other processes taking
values in the positive semidefinite matrices. In particular, several authors have advocated
using a diffusion model based on the Wishart process; cf., e.g., Da Fonseca, Grasselli, and
Tebaldi [13], Gourieroux [20], Gourieroux and Sufana [21], and Da Fonseca and Grasselli [11].
This leads to a multivariate generalization of the model of Heston [24]. However, there is
empirical evidence suggesting that volatility jumps (together with the stock price) (cf. Jacod
and Todorov [31]), which cannot be recaptured by a diffusion model. Moreover, the treatment
of square-root processes on the cone of positive semidefinite matrices is mathematically quite
involved; see Cuchiero et al. [10].! For example, whereas Da Fonseca and Grasselli [11] have
very recently succeeded in calibrating their model to market prices, the resulting parameters
do no satisfy the drift condition for the existence of the underlying square-root diffusion,
suggesting that a more sophisticated optimization routine is necessary.

!This study generalizes the theory of affine processes from the positive univariate factors treated in [16, 15]
to factor processes taking values in the cone of symmetric positive semidefinite matrices. In particular, to
ensure the existence of square-root processes, a quite intricate drift condition turns out to be necessary.
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Another possible approach is to consider multivariate models based on a concatenation
of univariate building blocks. This approach is taken, e.g., by Luciano and Schoutens [34]
using Lévy processes, by Dimitroff, Lorenz, and Szimayer [14], who consider a multivariate
Heston model, and by Hubalek and Nicolato [27], who put forward a multifactor BNS model.
However, all these models either have a somewhat limited capability to catch complex depen-
dence structures (compare section 4.2) or lead to tricky (factor) identification issues. Apart
from models where all parameters are determined by single-asset options, we are not aware
of successful calibrations of such models. The paper of Ma [35] proposes a two-dimensional
Black—Scholes model where the correlation between the two Brownian motions is stochastic
and given by a diffusion process with values in an interval contained in [—1,1]. However,
pricing can be done only via Monte Carlo simulation in this model. In addition, an exten-
sion to higher dimensions is not obvious, since the necessary positive semidefiniteness of the
correlation matrix of the Brownian noise imposes additional constraints, which are hard to
incorporate.

The remainder of this paper is organized as follows. Sections 2.1 and 2.2 introduce the mul-
tivariate stochastic volatility model of OU type. Afterwards, we derive the joint characteristic
function of (Y;, X;). We then show in section 2.4 that a simple moment condition on L implies
analyticity and absolute integrability of the moment generating function of Y; in some open
complex strip around zero. Equivalent martingale measures are discussed in section 2.5, where
we also present a subclass that preserves the structure of our model. In section 3, we recall
how to use Fourier methods to compute prices of multiasset options efficiently. Subsequently,
we propose the OU-Wishart model, where L is a compound Poisson process with Wishart
distributed jumps. It turns out that the OU-Wishart model has margins which are in distri-
bution equivalent to a I'-OU BNS model, one of the tractable specifications commonly used
in the univariate case. Moreover, the characteristic function can be computed in closed form,
which makes option pricing and calibration particularly feasible. In an illustrative example we
calibrate a bivariate OU-Wishart model to market prices, and we compare its performance to
the multivariate variance gamma model of [34] and a multivariate extension with stochastic
volatility. As a final application, we show in section 5 that covariance swaps can also be priced
in closed form. Appendix A contains a result on multidimensional analytic functions which is
needed to establish the regularity of the moment generating function in section 2.4.

Notation. Mg, (R) (resp., M, (C)) represent the d xn matrices with real (resp., complex)
entries. We abbreviate My(-) = Mgq(-). Sq denotes the subspace of My(R) of all symmetric
matrices. We write Sj{ for the cone of all positive semidefinite matrices and Srr for the open
cone of all positive definite matrices. The identity matrix in My(R) is denoted by I;. o(A)
denotes the set of all eigenvalues of A € My(C). We write Re(z) or Im(z) for the real or
imaginary part of z € C% or z € My(C), which has to be understood componentwise. The
components of a vector or matrix are denoted by subscripts; however, for stochastic processes
we use superscripts to avoid double indices.

On R?, we typically use the Euclidean scalar product, (z, Y)ga := 1y, and on My(R) or
Sq the scalar products given by (4, B) /) := tr(ATB) or (A, B)g, = tr(AB), respectively.
However, due to the equivalence of all norms on finite-dimensional vector spaces, most results
hold independently of the norm. We also write (z,y) = 2y for ,y € C?, although this is
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only a bilinear form but not a scalar product on C.

We denote by vec : My(R) — R% the bijective linear operator that stacks the columns of
a matrix below one other. With the above norms, vec is a Hilbert space isometry. Likewise,
for a symmetric matrix S € S; we denote by vech(S) the vector consisting of the columns of
the upper-diagonal part including the diagonal.

Furthermore, we employ an intuitive notation concerning integration with respect to
matrix-valued processes. For an M, ,(R)-valued Lévy process L, and Mg, (R)- (resp.,
M, ,(R)-) valued processes X,Y integrable with respect to L, the term fg X dLsY; is to

be understood as the d x p (random) matrix with (¢, 7)th entry Y ;" >, fg Xik gLyl

2. The multivariate stochastic volatility model of OU type. For the remainder of the
paper, fix a filtered probability space (€2, F, (F)e[o,), P) in the sense of [30, Definition 1.1.3],
where Fy = {Q, 0} is trivial and 7" > 0 is a a fixed terminal time.

2.1. Positive semidefinite processes of OU type. To formulate our model, we need to
introduce the concept of matrix subordinators as studied in [1].

Definition 2.1. An Sq-valued Lévy process L = (Ly)ier, is called a matrix subordinator if
Lt—LseSz{ for allt > s.

The characteristic function of a matrix subordinator L is given by E(
exp(¢r(Z)) for the characteristic exponent

eitr(Z10))

Y (2) = itr(vp.Z) + /S+(em<XZ> ~ 1) kp(dX), Z e My(R),

where v, € S; and k7, is a Lévy measure on Sy satisfying HL(Sd\S;_) = 0 as well as
Jaixy<ay 111 2.(dX) < co.

Positive semidefinite processes of OU type are a generalization of nonnegative OU-type
processes (cf. [3]). Let L be a matrix subordinator, and let A € My(R). The positive semidef-
inite OU-type process ¥ = (2):er, is defined as the unique strong solution to the stochastic
differential equation

(2.1) A% = (AS; + S AT)dt +dLy, Yo €S,

It is given by

t
(2.2) = = eMpe™ 4 / A=) g AT s),
0

Since ¥; € S; for all t € R4, this process can be used to model the stochastic evolution of
a covariance matrix. As in the univariate case there exists a closed-form expression for the
integrated volatility. Suppose

(2.3) 0¢o(A)+o(A).

Then, the integrated OU-type process X7 is given by

t
(2.4) uf = / Yeds = AN E — g — Ly),
0
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where A : X + AX+XAT. Note that condition (2.3) implies that the operator A is invertible;
cf. [26, Theorem 4.4.5]. In the case where X is mean reverting, i.e., A has only eigenvalues
with strictly negative real part, condition (2.3) is trivially satisfied.

