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Assumptions on Fluid and Particles

Fluid is inviscid and compressible

Only one type of particle in the fluid

Particles are uniform spheres with density %P and radius a

Fixed spatial domain Ω ⊆ R3

System is at a fixed, constant temperature θ0 > 0.

Fluid is described by density %(x , t) ∈ [0,∞) and velocity field
u(x , t) ∈ R3.
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Description of Particles

Particle distribution in the fluid is described by density
function

f (x , ξ, t) ∈ [0,∞)

where ξ is the microscopic velocity fluctuation.
Particles subject to Brownian motion, leading to diffusion in ξ,
with diffusion constant

kθ0

mp

6πµa

mp
=

kθ0

mp

9µ

2a2%P

where k is the Boltzmann constant and µ the dynamic
viscosity of the fluid.
Macroscopic particle density η(x , t) given by

η(x , t) :=

∫
R3

f (x , ξ, t) dξ. (1)
Joshua Ballew Fluid-Particle Mesoscopic to Macroscopic



Physical Framework
Dimensionless System

Dissipation and Stability
Asymptotic Limits

References

Coupling of Fluid and Particles

Coupling of the system is due to the friction between the particles
and the fluid following Stokes’ Law

Definition (Stokes’ Law)

Consider a uniform, spherical particle of radius a. The friction
force exerted on a particle by the fluid is

F (x , ξ, t) = 6πµa[u(x , t)− ξ] (2)

Thus, the force exerted on the fluid by the particles is

6πµa

∫
R3

[ξ − u(x , t)]f (x , ξ, t) dξ

by Newton’s Third Law.
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External Force–Physical Assumptions

Both fluid and particles are influenced by an external force with a
time independent potential Φ(x).

Force exerted on a particle: −mP∇xΦ.

Force exerted per unit volume on fluid: α%F∇xΦ.

α: dimensionless constant measuring ratio of external force’s
strength on fluid and particles
%F : typical value of fluid mass per volume

Measures settling phenomena such as gravity, buoyancy, and
centrifugal forces.
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Vlassov-Euler System

∂t%+ divx(%u) = 0 (3)

∂t(%u) + divx(%u⊗ u) +
1

%F
∇xp(%)

= −α%∇xΦ +
6πµa

%F

∫
R3

(ξ − u)f dξ (4)

∂t f + ξ · ∇x f −∇xΦ · ∇ξf

=
9µ

2a2%P
divξ

[
(ξ − u)f +

kθ0

mP
∇ξf

]
(5)

We assume a pressure of the form p(%) = κ%γ where κ > 0 and
γ > 1.
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Unitless Parameters I

In order to find a macroscopic model, we transform (3)-(5) to a
unitless model with dimensionless parameters, and scale these
parameters, then take the appropriate limit.

Stokes settling time

TS =
mP

6πµa
=

2%Pa
2

9µ

Thermal speed

Vth =

√
kθ0

mP
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Unitless Parameters II

We also define characteristic time T , length L, and velocity
U = L/T .

We define a pressure unit P and associate a velocity VS to the
external potential Φ.

Thus, the physical values in relation to the dimensionless
parameters are (’ indicates unitless quantity)

t = Tt ′ x = Lx ′

ξ = Vthξ′ %(Lx ′,Tt ′) = %′(x ′, t ′)
u(Lx ′,Tt ′) = Uu′(x ′, t) p(Lx ′,Tt ′) = Pp′(x ′, t ′)
f (x ′, ξ′, t ′) = 4

3πa
3V3

thf (Lx ′,Vthξ′,Tt ′) Φ(Lx ′) = VSL
TS Φ′(x ′)
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Unitless Parameters III

We also define the unitless constants

β = T
L Vth = Vth

U , 1
ε = T

TS , n = VST
VthTS , χ = PT

%FLU
= P

%FU2
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Unitless Vlassov-Euler System

Using the previous relations in (3)-(5) yields after dropping primes

∂t%+ divx(%u) = 0 (6)

∂t(%u) + divx(%u⊗ u) +∇x(χp(%))

= −αβn%∇xΦ +
1

ε

%P
%F

∫
R3

(βξ − u)f dξ (7)

∂t f +βξ·∇x f −n∇xΦ·∇ξf =
1

ε
divξ

[(
ξ − 1

β
u

)
f +∇ξf

]
(8)
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Free Energy
Stationary Solutions

Pressure and Internal Energy

The enthalpy is defined as

h(%) :=

∫ %

1

p′(s)

s
ds

and is in L1
loc(0,∞).

The internal energy is defined as

Π(%) :=

∫ %

0
h(s) ds
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Free Energy
Stationary Solutions

Free Energy

Assume that
%P
%F

=
1

β2
and n = β.

The free energies are

The fluid free energy

FF (%,u) =

∫
Ω

1

2
%|u|2 + χΠ(%) + αβ2%Φ dx (9)

The particle free energy

FP(f ) =

∫
Ω

∫
R3

f ln f +
|ξ|2

2
f + f Φ dξ dx (10)

The total free energy

F(%,u, f ) = FF (%,u) + FP(f ) (11)
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Free Energy
Stationary Solutions

Energy Dissipation

Theorem

Assuming the scaling above, we have the following dissipation.

d

dt
F +

1

ε

∫
Ω

∫
R3

∣∣∣(ξ − β−1u)
√
f + 2∇ξ

√
f
∣∣∣2 dξ dx ≤ 0. (12)

This result follows formally from integration by parts.
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Free Energy
Stationary Solutions

External Force–Mathematical Assumptions

exp(−Φ) ∈ L1(Ω), Φ exp(−Φ) ∈ L1(Ω).

Φ ∈W 1,1(Ω) for bounded Ω; Φ ∈W 1,1
loc (Ω) for unbounded Ω.

