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Physical Framework

Assumptions on Fluid and Particles

Fluid is inviscid and compressible

Only one type of particle in the fluid

Particles are uniform spheres with density ¢op and radius a
Fixed spatial domain Q C R3

System is at a fixed, constant temperature 6y > 0.

Fluid is described by density o(x, t) € [0,00) and velocity field
u(x, t) € R3.
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Physical Framework

Description of Particles

@ Particle distribution in the fluid is described by density
function

f(x,&,t) €[0,00)

where £ is the microscopic velocity fluctuation.
@ Particles subject to Brownian motion, leading to diffusion in &,
with diffusion constant
keo 67rua B k@o 9M
mp m,  mp2a2pp

where k is the Boltzmann constant and p the dynamic
viscosity of the fluid.
e Macroscopic particle density 1(x, t) given by

n(x,t) = | f(x ¢ t) dE. (1)
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Physical Framework

Coupling of Fluid and Particles

Coupling of the system is due to the friction between the particles
and the fluid following Stokes’ Law

Definition (Stokes' Law)

Consider a uniform, spherical particle of radius a. The friction
force exerted on a particle by the fluid is

F(x,&, t) = 6mpuafu(x; t) — ] ()

Thus, the force exerted on the fluid by the particles is

6mpa /R3 [€ —u(x, t)]f(x, &, t) d€

by Newton's Third Law.



Physical Framework

External Force—Physical Assumptions

Both fluid and particles are influenced by an external force with a
time independent potential ®(x).
@ Force exerted on a particle: —mpV,®.
@ Force exerted per unit volume on fluid: aorV,®.
e «a: dimensionless constant measuring ratio of external force's
strength on fluid and particles
e of: typical value of fluid mass per volume
@ Measures settling phenomena such as gravity, buoyancy, and
centrifugal forces.
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Physical Framework

Vlassov-Euler System

Oro + divye(ou) =0 (3)

1
9t (ou) + divk(ou ® u) + ?pr(@)
F

6mpa
OF

= —aoVxP +

/ (€ - u)f d¢ (4)
R3

atf+§.vxf—vx¢-v§f

232 dive [(5 —u)f + kevgf] (5)

We assume a pressure of the form p(9) = ko? where k > 0 and
v > 1



Dimensionless System

Unitless Parameters |

In order to find a macroscopic model, we transform (3)-(5) to a
unitless model with dimensionless parameters, and scale these
parameters, then take the appropriate limit.

@ Stokes settling time

m 20pa?
Te P Zop

B 6rua

@ Thermal speed

k6
Vi = 1| —2
mp
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Dimensionless System

Unitless Parameters I

@ We also define characteristic time T, length L, and velocity
Uu=L/T.

@ We define a pressure unit P and associate a velocity Vs to the
external potential .

Thus, the physical values in relation to the dimensionless
parameters are (' indicates unitless quantity)

t=T¢t x = Lx
£ = Veng’ o(LX', Tt') = o'(X', t')
u(Lx', Tt') = Ud'(X', t) p(Lx', Tty = Pp/ (X', t')

F(x', &, 1) = §ma® Vi F(LX', Vi, TH') &(Lx') = L 0/(X)
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Dimensionless System

Unitless Parameters IlI

We also define the unitless constants

- T —VYm 1 _ T — VYsT _Pr __P
B—Lvth_U7 e Ts? n_Vth'TS’ X =
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Dimensionless System

Unitless Vlassov-Euler System

Using the previous relations in (3)-(5) yields after dropping primes

Oro + divy(ou) =0 (6)

Ot(ou) + divy(ou @ u) + V,(xp(0))

— anevo + 2 [ (e —uwyrde ()
€ oF Jgs

Ot +BE-Vyf —nV, ®-Vf = édivé [(5 — ;u> f+ ng] (8)
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Free Energy

Dissipation and Stability Stationary Solutions

Pressure and Internal Energy

@ The enthalpy is defined as

ho) = /19 P(s) 4

S

and is in L] (0, 00).

@ The internal energy is defined as
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Free Energy

Dissipation and Stability Stationary Solutions

Free Energy

Assume that
op 1
— = — and n=§.
oF  B?
The free energies are
@ The fluid free energy

1
FF(o,u) :/Q2Q|U\2+X|_|(g)+ozﬁ2g¢ dx (9)
@ The particle free energy
2
}"p(f):// flnf—i-ﬁf—i—fcbdfdx (10)
Q Jr3 2
@ The total free energy
F(o,u,f) = Fe(o,u) + Fp(f) (11)
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Free Energy
Stationary Solutions

Dissipation and Stability

Energy Dissipation

Assuming the scaling above, we have the following dissipation.

d 1
d—t”g/Q/Ra

This result follows formally from integration by parts.

(€ - Bru)VF+ 2v,5\/?\2 d¢ dx < 0. (12)
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Free Energy

Dissipation and Stability Sty Selliiters

External Force—Mathematical Assumptions

exp(—®) € L1(Q), Pexp(—®) € LY(Q).
® € WH(Q) for bounded Q; ® € W1(Q) for unbounded Q.

loc
af2 is bounded below on €.