2.2. Definition and marginal dynamics of the model. The following model was intro-
duced and studied in [38] from a statistical point of view in the no-leverage case and has also
been considered in [4]. Here we discuss its applicability to option pricing.

Let L be a matrix subordinator with characteristic exponent vy and let W be an inde-
pendent R%valued Wiener process. The multivariate stochastic volatility model of OU type is
then given by

1
(2.5) dY; = (p+ B(h)) dt + X dW; + p(dLy), Yy € R,
(2.6) dS = (AS; + S AT)dt +dL;, Yo €S],

with linear operators 3, p : My(R) — R%, € R%, and A € My(R) such that 0 ¢ o(A) + o(A).
We have specified the risk premium ( and the leverage operator p in a quite general form.
The following specification turns out to be particularly tractable.
Definition 2.2. We call 8 and p diagonal if, for B1,...,84 € R and p1,...,pq € R,

Bi1X11 p1X11
B(X) = : , p(X) = : . VX e My(R).
BaXad pPdXdd

In the following, 8%(X) or p'(X), i € {1,...,d}, denote the ith component of the vector
B(X) or p(X), respectively. The marginal dynamics of the individual assets have been derived
in [4, Proposition 4.3].

Theorem 2.3. Let i € {1,...,d}. Then we have

t
e, ™ (w45 + [(EFawiepm)
0 teRy
where Tidi denotes equality of all finite-dimensional distributions.
Let us now consider the case where A is a diagonal matrix,
aq 0
A= e )

0 aq
and f3, p are diagonal as well. Then, for every i € {1,...,d}, we have
(2.7) Y7 = (4 B8 b+ (Si)E AW+ pydLE
(2.8) d¥i = 2a;%0 dt + dL¥.
Evidently, every diagonal element L¥, i = 1,...,d, of a matrix subordinator L is a univariate

subordinator, and thus % is a nonnegative OU-type process. Consequently, the model for
the ith asset is equivalent in distribution to a univariate BNS model.
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2.3. Characteristic function. Let (-,-),, (-,-)y be bilinear forms as introduced in the
notation, where V, W may be one of R¢, C%, or My(+). Given a linear operator T : V. — W,
the adjoint T : W — V is the unique linear operator such that (T'z,y)y, = (x,T*y), for all
x €V and y € W. Directly by definition we obtain the following.

Lemma 2.4. Lety € R?, z € My(R), and t € Ry. Then the adjoints of the linear operators

A:X 5 AX +XAT, Bt): X M XA - X,

() X o M+ AT BO X))+ pX)T + Sy TATHBX)

on My(C) are given by
A X5 ATX + XA, BO)*: XA lXeM - X,

) X — AT X T 4 P (Xy)+ B(t)*A™ <ﬁ*(Xy) + %nyT> .

Note that for diagonal p it holds that

p1X11 0
p(X) = -
0 PdXdd

for all X € My(R).

Our main objective in this section is to compute the joint characteristic function of (Y;, 3;).
This will pave the way for Fourier pricing of multiasset options later on. Note that we use
the scalar product

(z1,91), (22,92)) := 33}732 + tr(@hTyz)

on R? x My(R).
Theorem 2.5 (joint characteristic function). For every (y,z) € R? x My(R) and t € R, the
joint characteristic function of (Y, X4) is given by

Elexp (i ((y,2), (Y1, 54)))]

= exp {z’yT(Yo + pt) + itr(ZoeAtheAt)

+ itr <Eo <€ATtA_* (5*(11) * %ny> AT (6*@) - %ny»)

t . .
# [ (o 4 A () ) e - a7 (5004 g T) ) as

where A=* := (A*)™! denotes the inverse of the adjoint of A : X + AX + X AT, that is, the
inverse of A* : X — ATX + X A.
Note that for z = 0 we obtain the characteristic function of Y;.
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Proof. Since ¥ is adapted to the filtration generated by L, and by the independence of L
and W,

Elexp (((y:2), (Y2, %4)))]

1
_ " Yotut) [eitr(zTZtHin(B(Z?)er(Lt)) 5 <ein Jie? aw,

(Ls)seR+>]

. . . 1
_ ezyT(Yo—l-,ut)E |:eztr(zTEt)+zyT(B(Ezr)—l—p(Lt)) exp <_§yT22—y>:| )

By (2.4) and using the fact that the trace is invariant under cyclic permutations the last term
equals
oy (Yo+nt) [ez’tr(sza(A*l(zt—zo—Lt»ywp(LmywgnyAfl(zt—zo—m)} ,

In view of (2.2), we have
t
Et — EO — Lt = / %(t — S) dLS +%(t)20
0

for the linear operator A(t) from Lemma 2.4. Therefore,

Elexp(i((y,2), (Y2, %))

= exp (in(Yo + pt) + itr <zTeAtEOeATt + BAH(B(t)))yT + %nyA_l(%(t)Eo)>>

t ¢
x F [exp (z’tr (zT/ eA=9) gL eAT(t=9) 4 I} (A_l </ eAt=5) gL eAT(t=9) _ Lt>> Y’
0 0
: t
+p(Lt)yT + %nyA_l (/ eA(t—s) dLg eAT(t—s) o Lt>>>:|
0

— exp (z‘yT(YO + ut) +itr <zTeAt20eATt + B(ATHB)0)y" + inyA_l(,%’(t)Eo)>>

{e{(ferra) )

with the linear operator ¢(t) from Lemma 2.4, since A_l(f(;f eAl=5) gL, A (=9) — ) € S,.
An immediate multivariate generalization of results obtained in [40, Proposition 2.4] (see also
[18, Lemma 3.1]) yields an explicit formula for the expectation above:

exp( ((/%t—S)dL> Id>>]—exp</ VL (€ s>.

By Lemma 2.4 we have

x F

E

Wi (€(s)* 1) d fo i (eATs2TeAs 4 pr (y)+ed s A= (B (y)+hyyT eAs—A—* (B* (y)+LyyT) ) ds
elo .
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This expression is well defined, because

s s * S A —% * { s —x * ? .
AT 1)+ A (50) " ) 4= A (570 + ) € Mu(R) + 5

for all s € [0,¢]. Indeed, this follows from
(2.9) eATTAT (ny) e — A (ny) = / eAT“nyeA“ du € S:{.
0
Finally, we infer from Lemma 2.4 that
-1 T i TA-1 _ * A —% * i T
tr{ BAT(B()Z0))y" + 5yy AT (B(H)X0) | = tr { Zo | B(&)"AT | 57(y) + 59y ;

which gives the desired result by noting that tr(z;) = tr(z7%;). [ |

2.4. Regularity of the moment generating function. In this section we provide condi-
tions ensuring that the characteristic function of Y; admits an analytic extension ®y, to some
open convex neighborhood of 0 in C?. Afterwards, we show absolute integrability. The reg-
ularity results obtained in this section will allow us to apply Fourier methods in section 3 to
compute option prices efficiently.

Definition 2.6. For any t € [0,T], the moment generating function of Y; is defined as

Dy, (y) = Elexp(y' V)]

for all y € C* such that the expectation exists.

