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Abstract. The existence of measure-valued solutions obeying an entropy
balance for the one-dimensional Euler-Smoluchowski system for particles dis-

persed in a compressible fluid is shown. These measure-valued solutions are

derived from a Young measure arising from solutions to the corresponding
Navier-Stokes-Smoluchowski system for particles dispersed in a viscous, com-

pressible fluid which are shown to exist by using bounds uniform in the viscosity

coefficient. The Young measure is then shown to reduce to a delta mass for
adiabatic constants greater than one.

1. Introduction

Fluid-particle interaction phenomena arise is several areas of science, includ-
ing sedimentation analysis, biotechnology, medicine, waste-water recycling, mineral
processing, atmospheric sciences, and combustion of fuel droplets [2, 3, 8, 9, 23, 24].
The friction forces the particles and fluid exert mutually on each other lead to a
coupling to the fluid and kinetic equations. The models considered in this paper
assume that the friction force follows Stokes’ Law and is proportional to the rel-
ative velocity, that is, the fluctuations of the microscopic velocity. The cloud of
particles is described by a distribution f which is the solution to a Vlasov-Fokker-
Planck equation in the viscous case. The particle density η is the integral over
the microscopic velocity of f . For more detail, the interested reader is referred
to [6, 10, 21].

The one-dimensional Euler-Smoluchowski system for compressible, inviscid fluids
on the spatial domain R is

(1.1a) ∂t%+ ∂x(%u) = 0

(1.1b) ∂t(%u) + ∂x
(
%u2 + a%γ + η

)
= −(β%+ η)Φx

(1.1c) ∂tη + ∂x (ηu− ηΦx) = ∂xxη.
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The corresponding Navier-Stokes-Smoluchowski system for compressible, viscous
fluids is

(1.2a) ∂t%+ ∂x(%u) = 0

(1.2b) ∂t(%u) + ∂x(%u2 + a%γ + η) = ε∂xxu− (β%+ η)Φx

(1.2c) ∂tη + ∂x(ηu− ηΦx) = ∂xxη.

In (1.1)-(1.2), the quantities %, u, and η are the unknown fluid density, fluid
velocity, and macroscopic particle density, respectively, while γ > 1 is the adiabatic
constant and a is a constant greater than zero, which in this paper is taken to

be (γ−1)2

4γ by choosing appropriate physical units. The external potential Φ is a

non-negative function on R subject to the following confinement hypothesis.

Definition 1.1 (Confinement Hypothesis). The external potential Φ : R 7→ R+

and the constant β are said to satisfy the confinement hypothesis if and only if

• β > 0,
• Φ is locally Lipschitz continuous,
• Φ is bounded above,
• e−Φ/2 ∈ L1(R), and
• Φx is compactly supported.

Remark 1.1. It is noted that the conditions in Definition 1.1 are stronger than the
conditions in [7, 10], particularly the compact support of Φx. This is necessary
because of the imposition of a positive background fluid density.

As will be seen in Section 3, Definition 1.1 ensures that a lower bound exists
on the η ln η term in the energy, which enables the use of an energy functional for
obtaining uniform estimates for solutions to (1.2).

The solutions of (1.2) depend on the viscosity coefficient ε, but for notational
simplicity, there will be no ε subscripts on solutions to (1.2) when there is no chance
of confusion. It is assumed that ε ∈ (0, ε0] for some ε0 > 0.

For (1.1) and (1.2), the boundary conditions at x = ±∞ are

(1.3a) u(x, t)→ 0

(1.3b) η(x, t)Φ(x) + ∂xη(x, t)→ 0

(1.3c) %(x, t)→ %,

where % is a positive constant are imposed. Further, it is assumed that

(1.4a)

∫
R
η0 dx = Mp <∞

(1.4b)

∫
R
%0 − % dx = Mf <∞.
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Consequences of (1.3) and (1.4) include conservation of particle mass (see [7, 10])
and the conservation of the relative fluid mass∫

R
%− % dx.

Existence and uniqueness results for (1.2) and (1.1) have been shown in pre-
vious work. In [10], existence of weak solutions obeying an energy inequality to
the three-dimensional verison of (1.2) are shown along with asymptotic long-time
convergence of these solutions to a steady-state solution. Existence of weakly dissi-
pative solutions obeying relative entropy inequality to the three-dimensional version
of (1.2) along with a weak-strong uniqueness result is shown in [7]. In [6], existence
of local-in-time smooth solutions to (1.1) in three space dimensions is shown for
appropriately regular initial data.

