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ABSTRACT. This article presents a general dimensionless scaling of the Navier-
Stokes-Smoluchowski system describing interactions between particles and a
compressible fluid. Two low Mach number limits are investigated. The first
limit is a low stratification limit for which the Froude number is scaled as the
square root of the Mach number; the second is a strong stratification limit
for which the Froude and Mach numbers are scaled the same. We see that
as the Mach number goes to zero in the low stratification case, the solutions
to the system converge in appropriate spaces to constant mass densities and
weakly to a velocity field satisfying the incompressibility condition. For the
strong stratification case, we see for an external force depending only on the
vertical coordinate that the solutions converge to densities depending only on
the vertical component and a velocity field satisfying the anelastic condition.
Finally, we investigate bounds and convergences for the strong stratification
case supporting the formal calculations.

1. Introduction. The state of fluid-particle-interaction flows is characterized by
the following macroscopic variables: the total mass density o(¢,x), the velocity
field u(¢, x), and the density of particles dispersed in the mixture 7(¢, ), which
depend on the Eulerian spatial coordinate z € Q C R3 and on time ¢ € (0,00). The
governing equations express the conservation of mass, the balance of momentum,
and the balance of particle densities often referred to as the Smoluchowski equation:

A0 + divy (ou) =0 (1.1)
D

9 (ou) + div, (ou ® u) + V, (pF@) +2 )

= uzu + AV, div,u — (n + Bo) V@ (1.2)

o +divy (n(u—(¢V,®)) — DA =0 (1.3)

where pp(0) = ag” for some a > 0, v > %, and B # 0. We also assume a bounded
C?¥ spatial domain Q. The fluid is also assumed to be Newtonian so that the stress
tensor is given by

S=p(Vyu+ quT) + Adiv,ull.
Also, the viscosity coefficients p and A, the drag coefficient ¢, and the dispersion
coefficient D are assumed to be constant, and ® is a given external potential that is

2000 Mathematics Subject Classification. Primary: 35Q30, 7T6N99; Secondary: 46E35.

Key words and phrases. Fluid-particle interaction, low Mach number, low stratification singular
limit, strong stratification singular limit, compressible and viscous fluid.

301



302 JOSHUA BALLEW

taken to be nonnegative. The system (1.1)-(1.3) is supplemented by the following
boundary and initial conditions:

u=DV,n-n+{nV,P -n=0o0n (0,7) x 90
0<0(0,z) =0 € L7(Q)
(ou)(0,z) = my € LY°(; R?)
0 <n(0,2) =no € L*(Q).
We define the energy
1 5 a . D
E):= [ zoju*+ ——=0" + —nlnn+ (Bo + n)Pdx(t) (1.8)
a2 -1 ¢
and require that
dE 2D
dt NG
In addition, we require that the spatial domain 2 and external potential ® obey
the following hypotheses, called the confinement hypotheses:

Definition 1.1. Let @ C R? be a C*" domain with v > 0 and ® : Q — R} with
infyeq @(x) = 0. (2, D) satisfies the Confinement Hypotheses (HC) if and only
if

2
+ [ u|Veu? + Adiv,ul® + Vo + nVe®| dz <0.
Q

o If Q is bounded, ® is bounded and Lipschitz continuous on €.

o If Q is unbounded, ® € Wllo’zc (Q), e~ */2 € L'(Q) and

A @ (2)| < 1|V P(2)] < ea®(x)
for |x| greater than some large R.

In [4] it is shown using an artificial pressure and time-discretization approxi-
mation that a renormalized weak solution exists. In [3], a weak-strong uniqueness
result is shown on the NSS system; that is, if there is a weak solution of a certain
regularity class, the the weak solution is unique.