Note that ®y, may not exist anywhere but on iR?, where it coincides with the characteristic
function of Y;. The next lemma is a first step towards conditions for the existence and
analyticity of the moment generating function ®y, in a complex neighborhood of zero.

Lemma 2.7. Let L be a matriz subordinator with cumulant transform Oy, that is,

OL(Z) = vn(—iZ) = tr(vo Z) + / (D 1)k (dX), Z € My(©),

Sg

and let € > 0. Then O, is analytic on the open conver set
(2.10) Se:={Z € My(C) : ||Re(Z)|| < €} — S

if and only if

(2.11) / MEX) 1 (dX) < 00 YR € My(R) with ||R|| < c.
{IIx1=1}
Proof. If (2.11) holds, [15, Lemma A.2] implies that Z — E(e"(2L1)) = ¢9£(2) is analytic

on S.. Due to assumption (2.11), dominated convergence yields that © is continuous on
Se. The claim now follows from Lemma A.1. Conversely, if Oy is analytic on S, then [15,
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Lemma A.4] implies that E(*(ZL1)) = ¢®2(2) for all Z € S.. Thus, by [41, Theorem 25.17],
condition (2.11) holds. [ ]

The next theorem is a nontrivial (especially due to the involved heavy matrix calculus)
generalization of [37, Theorem 2.2 to the multivariate case. It holds for all submultiplicative
matrix norms on My(R) that satisfy HnyH = ||y||? for all y € R%, where we use the Euclidean
norm on R%. For example, this holds true for the Frobenius norm and the spectral norm (the
operator norm associated with the Euclidean norm).

Theorem 2.8 (strip of analyticity). Suppose the matriz subordinator L satisfies

(2.12) /{n u }etr(RX) kp(dX) < oo YR € My(R) with ||R|| < €
X||>1

for some € > 0. Then the moment generating function ®y, of Y; is analytic on the open convex
set

Sy :=={y € C*: ||Re(y)|| < 6},

where
: Il
(2.13) 9':_(62IIAHt+1)||A—1|| — 1B+ VA >0
with )
[lpll > 2€
A= + + .
(e *191) + e ATy

Moreover,
(2.14) Dy, (y) = exp < (Yo + pt) + tr(XoHy(t / Or (H p*(y)) ds)

for all y € Sy, where

(2.15) Hy(s) = e * A~ (ﬁ*(y) + %ny> el — AT <ﬁ*(y) + %ny> :

Proof. The main part of the proof is to show that the function

Glo) = exp (47 (V-4 )+ tx(S iy / 01 (1,(5)+ " (1) ds)

is analytic on Sy. First we want to find a 6 such that for all u € R? with ||u|| < 6, it holds
that [|Hy(s) + p*(u)|| < € for all s € [0,¢]. Since

|| Hu(s) + p"(w)]] =

ATs g = <,8*(u) + %uuT> el — AT (,8*(u) + %uuT> + p*(u)

1
< Sy [|A ]l + (Il + 141+ 1) | A 1181]) fel
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we have to find the roots of the polynomial
1 _ _
pla) = 5 (1 + 1) [[A7] |22 + (Jlol| + (41 + 1) [[ A7 118]]) & — e
The positive one is given by 6 as stated in (2.13). Note that 8 > 0, because p is a cup-shaped
parabola with p(0) = —e < 0.

Now let y € Sy, i.e., y = u + iv with ||u|| < 6. Using Re(yy") = vu' —vv' and (2.9) we
get

<6AT5A—*(WT)6A8 _ A—*(WT))

S
.
/ A TouTeAT dr.
0

Re(Hy(s) + p*(y)) = Hu(s) + p"(u) —

N — DN

= Hy(s) + p"(u) —
Because of f(f AT TeAT dr € S:{, we have
/ Hr(Re(Hy (540" W)X) o (1)
{1x11=1}

_ / etr((Hu(S)-Fp*(u))X)e_%tr<<f08 ATy T AT dr>X> /{L(dX) < 00
{Ix11=1}

by assumption (2.12), since ||Hy(s) 4+ p*(u)|| < €. Thus, by Lemma 2.7 the function
So €y = OL(Hy(s) + 0" (y))

is analytic on Sy for every s € [0,¢]. An application of Fubini’s and Morera’s theorems shows
that integration over [0,¢] preserves analyticity (cf. [33, p. 228]); hence G is analytic on Sp.
Obviously, we have @y, (iy) = G(iy) for all y € R? by Theorem 2.5 and the definition of
G. Thus, [15, Lemma A.4] finally implies ®y, = G on Sp. [ |
With Theorem 2.8 at hand, we can establish the following result.
Theorem 2.9 (absolute integrability). If (2.12) holds for some € > 0, then w +— Py, (y + iw)
is absolutely integrable, for all y € R with ||y|| < 0, where 0 is given as in Theorem 2.8.
Proof. As in the proof of Theorem 2.8, we obtain from

1 S
Re(Hy4iw(s)) = Hy(s) — 5/0 eATswwT e ds

and Re(e"(9)) < |etr(4)] = eRe(tr(2)) = otr(Re(2)) for 7 € My(C) that

t
Re // (etr((Hy+¢w(S)+p*(y+z'w))X)_1) rp(dX)ds
0 Js¥t

t
< / / (etr((Hy(sHp*(y))X)_l) o (X )ds.
0 Js}
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Using this inequality yields

[Py, (y + iw)]
< By, (y)e—%tr(Zo(eATtA’*(wa)eAt—A**(wa)))—% fot tr(yr (eATSA’*(wa)eAS—A’*(wa))) ds

= Dy, (?/)e_% (A1B(1)(Z0)+ [y A B(s)(vL) ds)w,w)

with %(t) as in Lemma 2.4. Note that A~1%(t)(X¢) + f(f A7'%(s)(yL)ds € S}, and hence
/ Dy, (y + iw)| dw < (I)Yt(?/)/ o~ 3 ((AT1B(1)(Z0)+ [; AL B(s)(vL) ds)w,w) g, < o0,
R4 Rd

by Theorem 2.8, and because the integrand is proportional to the density of a multivariate
normal distribution. [ |

2.5. Martingale conditions and equivalent Martingale measures. For notational conve-
nience, we work in this section with the model

1
(2.16) dY; = (u+ B(20) dt + X2 dW; + p(dL;), Yy € RY,
(2.17) A% = (v + ASy + S AT) dt +dL;, o €SS,

where L is a driftless matrix subordinator with Lévy measure ;. Clearly, this is our multi-
variate stochastic volatility model of OU type (2.5), (2.6), except that p in (2.5) is replaced
by 1 — p(yr), such that there is no deterministic drift from the leverage term p(dL;).

In mathematical finance, Y is used to model the joint dynamics of the log-returns of d
assets with price processes Si = éeytz, where we set Yoi = 0 from now on and, hence, Sy
denotes the vector of initial prices.

The martingale property of the discounted stock prices (e_TtSt)tE[O,T] for a constant interest
rate r > 0 can be characterized as follows.

