
HW7 21-484 Graph Theory Name (andrewid) - X

1: Given k and a k-coloring of a k-chromatic graph, prove that for any color c there is a vertex of color
c which is adjacent to vertices of every other color.

Let a k-chromatic graph have a k-coloring given. For readability, assume WLOG c = Red

Suppose all red vertices vi have some color other than red, ci, such that vi is not adjacent to a vertex
of color ci. We modify the k-coloring by coloring each vi with the color ci instead. The is still a proper
coloring, because any pair of adjacent vertices were originally both not colored red, and are unchanged,
or had one colored red, but in that case the red vertex was recolored to a color other than its adjacent
vertices’ colors. (No pair of adjacent vertices were both recolored, because no pair of adjacent vertices
were both colored red originally). This procedure produces a proper k − 1 coloring, which contradicts
the assumption that the graph is k-chromatic.
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2, Diestel 5.18: Given a graph G and k ∈ N let PG(k) denote the number of vertex colourings
V (G) → {1, . . . , k}. Show that PG is a polynomial in k of degree n := |G|, in which the coefficient of
kn is 1 and the coefficient of kn−1 is −||G||. (PG is called the chromatic polynomial of G.)
(Hint. Apply induction on ||G||.)

A counting argument shows that when G has 0 edges and n vertices, there are kn ways to color the
graph with k colors: for each of n vertices choose any of k colors. So PG is a polynomial in k of degree
n with 1 as the coefficient of kn and 0 = ||m|| as the coefficient of kn−1. This completes the base case
of induction on ||G||.
Let e ∈ G be arbitrary. By the induction hypothesis, PG−e is a polynomial of degree n with 1 as the
coefficient of kn and with −||G − e|| = −(||G|| − 1) as the coefficient of kn−1. Similarly, PG/e is a
polynomial of degree n− 1 with 1 as the coefficient of kn−1 (we do not worry about the coefficient of
kn−2 here, since contraction can remove multiple edges).

We find PG = PG−e − PG/e by inclusion-exclusion: the colorings of G − e are all proper in G except
exactly those which correspond to proper colorings of PG/e; this is because a proper coloring of PG/e

is proper with respect to all edges except e, and assigns the same color to both vertices of e.

More formally [this is the above argument expanded as a refresher, but not entirely necessary if the
above is clear]: let Bf be the event that a coloring colors both vertices of f the same color. There are
kn (possibly improper) colorings, so the number of proper colorings is

kn −
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Clearly

∣∣∣⋃f∈E(G−e)Bf

∣∣∣ = kn−PG−e and
∣∣∣⋃f∈E(G)Bf

∣∣∣ = kn−PG by the definition of PG and of proper

colorings. The other two terms subtract the colorings in Be that are proper for every other edge. By
extending a coloring of G/e to be a coloring of G (where both vertices of e are given the color their
contracted vertex was given), we form a bijection between proper colorings of G/e and the set whose
cardinality is subtracted (colorings that are proper everywhere except e and improper at e). This gives
PG = PG−e − PG/e.

From the facts about PG−e and PG/e we got from the IH, this means that PG is a polynomial in k of
degree at most n. kn has coefficient 1− 0 = 1, and this also establishes that the degree is n. kn−1 has
degree −(||G|| − 1)− 1 = −||G||, so the induction step is complete.
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3, Diestel 5.19: Determine the class of all graphs G for which PG(k) = k(k − 1)n−1. (As in the
previous exercise, let n := |G|, and let PG denote the chromatic polynomial of G.)
Hint: A graph with n vertices is a tree if and only if it is connected and has n− 1 edges.

As the hint betrays, the class is trees.

We establish that trees have this polynomial by induction on the order, where the base case is a tree
with one vertex whose chromatic polynomial is clearly k. For the induction, given G a tree with n+ 1
vertices, we let v be a leaf of G with neighbor u. We have that PG−v = k(k − 1)n−1 by the induction
hypothesis. For each proper coloring of G− v, there is some color assigned to u, and so there are k− 1
colors not used at u that can be used at v. So, we can form a correspondence between the proper
colorings of G and the proper colorings of G− v, where k − 1 colorings in the first set are mapped to
each coloring in the second, to conclude PG = (k − 1)PG−v = k(k − 1)n.

In the reverse direction, we prove that if PG(k) = k(k−1)n−1 then G is connected, and has n−1 edges
(and therefore a tree by the hint). First, by algebra, the coefficient of kn−1 is −(n− 1), so G has n− 1
edges. Second, we prove that a graph with c components has k as a root with multiplicity at least c
(k(k − 1)n−1 therefore is connected, since it is factored and this shows that the multiplicity of k is 1).

All chromatic polynomials have k as a root of multiplicity at least 1 because we can choose a vertex v
and partition the colorings by the color of v. The classes of this partition have the same cardinality,
because there is a bijection between them by swapping the colors of two classes (color all blue vertices
red and all red vertices blue) so that v changes to the desired color. Thus k | PG.

For c > 1 let C1, . . . , Cc be the components of G. Clearly PG =
∏c

i=1 PCi by counting. Since k | Ci for
each Ci, k

c | PG, and so k has multiplicity at least c.
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