In the current paper, the issue of vanishing viscosity limits for solutions to (1.2) is
investigated. This investigation follows those for the Navier-Stokes systems in [12,
13]. The main result of the current paper is as follows.

Theorem 1.1. Let (%ε, uε, ηε) be a sequence of smooth solutions to (1.2) with initial
data (1.4) and conditions at x = ±∞ (1.3) on R × (0, T ) for T > 0 for ε ∈ (0, ε0]
for some ε0 > 0. Assume further that

√
εηε%ε is bounded in L2((0, T )×R) uniformly

in ε and ηε
%ε

is uniformly bounded in ε on R × (0, T ). Assume also the following

conditions on the initial data.

(1) There is a positive constant E0 <∞ such that the initial relative mechanical
energy satisfies

(1.5)

∫
R

1

2
%0|u0|2 + e∗(%0, %) + η0 ln η0 + η0Φ(x) dx ≤ E0

where e∗(%, %)
def
= a

γ−1%
γ− a

γ−1%
γ− aγ

γ−1%
γ−1%+ aγ

γ−1%
γ is the relative specific

internal energy of the fluid.
(2) There is a positive constant E1 <∞ such that

(1.6) ε2

∫
R

|∂x%0|2

%3
0

dx ≤ E1.

(3) There is a positive constant E2 <∞ such that

(1.7) ε

∫
R

η2
0

%2
0

dx ≤ E2.

Then there is a subsequence (not relabeled) (%ε, uε, ηε) that converges almost every-
where to an entropy solution (%, u, η) to (1.1) obeying (1.3) and (1.4).

Remark 1.2. The bounds on ηε
%ε

, while not explicitly shown to hold, are related

to the scaling of the physical constants in the bubbling regime, which is under
consideration in this paper. The interested reader is referred to [11] for more details.

Theorem 1.1 is analogous to the main results in [12] and [13] for the one-
dimensional Navier-Stokes and Euler systems on the real line and the correspond-
ing three-dimensional problem with radial symmetry, respectively. However, while
Chen and Perepelitsa in [12, 13] are able to easily use the variety of entropy/entropy-
flux pairs for the Euler system of two unknowns, the system (1.1) under considera-
tion here has three unknowns, limiting the entropy/entropy-flux pair to that from
the mechanical energy. Thus, definition of the measure-valued solutions is modified
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from that used in [12, 13], as will be seen. The structure of the rest of the paper,
which is dedicated to the proof of Theorem 1.1 is as follows.

(1) In Section 2, background on entropy/entropy-flux pairs is developed. In
addition, results for entropy/entropy-flux pairs based on an entropy kernel
for a system of two equations in two unknowns are stated.

(2) Section 3 is dedicated to the proofs of several estimates on (%ε, uε, ηε) which
are independent of ε. These estimates are crucial in allowing passage to
the limits in the following sections.

(3) Sections 4 and 5 develop the compensated compactness framework neces-
sary for the existence of the measure-valued solutions.

(4) In Section 6, the convergence of solutions to (1.2) to measure-valued solu-
tions is shown. In addition, the commutator relation key to showing the
reduction of the Young measure to a delta mass is calculated.

(5) Lastly, in Section 7, the Young measures constructed are shown to reduce
to delta masses, allowing for the completion of the proof of Theorem 1.1.

2. Entropies and Entropy/Entropy Flux Pairs

This section collects some well-known results for entropy/entropy-flux pairs (see
[14], for example) and some bounds on a family of entropy/entropy-flux pairs that
will be used for the Euler-Smoluchowski system (1.1). For this section, if the the
continuity and momentum equations (1.1a)-(1.1b) are considered with the variable
η as a fixed function of space and time, the resulting system

(2.1) ∂tU + ∂xF (U) =

[
0

−∂xη − (β%+ η)Φx

]
where U = [%,m = %u]T and F (U) =

[
m, m

2

% + p(%)
]T

is hyperbolic. It can be

shown (see [12, Section 2] and [14]) that the eigenvalues for this system are

(2.2) λ± = u± θ%θ

and the Riemann invariants are

(2.3) w± = u∓ %θ

where θ
def
= γ−1

2 . Since λ+ − λ− = 2θ%θ, the system is strictly hyperbolic for % > 0
and loses the its strict hyperbolicity at the vacuum state % = 0.