Theorem 2.10. The discounted price process (e‘”St)te[O’T} is a martingale if and only if,

fori=1,....d,

(2.18) / e’ (%) kr(dX) < oo
{lIx1>1}
and
i 1 +
(219) 5 (X) = _§Xii7 X e Sd’
(2.20) i =r— /+(epi(x) — 1) kr(dX).
Sd

Proof. Define S, := e_:tSt for all t € [0,T], and let i € {1,...,d}. By Itd’s formula and
[30, Proposition I11.6.35], S* is a local martingale if and only if (2.18), (2.19), and (2.20) hold.
Thus it remains to show that it is actually a true martingale under the stated assumptions.
Since S is a positive local martingale, it is a supermartingale and hence a martingale if and
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only if E(@}) = §6 for all i € {1,...,d}. This can be seen as follows. By Theorem 2.3, (2.19),
and (2.20) we have

B =S (exp (0 - T+ ) + | syt awi + i) )

Gie eI (e—;@;mpi(m E <efoT<2?>% aw;

(LS)SE[QT}))

o fx)_ .
g R )
g
This proves the assertion. |

As in [37, Theorem 3.1], it is possible to characterize the set of all equivalent martingale
measures (henceforth EMMs) if the underlying filtration is generated by W and L. More
specifically, it follows from the martingale representation theorem (cf. [30, Theorem II1.4.34])
that the density process Z; = E(%L%) of any equivalent martingale measure () can be
written as

(2.21) Z=£ (/0 YedWe + (Y — 1) (i — uL)>

for suitable processes ¢ and Y in this case. Here u” (resp., v") denote the random measure
of jumps (resp., its compensator) (cf. [30, section II.1] for more details). Under an arbitrary
EMM, L may not be a Lévy process, and W and L may not be independent. However, there is
a subclass of structure preserving EMMs under which L remains a Lévy process independent
of W. This translates into the following specifications of ¢ and Y (cf. [37, Theorem 3.2] for
the univariate case).

Theorem 2.11 (structure preserving EMMs). Let y : S:{ — (0,00) such that

() for (VITE) — 1)? R (dX) < 0,
(ii) f{I\XII>1} e X kY (dX) < o0, i=1,...,d,
where K% (B) == [5y(X) kL (dX) for B € B(S]). Define the R%-valued process (Vt)eejo,m as

e Jog (2" ) = 1) i (dX)
1
M+ﬂ(2t)+§ : + : —1r |,
e S (€70 — 1) kY (dX)

1/& - _Et

SIS

where 1 = (1,...,1)T € R, Then Z = E(Jo sdWy + (y — 1) * (i —vF)) is a density process,
and the probability measure QQ defined by zll—P = Zp is an EMM. Moreover, W? := W — fo Ysds

1s a Q-standard Brownian motion, and L is an independent driftless Q-matriz subordinator

with Lévy measure kY . The Q-dynamics of (Y,X) are given by

. ; 1. 1 i .
dy; = (7’— /+(ep X) 1) kY (dX) — §2y> dt + <25 thQ> +pMdLy), i=1,....,d,
Sd

A% = (v + AX + S AT dt + dLy.
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Proof. Since y — 1 > —1, Z is strictly positive by [30, Theorem 1.4.61]. The martingale
property of Z follows along the lines of the proof of [37, Theorem 3.2]. The remaining assertions
follow from [32, Proposition 1] and the Lévy—Khintchine formula by applying the Girsanov—
Jacod-Mémin theorem as in [32, Proposition 4] to the R34@+D) _valued process

I- < V%Q ) + vech(L),

where W& := W — fo Psds. [ |

The previous theorem shows that it is possible to use a model of the same type under
the real-world probability measure P and some EMM (), e.g., to do option pricing and risk
management within the same model class. The model parameters under () can be determined
by calibration and the model parameters under P by statistical methods.

3. Option pricing using integral transform methods. In this section we first recall results
of [17] on Fourier pricing in general multivariate semimartingale models. To this end, let S =
(Séeyl, e ,Sgeyd) be a d-dimensional semimartingale such that the discounted price process
(e_’"tSt)te[o,T] is a martingale under some pricing measure () for some constant instantaneous
interest rate r > 0.

We want to determine the price Eg(e™"? f(Yr — s)) of a European option with pay-
off f(Yr — s) at maturity 7', where f : RY — R, is a measurable function and s :=
(—1log(S}), - .., —1log(Sd)). Denote by f the Fourier transform of f. The following theorem
is from [17, Theorem 3.2] and represents a multivariate generalization of integral transform
methods first introduced in the context of option pricing by Carr and Madan [8] and Raible
[39].

Theorem 3.1 (Fourier pricing). Fiz R € R%, let g(z) := e~ %% f(z) for x € R?, and assume
that

(i) ge L*nL>®, (i) @y, (R) <oo, (iii)) wr Py, (R +iw) belongs to L.

Then,

~

(3.1) Eg(e™™ T f(Yp — 5)) = / ) e~ By, (R + iu) f(iR — u) du.
R

Observe that Theorems 2.8 and 2.9 show that conditions (ii) and (iii) are satisfied for
our multivariate stochastic volatility model of OU type (2.5), (2.6) if condition (2.12) holds,
i.e., if L has enough exponential moments. More specifically, the vector R has to lie in the
intersection of the domains of ®y,, and 7.

We now present some examples. As is well known, the Fourier transform of the payoff
function of a plain vanilla call option with strike K > 0, f(x) = (e* — K)™T, is given by

R K1+iz
(3.2) f(z) = 2012

for z € C with Im(z) > 1. The Fourier transforms of many other single-asset options like
barrier, self-quanto, and power options as well as multiasset options like worst-of and best-of
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options can be found, e.g., in the survey [17]. From the unpublished paper of [27] we have the
following formulae for basket and spread options.
Ezample 3.1.
1. The Fourier transform of f(z) = (K — 2?21 e”i)*, K > 0, that is, the payoff function
of a basket put option, is given by

H;l:1 I(iz;)
T2+iy 0 2)

for all z € C¢ with Im(z;) < 0, j = 1,...,d. The price of the corresponding call can
easily be derived using the put-call-parity (K — z)* = (x — K)* — 2 + K. Since we
have separated the initial values s in (3.1), we can use FFT methods to compute the
prices of weighted baskets for several weights efficiently.

2. The Fourier transform of the payoff function of a spread call option, f(z) = (e** —
e’ — K)*t K >0, is given by

f(Z) _ g Z?zl zj

7e) = K1zt D)0 (—iz —izg — 1)
iz (14iz) [(—iz; — 1)

for all z € C? with Im(z;) > 1, Im(22) < 0, and Im(z; + 22) > 1; see also [29].

Since the Fourier transform of (! — e*2)* does not exist anywhere, we cannot use The-
orem 3.1 to price zero-strike spread options. Nevertheless, we can derive a similar formula
directly. Alternatively, one could use the change of numeraire technique of [36], which would
lead to formulae of a similar complexity.

Proposition 3.2 (spread options with zero strike). Suppose that

Dy vz (R, 1—R) <oo  for some R > 1.
Then the price of a zero-strike spread option with payoff (Séey’} — Sgeyig)Jr s given by

Eq(e™"" (87— 51)%) =

du,

el(s2—s1)—s2—1T / eiu(sz—s1) (I)(Y%,Y%)(R +iu,1 — R — ’LU)
27 R (R4 iu)(R+iu—1)

where s1 = —In(S}) and sa = —In(S3).

