More Counting 2 Ways

Prove this by counting two ways:

\[\sum_{i=1}^{n} i = \binom{n+1}{2} \]

Note that the right hand side simplifies to something we’ve seen before:

\[\binom{n+1}{2} = \frac{(n+1)!}{2!(n+1-2)!} = \frac{(n+1)(n)}{2} \]

Again, on exam, follow these steps to count a set in two ways:

1.) Choose easy side to count.
2.) Define set \(S \) you’re counting looking at that side.
 a. It can be “the set of \(k \) element subset of \([n]\)” for \(\binom{n}{k} \), or
 b. It can be “the set of ways to choose \(k \) XXX’s from the set of \(n \) XXX’s.”
3.) Count the easy side.
4.) Count the hard side. Partition \(S \) into \(S_i \) if necessary. In that case, invoke rule of sum at the end.
5.) Don’t need to prove that the partition is indeed a partition, but explain briefly in English.

Proof.

We will count the right hand side.

Let \(S \) be the set of 2 element subset of \([n+1]\).

By definition, \(|S| = \binom{n+1}{2} \).

Since there’s a summation, we’ll do partitioning. Since there are 2 elements in each set in \(S \), we have a choice to partition based on the smaller element or the larger element.

Let \(S_i \) be the set of 2 element subset of \([n+1]\) where the largest element in each set is \(i+1 \).

Clearly, since we’re choosing the largest elements and the largest element is in between 2 and \(n+1 \),

\[S_1, S_2, \ldots, S_n \]

partition \(S \). Furthermore, \(S_i \) can be formed as follows:

Step 1.) Pick the largest element.
Step 2.) Pick the smaller element (\(i \) choices).

Thus, \(|S_i| = \binom{i}{1} = i \)

And by rule of sum, \(|S| = \sum_{i=1}^{n} |S_i| = \sum_{i=1}^{n} i \).

Since LHS and RHS both count \(S \), they are equal.
3. Prove the following by counting 2 ways when \(q \) is an integer greater than 1. This is a geometric sum formula.

\[
\sum_{i=0}^{n-1} q^i = \frac{q^n - 1}{q - 1}
\]

\[
\Rightarrow (q-1) \sum_{i=0}^{n-1} q^i = q^n - 1
\]

\[
\Rightarrow 1 + (q-1) \sum_{i=0}^{n-1} q^i = q^n
\]

- Let \(S \) be the set of ways to assign \(q \) colors to \([n]\), where one of the colors is red.
- By \(n \) step process w/ each \(q \) choices, \(|S| = q^n = \text{RHS} \).

- Now, partition \(S \) into the following sets:

 \(S_B = \) the set of ways to assign \(q \) colors to \([n]\), such that all are colored red.

 \(S_{i,c} = \) the set of ways to assign \(q \) colors to \([n]\), such that the maximum non-red element is \(i+1 \) with color \(c \).

 To form \(S_{i,c} \):
 1) Color \(i+1 \)th element as \(c \), \(\rightarrow 1 \) way
 2) For all other \(i \) elements, \(\rightarrow q^i \) ways

 Then \(S_{i,c} \) where \(0 \leq i \leq n-1 \) and \(c \neq \text{red} \)
 and \(S_B \) partition \(S \).

Thus \(|S| = 1 + (q-1) \sum_{i=0}^{n-1} q^i \), so LHS counts \(S \).
4. Prove the following by counting 2 ways.

\[\sum_{k=0}^{n} \binom{x+k}{k} = \binom{x+n+1}{n} \]

Let \(S \) be the set of \(n \) element subset of \([x+n+1]\). Clearly, RHS counts this.

Let \(S_k \) be the set of \(n \) element subset of \([x+n+1]\) such that the smallest number that's not in the subset is \(n-k+1 \).

For example, \([1, 2, 3, 5, 6, 8, \ldots]\)

If this is an \(n \) element subset of \([x+n+1]\), since \(4 \) is the smallest number that's not in the subset, this will go to \(S_{n-3} \) because \(4 = n - k + 1 \)

\[\Rightarrow k = n - 3 \]

The smallest missing number possible is \(1 \), so \(1 \leq n - k + 1 \)

and the largest missing number possible is \(n+1 \) (because then \(\{1, \ldots, n\} \) is in it, which is \(n+1 \) element subset), so \(n+1 \leq n - k + 1 \)

\[\Rightarrow k \leq n \]

Thus \(S_0, \ldots, S_{n-k} \) partition \(S \), and \(S_k \) can be formed by

1) Put \(n-k \) elements in set

2) From \(\{n-k+2, \ldots, x+n+1\} \) choose \(k \) more elements,

Step (1) has 1 way and (2) has \(\binom{x+k}{k} \) ways. So \(|S| = \sum_{k=0}^{n} |S_k| = \sum_{k=0}^{n} \binom{x+k}{k} \) ·