A pair of functions (H,Q) is called an entropy-entropy flux pair for (2.1) if

(2.4) DQ(U) = (DF (U))
T
DH(U)

where D is the total differentiation operator in the components of U and

DF
def
=

[
∂%F1 ∂mF1

∂%F2 ∂mF2

]
is the Jacobian of F in the coordinates (%,m).

One example of an entropy/entropy-flux pair is the mechanical energy H∗ and
mechanical energy flux Q∗ in the variables % and u given by

H∗(%,m) =
1

2

m2

%
+

a

γ − 1
%γ

Q∗(%,m) =
1

2

m3

%2
+

aγ

γ − 1
%γu.
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It is also noted that

E(%, u, η)
def
=

1

2
%u2 +

a

γ − 1
%γ + η ln η + (β%+ η)Φ

is an entropy to (1.1) (see [5, 6, 7], for example).
Considering an entropy H as a function of % and u, H will obey the integrability

condition (see [14, Chapter 16.8])

(2.6) ∂%%H = θ2%γ−3∂uuH.

It is clear that (2.6) is singular across the axis % = 0, and the nature of the singu-
larity depends upon γ. Also of interest in light of (2.6) are weak entropies of (2.1)
that vanish for % = 0. These entropies are given by

(2.7a) Hψ(%, %u)
def
=

∫
R
χ(%; s− u)ψ(s) ds

(2.7b) Qψ(%, %u)
def
=

∫
R

(θs+ (1− θ)u)χ(%; s− u)ψ(s) ds

for any continuous function ψ, where χ is the weak entropy kernel determined by

(2.8a) ∂%%χ−
p′(%)

%2
∂uuχ = 0

(2.8b) χ(0, u; s) = 0

(2.8c) ∂%χ(0, u; s) = δu=s

where δu=s is the delta mass concentrated at u = s. Thus, for the γ-law case under
consideration in this paper, the weak entropy kernel is given by (see [12, Section 2]
and [14, Chapter 16.8])

(2.9) χ(%; s− u) =
[
%2θ − (s− u)2

]λ
+

where λ
def
= 3−γ

2(γ−1) , so clearly λ > − 1
2 . Thus, for ψ ∈ C(R),

(2.10) Hψ(%, %u) =

∫
R

[
%2θ − (s− u)2

]λ
+
ψ(s) ds = %

∫ 1

−1

ψ(u+ s%θ)(1− s2)λ ds

and

(2.11) Qψ(%, %u) =

∫
R

(θs+ (1− θ)u)
[
%2θ − (s− u)2

]λ
+
ψ(s) ds

= %

∫ 1

−1

(u + θ%θs)ψ(u + s%θ)(1 − s2)λ ds.

For ψ ∈ Cc(R), the following estimates hold (see [12, Lemma 2.1]).

Lemma 2.1. Let ψ ∈ Cc(R) such that suppψ ⊂ [a, b]. Then the supports of Hψ

and Qψ are contained in the set{
(%,m) = (%, %u) : %θ + u ≥ a, u− %θ ≤ b

}
.

In addition, there exists a constant Cψ > 0 depending only on ψ such that for any
(%, u) ∈ [0,∞)× R,
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• if γ ∈ (1, 3],

(2.12)
∣∣Hψ(%,m)

∣∣+
∣∣Qψ(%,m)

∣∣ ≤ Cψ;

• if γ > 3,

(2.13)
∣∣Hψ(%,m)

∣∣ ≤ Cψ%
and

(2.14)
∣∣Qψ(%,m)

∣∣ ≤ Cψ max{1, %θ};

• if ψ ∈ C2
c (R), then

(2.15)
∣∣∂mHψ(%,m)

∣∣+
∣∣%∂mmHψ(%,m)

∣∣ ≤ Cψ;

• if ψ ∈ C2
c (R), then

(2.16)
∣∣∂muHψ(%, %u)

∣∣+
∣∣%1−θ∂m%(%, %u)

∣∣ ≤ Cψ.
The proof uses the same calculations using (2.10) and (2.11) as in the proof of

Lemma 2.1 in [12] and is omitted here.

Taking ψ(s) = ψ#(s)
def
= 1

2s|s|, the following lemma (from [12] and [20]) gives

estimates on H# def
= Hψ# and Q# def

= Qψ# .