Observe that unlike for K > 0, one only needs to compute a one-dimensional integral to
determine the price of a zero-strike spread option. This will be exploited in the calibration
procedure in section 4.

Proof. Let R > 1, and define fx(x) = (e* — K)* for K > 0, and gx (z) = e f* fx (). By
Fourier inversion and (3.2), we have

fev(z) =

1 e(R-i—iu):ce(l—R—iu)y p

%/R (R+i)(R+iu—1) "

for all y € R. Hence, for the function hev(z) := (Sie® — S2e¥)T = foy—s,(z — 51) We get
e(R-i—iu)xe(l—R—iu)y

d
Rti)R+iu—1)"

1 .
her () = 5—eRlrsn) = /R ghlea=
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Finally, by Fubini’s theorem

L R(sg s1) R—Hu) (1—R—iu)
E Y — i 82 81 P
alh g (7)) = g [ o) s e du Py e )

B R(sz 81) / piuls2—s1) q)(yl Yz)(R +iu,1 — R — iu)
27 R (R+iu)(R+iu—1)

du,

where the application of Fubini’s theorem is justified by

R—l—m 1 R—iu)
Rz (1-R)y ~
/RZ/\ i | A P dndn) = [ R [ G du Py g o, do)

<171l Py yz) (R, 1 = R) < oo,

since ||g1]|1 < oo as shown in [17, Example 5.1]. [ ]

4. Calibration of the OU-Wishart model. We now put forward a specific parametric
specification of the model discussed in section 2. To this end, let n € N, © € Sj{ and let
X be a d x n random matrix with irlldependelnt and identically distributed standard normal
entries. Then, the matrix M = ©2XXT0O2 is said to be Wishart distributed, written as
M ~ Wy(n,©). Note that this definition can be extended to noninteger n > d — 1 using the
characteristic function

(4.1) Z v det(I; — 2i20) 2™,

see [23, Theorem 3.3.7]. Since M € S:{ almost surely, we can define a compound Poisson
matrix subordinator L with intensity A and Wy(n, ©) distributed jumps. We call the resulting
multivariate stochastic volatility model of OU type an OU-Wishart model.

Remark 4.1. There exists a subclass of structure preserving EMMs @ (cf. Theorem 2.11)
such that we have an OU-Wishart model under both P and (. This means that L is a
compound Poisson process with Wy(n,©) distributed jumps and intensity A under P, and
Wia(n, @) distributed jumps with intensity X under Q. We need only assume that the Wishart
distribution under both P and @ has a Lebesgue density, i.e., n,n > d — 1 and O, 0c S:{Jr.
Then, one simply has to take y as the quotient of the respective Lévy densities. Hence, by
[23, Theorem 3.2.1], y has to be defined as

~ -1
A L(f—nyald 50 t(0 27 Lien) —tir((6-1—9-1

ince we have [+ e KL = et(ly; — —3n by (4.1), we see that the com-
S have fo ") i (dX) = Adet(Iq — 2RO

pound Poisson process L has exponential moments as long as ||R|| < where ||-|| denotes

1
2lle]]
the spectral norm. Consequently, (2.12) holds for € := ﬁ, and we can apply the integral
transform methods from the previous section to compute prices of multiasset options.

Note that for the particularly simple special case of diagonal A, 3, and p, each asset

follows a BNS model at the margins by (2.7) and (2.8). In particular, for n = 2 we see that
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L% i=1,...,d, is a compound Poisson subordinator with exponentially distributed jumps;
thus we have in distribution the I'-OU BNS model with a stationary gamma distribution
at the margins; cf., e.g., [37, section 2.2]. Then, the characteristic functions of the single
assets are known in closed form. Note that while the characteristic function of the stationary
distribution of the marginal OU-type process is still known for n # 2, it no longer corresponds
to a gamma distribution in this case.

4.1. The OU-Wishart model in dimension 2. We work directly under a pricing measure
@ and consider the following specific two-dimensional case of our model, where we restrict
ourselves in particular to a diagonal mean-reversion matrix A and a leverage term p such that
both jumps of the respective variance and of the covariance enter the price. Our model is
given by

1
dayr _ ((m\ 1 (=P dt o »iton2\2 faw} N prdL + pra dL}?
dv?) — \\u2) 2\ 52 ¥z oy dW? p2dLi? + po1 L% )’
d>it o de2?\  ((m 0 N 201! (a1 + az)X}? it + dLit dLP?
dE}Z dE%Q o 0 v (a1+a2)2%2 2&22%2 dL;fl2 dL%2

with initial values 11 12
0 DI DY
YO - <0> ) 20 = <222 E%Z) € S;—’—

and parameters vi,72 > 0, a1,a2 < 0, p1, p2, p12,p21 € R. L is a compound Poisson process
with intensity A and Ws(n, ©)-jumps, where n = 2 and

O11 O n
0= € ST,
(912 922> 2

Therefore, all components of L jump at the same time. Since the second-order properties of
the Wishart distribution are known explicitly (cf. [23, Theorem 3.3.15]), the covariances of
the jumps are given by

Cov(AL!Y, ALP|ALY #0) = 401,05,
Cov(AL?, ALP|AL" #0) = 409,015,
Cov(AL!, ALZ|ALY #0) = 463,

This shows that even if p is diagonal, i.e., p12 = 0 = p21, the leverage terms of both assets
are correlated. If p is nondiagonal, then 615 also influences the marginal distribution of each
asset.

Multiasset option pricing. By (2.14) and (4.1), the joint moment generating function of
(Y1, Y?) is given by

Bl

—exp (y" r t r s))ds t = 5—
= exp (o7t @, () + [ttty A [ s ds = )
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with Hy as in (2.15), A = (¢ L?z )y =4 % ), and p*(y) = (o o). It does not seem

to be possible to obtain a closed-form expression in terms of ordinary functions, unless one

sets a1 = ao =: a. In this case, if A = /4bgby — b% # 0, one has

2at 2
—1 Y — U1 Y1y2

E[e Y7 492Y7] —ex { t+ t4 < tr (E < L
[ ] Py Yip1 Y22 1a 0 Y112 y% Yo

+ i (Wi — 1) + 72045 — v2)) <%(62“t —1)— t)

n A b_1 ¢ 2by + by B " 2b262at + by
—2ab0 A arctan 7A arctan 7A

1 bo + b1 + by A
=1 —t— M\t
+2 n<b2€4at+b1€2at+b0>:| * bo }

with coefficients
bp :=1+4det(B— C)+2tr(B - C),
by := —8det(B) + 4tr(B)tr(C) — 4tr(BC) — 2tr(B),
by := 4 det(B),

A = \/4boby — b2

1 2 _
B:=— <y1 Y1 2@/13/2 > 0, C.~— <P1y1 P12y1> o
da \ v1y2 Y3 — Y2 pP21Y2  P2Y2

Note that arctan has to be understood as a function of complex argument to cover the case
where the term in the square root of A is negative. If A = 0, we obtain

and matrices

Ele¥ Y Fy2 YE]

2at 2
e*® —1 Ui — 1 Y1y >>
=ex t+ t+ tr (2 1
P{ylﬂl Y242 1a ( 0< Y112 y% — s

+ i (i —y1) + 72045 — y2)) (2—2(e2at -1) - t)

A b1 by 1 bo + b1 + ba A
— —1 —t— At p.