The sub-level sets of a® are bounded, that is
{xeQ|ad <k}

is bounded for any k € R.
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Free Energy

Dissipation and Stability Sty Selliiters

Stationary Solutions |

Provided the total fluid mass is conserved in time and finite, the
system (6)-(8) has a stationary solution (gs, us, fs) such that

o u(x)=0

@ The stationary particle density function is

o €112
(27)3/2

fs(Xa E) = Zpe

where

Zp = </Q/R3fod§dx> </Qe—¢(x) dx>_1.
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Free Energy

Dissipation and Stability Sty Selliiters

Stationary Solutions Il

@ The stationary fluid density is given by

os(x) =0 (ZF — a—6n¢( )>

where

e ([fons) (s

and o is the generalized inverse of h.
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Asymptotic Limits

Estimates |

Assuming that

// (1+y|n fo)l + '5’2+\¢y> d¢ dx

/Q 00 + ooluol? + [N(00)| + g0Bn|ad] dx

and

are both bounded, we can use the free energy inequality and the
hypotheses on ® to obtain the following uniform bounds
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Flow

Asymptotic Limits Bl

Estimates |l

F(1+ €2 + @] + | In f]) is bounded in L®(R*; L1(Q x R3))
0, |N(o)| and Bnola®| are bounded in L®(R*; L}(Q))

J/ou is bounded in L*(RT; L?(Q))

% [(f — ﬁ_lu) VF+ 2V5\/?] is bounded in

L2(RT x Q x R3).
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Asymptotic Limits

Expansions of Macroscopic Particle Quantities

We define the unitless first moment of f as
O RGO

and unitless second moment
P(x, t) = /Ra§®£ f(x,&, t) dE.

Using the uniform bounds, these quantities can be expanded as
J=un+ BveK

and
P=nl+62)Qu+eK

where the components of K and K are bounded in L2(RT; L1(Q)).



Flowing Regime

3 g Reg e
Asymptotic Limits Bubbling Regime

Flowing Regime Scaling

@ We are interested when the settling time scale is much smaller
than the observational time scale, that is

Ts< T

so € is small.
@ We are interested then in the limit ¢ — 0.

o We take 3% = of/op to be a constant and n = f3 a fixed
positive constant.

@ Thus, Vs < U = V.

@ ofF and pp are of the same order.
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Flowing Regime

Asymptotic Limits Bubbling Regime

Flowing Regime Vlassov-Euler System

Oro: + diVX(QEUE) =0 (13)

61‘(95“5) + diVx(qus ® us) + VX(XP(QE))
= 0oV + 5 [ (-u)fde (1)
Oife + ﬁ(g Vil = Vo fos)
= édi\@ [(5 - ;ug> fo + nge] (15)
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Flowing Regime

3 g Reg e
Asymptotic Limits Bubbling Regime

Macroscopic Limit of Flowing Regime

Assuming that the limits of the various unknown quantities and
their non-linear combinations involved in the system exist, the
limits 0, u, and n as € — 0 are

Oro + dive(ou) =0 (16)
d:l(0+ B 2n)u] + divi[(e + B7*n)u @ u]

+ Vi(xp(o) + 1) = —(afPo+n)Vy® (17)

0 + dive(nu) =0 (18)
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gime
Asymptotic Limits Bl (e

Bubbling Regime Scaling

@ Again, the settling time scale is much smaller than the
observational time scale, that is

Ts< T

so ¢ is small.

@ We are interested then in the limit ¢ — 0.

o Again, 32 = pf/op and n= 3, but 8 = ¢"/2 and
a = sgn(a)e.

@ Physically, Vs = U < Vyp,.
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Flowing Regime

Asymptotic Limits Bl (e

Bubbling Regime Vlassov-Euler System

Oro: + diVX(Qaus) =0 (19)

at(@sue) + diVX(QEUE ® us) + vX(Xp(QE))

— sgn(a). Vb + /R 3 (jg - ug) £d¢ (20)

Otz + —(6 Vit + V0 - ng)

g

= g din[(f - \/gus)fs + vﬁfe] (21)
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Flowing Regime

Asymptotic Limits Bl (e

Macroscopic Limit of Bubbling Regime

Assuming that the limits pass as ¢ — 0,
Oro + dive(ou) =0 (22)
Ot (ou) + divi(ou @ u) + Vi (xp(e) + 1)

= —(sgn(a)o+n)V.d (23)

O + dive(nu — NV P) = Ayn (24)
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ime

Bl Rt

Asymptotic Limits

Remarks

@ We assume that £, o-, and ¢ converge to f, o, and u in each
regime, as well as any non-linear terms converge. While we
have weak compactness for the sequences (), (o:), (u:), and
(/0zu:) from the energy inequality, this is not the case for
the non-linear terms.

@ Such rigor can be shown in the case of a viscous fluid.

@ Even in the case of no external force, the evolution of the fluid
still depends on the evolution of the particle density.
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