Lemma 2.2. For ψ#, (2.10) and (2.11) give the following estimates:

(2.17a) |H#(%, %u)| ≤ C(%u2 + %γ)

(2.17b) |∂mH#(%, %u)| ≤ C(|u|+ %θ)

(2.17c) |∂mmH#(%, %u)| ≤ C%−1

and considering ∂mH
# as a function of % and u,

(2.18a) |∂umH#(%, %u)| ≤ C

(2.18b) |∂%mH#(%, %u)| ≤ C%θ−1

where C is a positive constant depending only on γ.

The proof involves straight-forward estimates using (2.10) and is omitted here.
Finally, using the work of Lions, Perthame, and Tadmor [20, Lemma 4], it can

be shown that there is some constant C dependent only upon γ such that

(2.19) Q#(%, u) ≥ C(%3θ+1 + %γ |u|+ %θ+1|u|2 + %|u|3).

3. Uniform Estimates

This section of uniform estimates begins with an energy estimate that allows
for various terms to be estimated independent of ε. Throughout this section, the
subscript ε on the solutions to (1.2) is omitted. Before these estimates are proven,
a result following from the confinement hypothesis is needed. This lemma controls
the negative part of the η ln η term, which controls the other quantities in the energy
estimate to follow.
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Lemma 3.1. Let Φ satisfy the conditions in Definition 1.1 and let η be any non-
negative function in L1(R). Then

(3.1)

∫
R
η ln− η dx ≤

1

2

∫
R
ηΦ dx+

1

e

∫
R
e−Φ/2 dx

where ln− η is the negative part of ln η.

This lemma is Lemma 3.6 in [10] and is proven there and in [15]. As such, the
proof is omitted here.

Proposition 3.1. For smooth solutions %, u, and η of (1.2) on R× [0, T ] for some
T > 0, there exists some positive constant C independent of ε such that

(3.2) sup
t∈[0,T ]

E[%, u, η](t)+

∫ T

0

∫
R
ε|∂xu|2 dx dt+

∫ T

0

∫
R

∣∣∣∣∂xη√η +
√
ηΦx

∣∣∣∣2 dx dt ≤ C
where

(3.3) E[%, u, η](t)

def
=

∫
R

1

2
%(x, t)|u(x, t)|2 + e∗(%, %) + η(x, t) ln η(x, t) + η(x, t)Φ(x) dx.

Proof. Let %, u, and η be solutions to (1.2) for some fixed ε. Noting that the
integrand in (3.3) is just the relative entropy H with respect to the end states %, 0:

(3.4) H(%, u|%, 0)
def
= H∗(%, u)−H∗(%, 0)−DH∗(%, 0) ·

[
%− %
%u

]
,

it is clear that

(3.5)
d

dt
E(%, u, η) =∫
R
∂t(H

∗(%, u) + η ln η + ηΦ)− ∂tH∗(%, 0)−DH∗(%, 0) ·
[
∂t%

∂t(%u)

]
dx.

Clearly, the second term in the integral of the right side of (3.5) is zero, and noting
that

(3.6) −
∫
R
DH∗(%, 0) ·

[
∂t%

∂t(%u)

]
dx =

∫
R
%u∂xDH

∗(%, 0) dx = 0,

then

(3.7)
d

dt
E(%, u, η) =

d

dt

∫
R

1

2
%|u|2 +

a

γ − 1
%γ + η ln η + ηΦ dx.

Multiplying (1.2b) by u, noting that

(3.8) ∂x(a%γ)u = ∂t

(
a

γ − 1
%γ
)

+ ∂x

(
aγ

γ − 1
%γu

)
by using (1.2a), and deriving from (1.2c) that

(3.9) (∂xη + ηΦx)u

= ∂t(η ln η+ηΦ)+∂x[(ln η+1+Φ)(ηu−ηΦx−∂xη)]+

(
∂xη√
η

+
√
ηΦx

)2

,
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the entropy equation

(3.10) ∂t

(
1

2
%|u|2 +

a

γ − 1
%γ + η ln η + ηΦ

)
+ ∂x

(
1

2
%u3 +

aγ

γ − 1
%γu+ [(ln η + 1 + Φ)(ηu− ηΦx − ∂xη)]

)
− ε∂x (u∂xu) + ε|∂xu|2 +

(
∂xη√
η

+
√
ηΦx

)2

= −β%uΦx

is obtained. Integrating over R and using the boundary conditions (1.3),

(3.11)
d

dt

∫
R

1

2
%|u|2 +

a

γ − 1
%γ + η ln η + β%Φ + ηΦ dx

+ ε

∫
R
|∂xu|2 dx+

∫
R

(
∂xη√
η

+
√
ηΦx

)2

dx = −
∫
R
β%uΦx dx.

