Q1. Let X and X' be minimal separators in G such that X meets (intersects non-trivially) at least two components of $G - X'$. Show that X' meets all the components of $G - X$, and that X meets all the components of $G - X'$.

Q2. Show the block graph of any connected graph is a tree.

Q3. Let G be a k-connected graph, and let xy be an edge of G. Show that G/xy is k-connected if and only if $G - \{x, y\}$ is $(k - 1)$-connected.

Q4. (i) Let e be an edge in a 2-connected graph $G \neq K^3$. Show that either $G - e$ or G/e is again 2-connected.

(ii) Does every 2-connected graph $G \neq K^3$ have an edge e such that G/e is still 2-connected?

Q5. Show that every transitive graph G with $\kappa(G) = 2$ is a cycle. Hint: Exercise 3.4 is useful.