+ 2abg |:26262at + by 20y + by - 2 . <b2€4at + bre2at bo>:| - bo }

Using det(A + B) = det(A) + det(B) + tr(A)tr(B) — tr(AB) for A, B € M>(R), the above

formulae follow from

det(Iy — 2(Hy(s) + p*(y))©) = det(Iy — 2(e*** — 1)B — 2C)) = by + b1€**® 4 bye***

and straightforward integration. Likewise, one can also derive a closed-form expression for
n=4,6,... using [22, 2.18(4)].

Consequently, one faces a trade-off at this point. One possibility is to retain the flexibility
of different mean reversion speeds a; by evaluating the remaining integral using numerical
integration. Alternatively, one can restrict attention to identical mean reversion speeds in
order to have a closed-form expression of the moment generating function at hand. The
impact of this decision on the calibration performance is discussed in section 4.2.
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Single-asset option pricing. For pricing single-asset options, one needs only the transforms
of the marginal models, such that the above expressions simplify considerably. For example,
the moment generating function of Y'! is given by

4aq 4aq \ 2aq
A bo + b1 At
1 — — Xt
+ 2&11)0 . <b0 + 62a1tb1> + b() }7

where by and b; simplify to

y1Y;! 1 el — 2 11 1 L oat 2 11
Ele"t ] = exp yipt + ———(y1 —y1)%y + s— (e =1) —¢) (yi — )L

1
bo=1+ (2—611@% —y1) — 2P1y1> O11 — 2p1211012,

by = _2%1(?/% —41)O11.
Note that one can use the recursion formula stated in [22, 2.155] to obtain a closed-form
expression for Wh(n, ©)-jumps with n € 2N, too. In the special case where the operator p is
diagonal, i.e., if p1o2 = p21 = 0, the margins are (in distribution) I'-OU BNS models, whose
moment generating function has been derived in [37, Table 2.1].

Remark 4.2 (high dimensionality). The above model can also be defined for d > 2, but of
course, the Fourier formula (3.1) becomes numerically infeasible in high dimensions. Neverthe-
less, if p is diagonal, the calibration of a high-dimensional OU-Wishart model is still possible
by evaluating only options on just two underlyings. Using zero-strike spread options and pro-
vided the characteristic function is known explicitly, this means that one need only evaluate
single integrals numerically, as in the univariate case. Indeed, combining [4, Proposition 4.5]
and the fact that every symmetric submatrix of a Wishart distributed matrix is again Wishart
distributed (cf. [23, Theorem 3.3.10]), it follows that the joint dynamics of each pair of assets
follow a two-dimensional OU-Wishart model as above. Hence, we can calibrate the model
using only two-asset options (e.g., spread options). The price to pay is that the resulting
model incorporates only pairwise dependencies, since the respective covariances completely
determine the underlying Wishart distribution.

Remark 4.3. If p is diagonal, we have equivalence in distribution of the margins of our
model to a I'-BNS model. This implies immediately that we need to use prices on multiasset
options in order to infer all parameters from observed option prices. If p is nondiagonal, we
have a I'-BNS model with an additional (correlated) jump term. Due to this additional term,
it might be possible to infer #19 from single-asset options. However, one cannot obtain 2(1)2 in
this way because it does not appear in the marginal moment generating function.

In many multifactor univariate models one can in general similarly not be sure whether
one can uniquely determine all parameters from observed option prices. In many papers
the parameters are calibrated and the procedure seems to work, but we are not aware of
any reasonably complex multifactor model where the identifiability of the parameters based
on option prices has been established. The reason is clearly the highly nontrivial relation
between the parameters and the option prices.
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4.2. Empirical illustration. The aim of this subsection is to show that a calibration of the
OU—-Wishart model to market prices is feasible. Since multiasset options are mostly traded
over the counter, it is difficult to obtain real price quotes. To circumvent this problem, we
proceed as in [44] and consider foreign exchange rates instead, where a call option on some
exchange rate can be seen as a spread option between two others. Let us emphasize that our
calibration routine should not be seen as a finished product, but much rather as a first test
and proof of principle. A more detailed investigation as well as an extension to numerically
more involved models with nondiagonal A is left to future research.

We consider a two-dimensional OU-Wishart model as above. Our first asset is the
EUR/USD exchange rate S8/€ — Sg/geyl, that is, the price of 1 € in $, and our second
asset is the GBP/USD exchange rate S%/¢ = Sg/"geyz, i.e., the price of 1 £ in §. We model
directly under a martingale measure. Therefore we have, by Theorem 2.10, that

H1 =Tg —Te — /S+ (6p1X11+p12X12 — 1) HJL(dX)
d

Since ky, is the intensity A times a Wishart distribution with parameters n = 2 and 6, this
simplifies to
i =rg —re — A (det (I — 2(% 2)0) " 1)

201011 + 212012
1—2p1011 — 2p12012

:7’$—7’€—)\

Likewise we have

202022 + 2021012
1 — 202022 — 2021012

p2 =T —Te—A

Thus, for p1o = 0 or po; = 0, we recover the martingale conditions of the I'-OU BNS model.
By [28, section 13.4], it follows that the price in $ of a plain vanilla call option on S%€ or §%/£
is given by e"“$TE((S£$ﬂ/€ —K)*")or e‘r$TE((S§/£ — K)*), respectively. Now observe that the
$-payoff of a call option on the EUR/GBP exchange rate S£/€ is given by Si/ £(Sj{ €K )t =
(S?}/ € K S;S}/ £)+; hence it can be regarded as a spread option on S%/€ — §%/£ where the initial

£ . o . . .
/£ Since it is a zero-strike spread option, we can

value of the second asset is replaced by K Sg
use Proposition 3.2 to valuate it.
We obtained the option price data from EUWAX on April 29, 2010, at the end of the

business day. The EUR/USD exchange rate at that time was S§/€ = 1.3249%, the GBP/USD

exchange rate was Sg/ £ = 1.5333%, and the EUR/GBP exchange rate was 0.8641£. As a proxy
for the instantaneous riskless interest rate we took the 3-month LIBOR for each currency, viz.
re = 0.604%, rpy = 0.344%, and rg = 0.676%. All call options here are plain vanilla call
options of European style. We used 148 call options on the EUR/USD exchange rate, 67 call
options on the GBP/USD exchange rate, and 105 call options on the EUR/GBP exchange
rate, all of them for different strikes and different maturities, for a total of 320 option prices.
We always used the midvalue between bid and ask price. A spread sheet containing all data
used for the calibration can be found on the second author’s website.
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Figure 1. Comparison of the Black—Scholes implied volatility of market prices (dots) and model prices
(solid line). The plots show only the results for the 12-parameter OU-Wishart model (Step A), since they do
not change visually for the more complex models from Steps B to D.
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Figure 2. Comparison of the Black—Scholes implied volatility of market prices (dots) and model prices
(solid line). The plots show only the results for the 12-parameter OU-Wishart model (Step A), since they do
not change visually for the more complex models from Steps B to D.