To bound the term on the right side of (3.11), it is noted by Young’s inequality
that

(3.12)

∣∣∣∣∫
R
β%uΦx dx

∣∣∣∣ ≤ 1

2

∫
%|u|2 dx+

1

2
β

∫
R
|Φx|% dx.

Using that fact that Φx is compactly supported, that % ≤ C(1 + e∗(%, %)) (see [12,
13, 17, 18], among others), and the control of the negative part of η ln η from the
confinement hypotheses,

(3.13)
d

dt
E(%, u, η) + ε

∫
R
|∂xu|2 dx+

∫
R

(
∂xη√
η

+
√
ηΦx

)2

dx ≤ C + CE.

Gronwall’s inequality completes the proof. �

Lemma 3.1 in conjunction with Proposition 3.1 leads immediately to the follow-
ing corollary, which allows for control of the η ln η term in H(%, u|%, 0).

Corollary 3.1. Let Φ satisfy the conditions in Definition 1.1. For any non-negative
η in L1(R), if∫

R
η ln η + ηΦ dx ≤ C

for some C > 0, then η ln η ∈ L1(R) and there exists some constant D > 0 depend-
ing on C and Φ such that∫

R
η ln+ η dx ≤ D

and ∫
R
ηΦ dx ≤ D.

Proposition 3.1 also gives the following estimate on η, which follows from control
of ∫ T

0

∫
R

∣∣∣∣∂xη√η +
√
ηΦx

∣∣∣∣2 dx dt

and standard Sobolev inequalities.
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Corollary 3.2. Let %, u, and η solve (1.2). Then for each T > 0, it holds that η ∈
L2(0, T ;C0,l(R)) for some l ∈

(
0, 1

2

)
. Moreover, this norm is bounded independently

of ε.

Next, in the spirit of [12], integrability of ∂x% is considered.

Lemma 3.2. Let %, u, η be smooth solutions to (1.2), (1.3). Assume also that

(3.14)

∥∥∥∥√εη%
∥∥∥∥
L2(0,T ;L2(R))

≤ C

where C is independent of ε. Then if

ε2

∫
R

|∂x%0|2

%3
0

dx < C1 and ε

∫
R

η0

%0
dx ≤ C2

for some C1, C2 > 0, there is some finite constant C > 0 independent of ε such that

(3.15) ε2

∫
R

|∂x%(x, T )|2

(%(x, T ))3
dx+ 2ε

∫
R

η(x, T )

%(x, T )
dx

+ 2aγε

∫ T

0

∫
R
%γ−3|∂x%|2 dx dt ≤ C.

Proof. This proposition is similar to [12, Lemma 3.2] and the proof here is follows
the same spirit as the proof there. Letting v := 1

% , (1.2a) can be written as

(3.16) vt + uvx = vux

which becomes after differentiating in x,

(3.17) vxt + (uvx)x = (vux)x.

Multiplying by 2%vx and performing some straight-forward calculations yields

(3.18)
(
%|vx|2

)
t

+
(
%u|vx|2

)
x

= 2vxuxx.

Solving for uxx in (1.2b) and substituting, the right side of (3.18) becomes

(3.19) 2vxuxx =
2

ε
vx[(a%γ)x + (%u)t + (%u2)x + ηx + (β%+ η)Φx]

=
2

ε
vx(a%γ)x +

2

ε
(%uvx)t +

2

ε
[%u(vxu)x − %u(vux)x + vx(%|u|2)x]

+
2

ε
[vx(ηx + (β% + η)Φx)]

A simple calculation shows

(3.20) vx(a%γ)x = −aγ%γ−3|%x|2.

Integrating %u(vxu)x − %u(vux)x + vx(%|u|2)x over R yields, using integration by
parts

(3.21)

∫
R
%u(vxu)x − %u(vux)x + vx(%|u|2)x dx =

∫
R
|∂xu|2 dx.
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Integrating (3.18) over R× [0, T ], using (3.19)-(3.21), and multiplying by ε2 yield

(3.22) ε2

∫
R

|∂x%(x, T )|2

(%(x, T ))3
dx+ 2aγε

∫ T

0

∫
R
%γ−3|∂x%|2 dx dt

= −2ε

∫
R

∂x%(x, T )u(x, T )

%(x, T )
dx+2ε

∫ T

0

∫
R
|∂xu|2 dx dt+2ε

∫
R

(∂x%0)u0

%0
dx

+ ε2

∫
R

|∂x%0|2

%3
0

dx+ 2ε

∫ T

0

∫
R
∂x

(
1

%

)
[∂xη + (β%+ η)Φx] dx dt.