The rest of the paper is dedicated to examining certain approximations to the
compressible NSS system in the form of singular limits for bounded spatial domains
Q. In particular, we look at conditions for which the speed of the fluid flow is small
compared to the speed of sound in the fluid, also known as the low Mach number
case. Under a low stratification condition of the scaling of the system, the solutions
converge to a solution of the mathematically simpler incompressible fluid model as
the Mach number approaches zero. In the strong stratification case, the solutions
will converge to functions obeying the anelastic condition, if we assume that the
external force depends only on the vertical component of position, physically realized
for buoyancy and gravity near the surface of the earth or other similar body. Both
of these problems involve using bounds from the energy inequality for the systems
to provide estimates that allow us to show the convergence of the solutions. These
techniques are motivated by the work in [5, 6, 7, §].

2. Dimensionless Scaling. For each parameter « (time, length, mass, density,
pressure, etc.), we define a reference value ay.o¢ and then define the dimesionless
value
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By using the chain rule and basic differentiation properties, the NSS system in
terms of the dimensionless parameters and values becomes (with the prime marks
omitted)

Srd;o + div,(ou) =0 (2.9)
1 D
Srd,(ou) + div,(ou ® u) + @Vm (ag”/ + PCCU>
1 . 1
= %(quu + AV, div,u) — ﬁ(ﬂg + Dcen)V, @ (2.10)
Sroyn + div, (nu) — Zadiv, ((nV,;®) — DaDA,n =0 (2.11)

with the scaled energy inequality
d Ma? a Dn Ma?
Sr— [ —olul2 4+ — 0" +Pc—LInn+ — + Dcn)®dx
5 | P+~ + Pe ing + 5 (G0 -+ Den)

2 [Van? Za® 2
+ / PcDaD?*——— + 2ZaDV (1) - Vo ® + —(n|V,®|*dz
Q n Da

a2
+ /Q %S(Vzu) :Veudx <0

with the unitless coefficients defined in the following table.

Sri— Lref Ma:— Uref Re:= QrefurefLref
Ureftref \/PFye;/ Oref Piref
Fr:— Upef T — Creffref Da:— Dref
\/ Lreffref Uref L""efu"'ef
Pc:= PPres Dc:= et
pFref Oref

Table 2.1: Definitions of the Dimensionless Parameters

3. Low Stratification Limit. The scaled low stratification system we consider
for each fixed € > 0 is

Oroc + divg(go-.u:) =0 (3.12)
D
52[8t(95115) + divx(gsus & 115)] +V, <QQ3 + €775>
= 2 (pAgu, + AV diveu,) — e(Bo. +n.) V@ 3.13)
O + divy(neue) — ediv, ((nV,P) — DA,n. =0 3.14)
d 52 2 a ~ DnE
= a YellUe 41 71 € £ (5 (I)
G | FeheP e+ Pt e(B + n)0da
2 |V,T,775|2 2 2
+ | D*—— +2eDV,n. - V@ + e°(n: |V, P|*dx
Q (Ne
+ / e2S(Veu.) : Vyuedr <0. (3.15)
Q

To rigorously derive the limit for the low stratification case, we begin by noting that
from the results of [4], for each € > 0, we have solutions {o., u., 7.} in the following
sense:
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Definition 3.1. We say that {o.,u.,n.} is a renormalized weak solution to the
scaled low stratification NSS system if and only if

e 0. > 0 and u. form a renormalized solution of the scaled continuity equation,
ie.,

T .
/ / B(0:)0vp + B(oo)ue - Vi — b(oe )diveucpdedt
0o Jo

- | Blove(o. )as (316)

where b € L® N C[0,00), B(o) := B(1) + [£ %2 dz.
e The scaled momentum balance holds in the sense of distribution.
e 7. > 0 is a weak solution of the scaled Smoluchowski equation.
e The scaled energy inequality (3.15) is satisfied.

We next define the low stratification target system.