The calibration was performed by choosing the model parameters so as to minimize the
root mean squared error (RMSE) between the Black—Scholes volatilities implied by market
and model prices. Note that the RMSE is the square root of the sum of the squared distances
divided by the number of options. All computations were carried out in MATLAB and
performed on a standard desktop PC with a 2.4GHz processor.

In Step A, we impose a := a1 = az and p1o = 0 = poy; i.e., we make the assumption
that the mean reversion parameters of both assets are equal and that p is diagonal. This is
the most tractable case, since there is a closed-form expression for the moment generating
function of (Y!,Y?) and the number of model parameters is reduced to 12. The starting
and calibrated parameters can be found in Table 1. The overall RMSE is 0.0082, and the
run time was 48 minutes; i.e., calibration of the model is feasible even on a standard PC. If
one considers only the marginal models for EUR/USD and GBP/USD, one has an RMSE of
0.0106 and 0.0048, respectively. For visualization, we provide Figures 1 and 2, where market
and model prices are compared in terms of Black—Scholes implied volatility for a few selected
maturities. These results illustrate that even this simple model is able to fit the observed
smiles rather well. For comparison, we calibrated two independent univariate I'-OU BNS
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models to the margins separately (see Table 1) and obtained a lower RMSE of 0.0071 and
0.0020, respectively. This stems from the fact that the additional dependence parameters do
not enter the pricing formulas for single-asset options, whereas the intensity of the compound
Poisson process is the same for all assets in our multivariate framework, unlike when using
two univariate models. This means that we are not overfitting the marginal distributions with
an excessive amount of additional parameters, but much rather using a simplified version of
a standard model. Nevertheless, the calibration still performs quite well even when using this
simplification.

Table 1
Calibrated parameters for different models. In decreasing order: models from Steps A to D; univariate BNS
models for EUR/USD and GBP/USD:; initial parameters.

Step A a1 p1 P12 e 25t T
A 0.774 | —2.392 | —3.741 / 0.011 | 0.019 | 0.027
B 0.901 —3.008 —5.364 | 0.679 | 0.011 | 0.019 | 0.034
C 0.774 —2.392 —3.741 / 0.011 | 0.019 | 0.027
D 1.231 | —7.562 | —6.806 | 0.948 | 0.010 | 0.024 | 0.097
univ. 1 0.781 | —32.177 | —5.995 / 0.007 | 0.034 /
univ. 2 || 0.864 / / / / / /
initial 0.800 | —2.500 | —3.000 / 0.010 | 0.020 | 0.020
Step as P2 P21 0?2 282 Y2 o2 2(1)2
A / —0.494 / 0.063 | 0.017 | 0.000 | 0.022 | 0.013
B / —0.661 | 0.896 | 0.067 | 0.018 | 0.000 | 0.023 | 0.013
C —2.392 | —0.494 / 0.063 | 0.017 | 0.000 | 0.022 | 0.013
D —6.553 | —0.535 | 1.188 | 0.102 | 0.021 | 0.000 | 0.030 | 0.016
wniv. 1|/ /A A A A A VA
univ. 2 || —2.482 | —0471 | /| 0.050 | 0.017 | 0.012 | / /
initial / —0.500 / 0.030 | 0.015 | 0.011 | 0.010 | 0.010

As a further cross-check, Figure 3 depicts sample paths of the EUR/USD and the GBP/
USD spot rates and their volatilities, simulated with our calibrated parameters, which show
reasonable path properties.

In Step B, we allow for a nondiagonal leverage operator p. Although this introduces
two additional parameters, p12 and poi, a closed-form expression for the moment generating
function is still available. As initial values, we take the parameters obtained in Step A and
set p1o and poy to zero. After 80 minutes, the optimizer finds a minimum with an RMSE of
0.0079. At the margins, we have RMSEs of 0.0104 and 0.0037, respectively. Hence, calibration
is still feasible without resorting to higher-powered computers, but the gains in fitting accuracy
appear to be only moderate for the option price surface at hand.

Next, we drop the assumption of an equal mean reversion parameter and allow for a; # as.
Since the moment generating function of (Y'',Y?) is then no longer known in closed form,
good starting values are particularly important in order to reduce computational time to
an acceptable value. We distinguish the two cases where p is diagonal (Step C) and p is
nondiagonal (Step D), and take as starting values the parameters obtained from Step A or
Step B, respectively. Interestingly, in Step C the optimizer finds the minimum at the same
parameters as in Step A; thus the additional freedom of different mean reversion parameters
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Figure 3. Simulated sample path of the EUR/USD and the GBP/USD spot rates and their volatilities.

does not yield a better fit in this case.

Finally, in Step D, we calibrate the full model with nondiagonal p and different mean
reversion speeds aq, as. Due to the lack of a closed-form expression for the moment generating
function and the high number of parameters (15), the run time increases to an unsatisfactory
10 hours on our standard PC, suggesting that higher-powered computing facilities and an
optimized numerical implementation in a compiled instead of an interpreted language should
be employed here. In contrast to Step C, we find an improvement by allowing for different
mean reversion speeds: The overall RMSE is 0.0076. Then again, for the data set at hand,
the improvement is again only slight compared to the simplest model considered in Step A.

Comparison with other bivariate models. We now compare our bivariate Wishart—OU model
to some benchmarks from the literature. The canonical candidate would be the bivariate
Wishart model, which also exhibits stochastic correlations between the assets and has very
recently been calibrated to market prices by [11]. However, the involved parameter restric-
tions necessary for the existence of the Wishart process are not satisfied in the results of the
calibration. This suggests that some kind of constrained optimization must be incorporated,
which is beyond our scope here. However, we emphasize that the Wishart model should yield a
comparable performance once these implementation issues have been resolved in a satisfactory
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manner.

Instead, we use the multivariate variance gamma (henceforth VG) model of [34] and a gen-
eralization with stochastic volatility suggested therein for our comparison. In the multivariate
VG model with parameters (0;,04,v), i = 1,2, the log-price processes Y, Y2 are given by
two independent Brownian motions with drift which are subordinated by a common gamma
process. The joint moment generating function of the log-price processes under a risk neutral
measure is shown to be given by

9 —t/v
1
Elexp(y1Y;! + y2Y;2)] = eWr(rs—retwi)tya(rs—retwa))t (1 —v Z <yi9i + 51/220'22))
1=1

with w; = v~ log (1 1 %0221/). The parameters obtained from a calibration of this model
to our option data set can be found in Table 2. The corresponding overall RMSE is 0.0134,
which is roughly 63% higher than the RMSE obtained from the calibration of our 12-parameter
OU-Wishart model from Step A. At the EUR/USD and GBP/USD margins the multivariate
VG model has an RMSE of 0.0161 and 0.0107. Consequently, the performance of this model
is much worse than for the OU-Wishart model, which is not surprising since it involves only
5 parameters.