αΩ is bounded below on Ω.

The sub-level sets of αΦ are bounded, that is

{x ∈ Ω | αΦ ≤ k}

is bounded for any k ∈ R.
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Free Energy
Stationary Solutions

Stationary Solutions I

Provided the total fluid mass is conserved in time and finite, the
system (6)-(8) has a stationary solution (%s ,us , fs) such that

u(x) ≡ 0

The stationary particle density function is

fs(x , ξ) = ZPe
−Φ(x) e

−|ξ|2/2

(2π)3/2

where

ZP =

(∫
Ω

∫
R3

f0 dξ dx

)(∫
Ω
e−Φ(x) dx

)−1

.
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Free Energy
Stationary Solutions

Stationary Solutions II

The stationary fluid density is given by

%s(x) = σ

(
ZF −

αβn

χ
Φ(x)

)
where

ZF =

(∫
Ω
%0 dx

)(∫
Ω
e−Φ(x) dx

)−1

and σ is the generalized inverse of h.
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Flowing Regime
Bubbling Regime

Estimates I

Assuming that∫
Ω

∫
R3

f0

(
1 + |ln(f0)|+ |ξ|

2

2
+ |Φ|

)
dξ dx

and ∫
Ω
%0 + %0|u0|2 + |Π(%0)|+ %0βn|αΦ| dx

are both bounded, we can use the free energy inequality and the
hypotheses on Φ to obtain the following uniform bounds
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Flowing Regime
Bubbling Regime

Estimates II

f (1 + |ξ|2 + |Φ|+ | ln f |) is bounded in L∞(R+; L1(Ω× R3))

%, |Π(%)| and βn%|αΦ| are bounded in L∞(R+; L1(Ω))
√
%u is bounded in L∞(R+; L2(Ω))

1√
ε

[(
ξ − β−1u

)√
f + 2∇ξ

√
f
]

is bounded in

L2(R+ × Ω× R3).
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Flowing Regime
Bubbling Regime

Expansions of Macroscopic Particle Quantities

We define the unitless first moment of f as

J(x , t) = β

∫
R3

ξf (x , ξ, t) dξ

and unitless second moment

P(x , t) =

∫
R3

ξ ⊗ ξ f (x , ξ, t) dξ.

Using the uniform bounds, these quantities can be expanded as

J = uη + β
√
εK

and

P = ηI + β−2J⊗ u +
√
εK

where the components of K and K are bounded in L2(R+; L1(Ω)).
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Flowing Regime
Bubbling Regime

Flowing Regime Scaling

We are interested when the settling time scale is much smaller
than the observational time scale, that is

TS � T

so ε is small.

We are interested then in the limit ε→ 0.

We take β2 = %F/%P to be a constant and n = β a fixed
positive constant.

Thus, VS � U = Vth.

%F and %P are of the same order.
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Flowing Regime
Bubbling Regime

Flowing Regime Vlassov-Euler System

∂t%ε + divx(%εuε) = 0 (13)

∂t(%εuε) + divx(%εuε ⊗ uε) +∇x(χp(%ε))

= −αβ2%ε∇xΦ +
1

εβ2

∫
R3

(ξ − uε)fε dξ (14)

∂t fε + β(ξ · ∇x fε −∇xΦ · ∇ξfε)

=
1

ε
divξ

[(
ξ − 1

β
uε

)
fε +∇ξfε

]
(15)
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Flowing Regime
Bubbling Regime

Macroscopic Limit of Flowing Regime

Assuming that the limits of the various unknown quantities and
their non-linear combinations involved in the system exist, the
limits %, u, and η as ε→ 0 are

∂t%+ divx(%u) = 0 (16)

∂t [(%+ β−2η)u] + divx [(%+ β−2η)u⊗ u]

+∇x(χp(%) + η) = −(αβ2% + η)∇xΦ (17)

∂tη + divx(ηu) = 0 (18)
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Flowing Regime
Bubbling Regime

Bubbling Regime Scaling

Again, the settling time scale is much smaller than the
observational time scale, that is

TS � T

so ε is small.

We are interested then in the limit ε→ 0.

Again, β2 = %F/%P and n = β, but β = ε−1/2 and
α = sgn(α)ε.

Physically, VS = U � Vth.
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Flowing Regime
Bubbling Regime

Bubbling Regime Vlassov-Euler System

∂t%ε + divx(%εuε) = 0 (19)

∂t(%εuε) + divx(%εuε ⊗ uε) +∇x(χp(%ε))

= − sgn(α)%ε∇xΦ +

∫
R3

(
ξ√
ε
− uε

)
fε dξ (20)

∂t fε +
1√
ε

(ξ · ∇x fε +∇xΦ · ∇ξfε)

=
1

ε
divξ[(ξ −

√
εuε)fε +∇ξfε] (21)
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Flowing Regime
Bubbling Regime

Macroscopic Limit of Bubbling Regime

Assuming that the limits pass as ε→ 0,

∂t%+ divx(%u) = 0 (22)

∂t(%u) + divx(%u⊗ u) +∇x(χp(%) + η)

= −(sgn(α)% + η)∇xΦ (23)

∂tη + divx(ηu− η∇xΦ) = ∆xη (24)
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Flowing Regime
Bubbling Regime

Remarks

We assume that fε, %ε, and ε converge to f , %, and u in each
regime, as well as any non-linear terms converge. While we
have weak compactness for the sequences (fε), (%ε), (uε), and
(
√
%εuε) from the energy inequality, this is not the case for

the non-linear terms.

Such rigor can be shown in the case of a viscous fluid.

Even in the case of no external force, the evolution of the fluid
still depends on the evolution of the particle density.
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