Definition 3.2. {0, @, 7V} solve the low stratification target system if and only
if
div,u = 0 weakly on (0,T) x €,

T
/ /ﬁw?tv—i-gfu@ﬁzvmvdxdt
0 Ja

T
= / / (uVa— (Br+ s)V,®) - vdadt — / ou - v(0,-)dz,
o Ja Q
for any divergence-free text function v and
1 D
——— |(Bo+N)P+ —s
ayg' ! [(ﬂg et ]
weakly where ¢ and 77 are uniform fluid and particle densities, respectively, with the
same total masses as the initial data.

T =

We are now in a position to state the main theorem of this section.

Theorem 3.3. Let (Q,P) satisfy the confinement hypothesis and for each € > 0,
assume {0e, Us, M} 95 a solution of the low stratification system in the sense of
Definition 3.1. Assume the initial data can be expressed as follows:

QE(07 ) = QE,O = §+ 519533)7 uE(()? ) = uE,O; and 775(0» ) = 775,0 = ﬁ + 5772,18

where 0,7 are the spatially uniform densities on 2. Assume also that as ¢ — 0,

1 1 — 1 1
Qi(% - QE) )7 uE,O - 1"’0777273 — 7]((] )

weakly-+ in L>=(Q) or L= (Q2;R3) as the case may be. Then up to a subsequence
and letting q := min{~y, 2},
0= = in C([0, T}; L' (Q)) N L>(0, T; L(2))
n. — 7 in L*(0,T; L*(52))
u. — @ weakly in L*(0,T; WH2(Q; R3))
and _
le) = % — oW weakly- « in L=(0,T; LI(Q))

nt) = ? — M weakly in L*(0,T; L*(2))

where {0, w,nM} solve the target system mentioned previously.
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Proof. For the proof, the reader may consult [2]. O

4. Strong Stratification Limit. The formal calculations for the strong stratifi-
cation limit as ¢ — 0 follow the same procedure as for the low stratification limit.
We use the following scaling: Ma is taken to be a small parameter € > 0, Za and
Da are taken to be e~ !, Fr is taken to be ¢, and other parameters are taken to be
of order 1. We also assume that ® = g3 where g is a constant (gravity /buoyancy).
Thus, the scaled NSS system becomes

at@e + divw(@eua) =0 (417)
. D
52[at(gsus) + dlvw(gsus & uz—:)] + Vg (a«Qz + CT]E)
= 2 (pAyu. + AV, diveu) — (Bo. + 1)V, ® (4.18)
e [0me + divy(noue)] — div, ((n-V,®) — DA,n. =0 (4.19)
d [ ¢? a D
5& Jo ?Qshlslz + - 19;’ + % Inn. + (598 + %)‘I’dx
v 2
+5/ £28(V,u,) - qugdx—k/ DY | fenov,®| dz <o0. (4.20)
Q Q Vv Cns
Now, assuming {o., u., 7.} have the following expansions
[ee]
0- =56+ <ol
i=1
0 . .
ne =i+ Yy en?
i=1
© . .
u, =u+ Z cul”
i=1
we substitue into (4.17)-(4.20) and formally obtain the target system
_ D dj
M=
d
L = —Bas
s [ag”] = —Bgo
div,(611) = 0

30,0 + dive (50 © &) + VoIl = pAu it + AV, dived — (BQ(2) n n@)) V..
For the strong stratification scaling, we have the following weak formulation:

Definition 4.1. We say that {o.,u.,n.} form a renormalized weak solution to the
scaled strong stratification NSS system if and only if

e 9. > 0 and u, form a renormalized solution of the scaled continuity equation,
i.e.,

T
/ / B(0:)0rp + B(o:)ue - Voo — b(o:)divyucpdxdt
0o Jo

—— [ Blowe(o. s (4:21)

where b€ L 1 C[0,00), B(o) := B(1) + [}’ %7 d=.
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e The scaled momentum balance holds in the sense of distributions
e 7. > 0 is a weak solution of the scaled Smoluchowski equation.
e The scaled energy inequality (4.20) is satisfied.