To alleviate this issue, our second benchmark allows for stochastic activity driven by an
OU-type process. More specifically, the log-price processes of the EUR/USD and GBP/USD
spot rates are given by Y,! = X ét and Y2 = X%t, where X! and X? are two independent VG
processes with parameters (6;,04,v;), i = 1,2, and Z; = fg zsds is an integrated OU process.
The OU process (zs)gcr+ is given by dzs = 2azsds + dN_oq4t,20 = 1, @ < 0, where N is a
compound Poisson process with intensity ¢ and Exp(§) distributed jumps. It can be shown
that the moment generating function of Z; (see, e.g., [42, section 7.2.2]), is given by

n 200(ty — Elog[—2a&] + Elog[(exp(2at) — 1)y — 2a§])>
Y+ 20 '

B2,(5) = exp (%@xp(zat) —1)

For the moment generating function of Y; = (Y;!,Y,?), conditioning on the stochastic activity
process Z yields

Py, (y1,y2) = Pz, <log D1 (y1) +log Oy (y2))

—1/v;

with CIDX{ (yi) = (1 —ybiv; — %aizyfui) , © = 1,2. Thus, the joint moment generating

function of the log-price processes Y;',Y;? under a risk neutral measure is given by

Dy, (1,0) 91 @y, (0,1) 2 Dy, (y1,y2)-

A calibration of this model to our dataset leads to the parameters provided in Table 2; a
plot depicting some of the respective implied volatilities can be found in Figure 4. The corre-
sponding RMSE is 0.0129. Somewhat surprisingly, this is only 4% lower than for the model
of [34], despite increasing the parameters from 5 to 9. At the margins, we have 0.0143 and
0.0095, which corresponds to improvements of 11%. Hence, there is quite some improvement
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in fitting the margins, but the multivariate options are not fit much better. This suggests
that stochastic correlations indeed seem necessary to recapture the features of our empirical
dataset. However, let us emphasize again that this applies only to one specific dataset in the
foreign exchange market. A more detailed empirical study is a challenging topic for future
research.

Table 2
The first row shows the calibrated parameters for the multivariate VG model of [34]. The second row
contains the calibrated parameters for two independent VG processes with a common integrated I'-OU time
change.

01 02 o1 o2 2 Vo 9 a 3
—0.360 | —0.327 | 0.090 | 0.093 | 0.106 | 0.106 / / /
—1.470 | —2.190 | 0.001 | 0.050 | 0.022 | 0.001 | 0.468 | —42.140 | 1.747
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Figure 4. Comparison of the Black—Scholes implied volatility of market prices (dots) and model prices
(solid line). The headers state the underlying and the days to maturity. The plots are for the benchmark model
where the log-price processes are modeled by two independent VG processes with a common time change which
is given by an integrated I'-OU process. The plots for the multivariate VG model from [34] look very similar.

5. Covariance swaps. In this final section, we show that it is possible to price swaps on
the covariance between different assets in closed form. This serves two purposes. On the one
hand, options written on the realized covariance represent a family of payoffs that make sense
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only in models where covariances are modeled as stochastic processes rather than constants.
On the other hand, the ensuing calculations exemplify once more the analytical tractability
of the present framework.

We consider again our multivariate stochastic volatility model of OU type under an
EMM @. In addition, we suppose that the matrix subordinator L is square integrable, i.e.,
| (IX|>1} || X||?k1(dX) < oo. The pricing of options written on the realized variance or the
quadratic variation as its continuous-time limit has been studied extensively in the literature;
cf., e.g., [6] and the references therein. Since we have a nontrivial correlation structure in our
model, one can also consider covariance swaps on two assets i,j € {1,...,d}, i.e., contracts
with payoff [Y?,Y7]r — K with covariance swap rate K = E([Y?,Y7]7) (see, e.g., [7, 12] or
[43] for more background on these products). Now, we show how to compute the covariance
swap rate. We have

YY) = YO Y)5 + Y AYIAYY = (55)7 + o (X)p/ (X) # pp(dX).
s<T

Since 1, (dX)dt is the compensator of u”, this yields

(51) BQY'Ylr) = (BER)T 4T [ (00 (X)ru(dX),

where ©F was defined in (2.4). Note that by [38, Proposition 2.4] and since |p"(X)p/ (X)| <
l|pl|?|X||?, our integrability assumption on L implies that the expectation is finite. The first
summand can be calculated as follows. By setting y = 0 in Theorem 2.5, we obtain the
characteristic function of ;. Differentiation yields

E(Sr) = e T50e T 4+ ATAYE(Ly))e T — A~V (E(Ly)),
where F(L1) = v1, + fS; X k1 (dX). Using (2.4), we obtain
E(X}) = A"Y(E(Xr) — TE(L1) — %),

so we need only know E(L;). The second summand in (5.1) can analogously be computed by
differentiating the characteristic function of the matrix subordinator L.

In our OU-Wishart model, where L is a compound Poisson matrix subordinator plus drift
with Wy(n, ©)-distributed jumps, we have by [23, Theorem 3.3.15] that

E(L1) =~ + Ano©.

If p is diagonal, the second term in (5.1) simplifies to
Tp,'pj /7L Xiinj I/(dX) = Tpipj)\n (2@% + n@“’@jj) ,
Sd

again by [23, Theorem 3.3.15]. Thus we have a closed-form expression for the covariance swap
rate:

K = (A—l [eAT(zo + Ay + 20T — AN (yp + AnO) — T(vr, + AnO) — 20] )”
+ sz-,oj)\n (2@22]- + n@”@”) .
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For example, in the two-dimensional OU—-Wishart model from section 4.1 we have, for ¢ = 1
and j = 2,

1 An©
- (a14a2)T _ 12 12\ 9
Kk ai + az [<e 1) <20 * a; + a2> T)\n@m} +Tp1p2An (2613 + nO11O2)

As an illustration we provide, in Figure 5, a plot of the normalized covariance swap rate

measured in volatility points, i.e., T > %E([Yl,Yz]T), for our calibrated 12-parameter
OU-Wishart model from section 4.2 (Step A).

Normalized Covariance Swap Rate in Volatility Points
014 T T T T T

0.135

0.13

0.125

| |
50 100 150 200 250 300
Time to maturity in trading days

Figure 5. Normalized covariance swap rate for the calibrated 12-parameter OU-Wishart model.

Finally, we remark that similarly as in [6], pricing of options on the covariance can be
dealt with using the Fourier methods from section 3, since the joint characteristic function of
(SF, pH(X)p? (X) * u*(dX)) can be calculated similarly as in the proof of Theorem 2.5.

Appendix A. The following result on multidimensional analytic functions is needed in the
proof of Lemma, 2.7.

Lemma A.l. Let D, = {z € C" : ||Re(2)|| < €} for some € > 0. Suppose f: D. — C is an
analytic function of the form f = ef', where F : D, — C is continuous. Then F is analytic in
De.

Proof. Let z = (z1,22,...,2n) € D, and define z_; = (22,...,2,). Then f, | : w —
f(w, z_1) defines an analytic function without zeros on the open convex set D, . , := {w € C:
(w,z-1) € D¢}. By, e.g., [19, Satz V.1.4], there exists an analytic function 9;71 : D¢, , —C
such that exp(g ) = f._,. Hence F(w,2_1) — g}, (w) € 2miZ on D, ._,. Since both F and
g are continuous, their difference is constant and it follows that w — F'(w, z_1) is analytic on
D . ,. Analogously, one shows analyticity of F' in all other components. The assertion then
follows from Hartog’s theorem (cf., e.g., [25, Theorem 2.2.8]). [ |
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