Note that for this scaling, we assume that ® = gx3, where x3 is the vertical
coordinate, and g is a constant greater than zero. We also define the target system

Definition 4.2. {3, 1,7, 0®),n®} solve the strong stratification target system if
and only if:

/ / ou-Vypdedt =0 (4.22)
for all ¢ € C((0,T) x ),
. D dp
d
i ("] = —Bgd (4.24)

with the conditions

/ /§ﬁ~w+§ﬁ®ﬁzvmwdwdt
o Ja

T
= / / uVuV,w — (,89(2) + 7](2)> V. - wdadt (4.25)
0o Ja
for all w € CF((0,T) x Q;R?) such that div,w = 0.

Much like for the low stratification limit, many of the bounds and convergences
used in the analysis arise from the free energies defined as

~ a
EF(Q: Q) = i

a
~y—1
ot —

a ’Y .
1 (0— @)7 T po—

D D o D_.
Ep(n,7) := fnlnn - ?(77 —i)(Ing+1) - annn,

and the resulting inequality formed from these and the energy inequality:

/ S0 Nl + 25 (B (00, 8) + B (e, )] da(T)

// Vue) Vugdxdt+

</ ~oo0lup|? + [EF(QO» )+EP("707 )]d
Q2

DV 1. ?
V ’7 = /O deds

(4.26)
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Next, we define the essential and residual sets:
Oess = {(0.1) € R?|3/2 < 0 < 25,71/2 <1 < 277}
ess = {(2,1) € (0,T) x Qf(0c(t,2), n:(t, ) € Oess}
Mies == ((0,T") x ) — Magg

Thus, by using (4.26), assuming appropriate bounds on the initial data, we obtain
that

{Vocuc}oso € L(0,T; L (O R?))
ll[oc — Olessl Lo (0,1:22(02)) < e2c
[ — Aess |l Lo (0,13 12(0)) < %¢
{uc}es0 €5 L0, T; W, *(Q; R?))

DV,
‘ e |0V, D <&
Ve L2(0,T5L2(Q;R?))

{ [QEF;_QLSS}DO €, L>=(0,T; L*(2))

(5],)_ e rmmnvo

and since the measure of the residual set goes as 2 for each fixed t, we have
I[ee]resl L o,1;7 () < €3¢
{oeuc}eno € L0, T3 L2/4HH (R?)) N L/ 9+ (s R?))
where ¢ := min{2,¢}. Thus, we have the existence of (1), n) € L>(0,T; L*(Q))
and @ € L*(0,T; Wy *(€;R3)) such that up to subsequences
0= — 0 strongly in L*°(0,7; L4(2))
ne — 7 strongly in L°(0,T; L*(£2))
u. — u weakly in L2(0,T; Wy (9 R?))
Qe — O R
€
Ne — 17N
€
Now, we are in a position to state the main result of this section:

oM weakly- % in L>(0,T; L(2))

— oM weakly- % in L>(0,T; L*(2)).

Theorem 4.3. Let (Q,®) satisfy the confinement hypothesis and for each € > 0,
assume {0z, Us, N} solves the scaled strong stratification system in the sense of
Definition 4.1. Assume the initial data can be expressed as follows:

0:(0,") = 0c0=0+ 89&)}, u:(0,7) = ue 0, and n=(0, ) =ne0 =1+ 87723.

where 9,7 are the densities defined by (4.24)-(4.23). Assume also thal as e — 0,

1 1 ~ 1 1
Qi()) - Qé )7 uE,O - 1"’0777270) — 77(() )

weakly-+ in L>=(Q) or L>®°(Q;R?) as the case may be. Then up to a subsequence
and letting q :== min{~, 2},

0- = ¢ in C([0,T]; L' () N L>(0,T; L(%))
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ne =i in L*(0,T; L*(9))
u. — @ weakly in L*(0, T; WH2(Q; R?))

where {0, w, 7} solve the target system (4.22)-(4.25).

Proof. The result follows from the bounds listed above and analysis similar to that
done in Section 3 and in [8]. For the details, see [1] O
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