It is clear using Young’s inequality and (3.2) that

(3.23)

∣∣∣∣2ε∫
R

∂x%(x, T )u(x, T )

%(x, T )
dx

∣∣∣∣
≤ ε2

4

∫
R

|∂x%(x, T )|2

(%(x, T ))3
dx+ 4

∫
R
%(x, T )|u(x, T )|2 dx

≤ ε2

4

∫
R

|∂x%(x, T )|2

(%(x, T ))3
dx + C,

and similarly,

(3.24)

∣∣∣∣2ε∫
R

∂x%0u0

%0
dx

∣∣∣∣ ≤ ε2

4

∫
R

|∂x%0|2

%3
0

dx+ 4

∫
R
%0|u0|2 dx

≤ ε2

4

∫
R

|∂x%0|2

%3
0

dx + C.

Using Young’s inequality, the bound % ≤ C(1 + e∗(%, %)), the compact support
of Φx, and (3.2) it is clear that

(3.25)

∣∣∣∣∣
∫ T

0

∫
R
ε∂x

(
1

%

)
β%φx dx dt

∣∣∣∣∣ ≤ C + Cε2

∫ T

0

∫
R

|∂x%|2

%3
dx dt.

Next, control of

−2ε

∫ T

0

∫
R
∂x

(
1

%

)
(∂xη + ηΦx) dx dt

is investigated. By integration by parts, this becomes

(3.26) 2ε

∫ T

0

∫
R

1

%
∂x(∂xη + ηΦx) dx = 2ε

∫ T

0

∫
R

1

%
(∂tη + ∂x(ηu)) dx

= 2ε

∫
R

η(x, T )

%(x, T )
dx− 2ε

∫
R

η0

%0
dx− 2ε

∫ T

0

∫
R

η

%
∂xu dx dt

where (3.16) has been employed to obtain the last equality. It is left to control the
last integral above. Using Young’s inequality and (3.14),

(3.27)

∣∣∣∣∣2ε
∫ T

0

∫
R

η

%
∂xu dx dt

∣∣∣∣∣ ≤ ε
∫ T

0

∫
R

η2

%2
dx dt+ ε

∫ T

0

∫
R
|∂xu|2 dx dt

≤ Cε

∫ T

0

∫
R

η2

%2
dx dt + C ≤ C

with the penultimate inequality following from (3.2).
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�

Next, higher integrability of the fluid pressure is investigated

Lemma 3.3. For smooth solutions to (1.2) with E0 <∞ independent of ε, for any
compact subset K of R and for each T > 0, there is some constant C = C(K,E0, T )
independent of ε such that

(3.28)

∫ T

0

∫
K

%(x, t)γ+1 dx dt ≤ C.

Proof. This proof follows the spirit of the proof in [12, Lemma 3.3]. Let ω ∈ C∞c (R)
such that ω(x) ∈ [0, 1] for any x ∈ R. Multiplying (1.2b) by ω and integrating over
(−∞, x) yields

(3.29) %u2ω + p(%)ω = ε∂xuω − ∂t
∫ x

−∞
%uω dy +

∫ x

−∞
(%u2 + p(%)− ε∂xu)ωx dy

− ηω +

∫ x

−∞
ηωx − (β% + η)Φxω dy.

Multiplying this by %ω and using (1.2a) gives

(3.30) p(%)%ω2 = −%2u2ω2 + ε%∂xuω
2 − ∂t

(
%ω

∫ x

−∞
%uω dy

)
− ∂x

(
%uω

∫ x

−∞
%uω dy

)
+ %uωx

∫ x

−∞
%uω dy

+%ω

∫ x

−∞
(%u2+p(%)−ε∂xu)ωx dy−η%ω2+%ω

∫ x

−∞
ηωx−(β%+η)Φxω dy.

Integrating (3.30) over [0, T ]× R yields

(3.31)

∫ T

0

∫
R
%p(%)ω2 dx dt

= ε

∫ T

0

∫
R
%∂xuω

2 dx dt

−
∫
R
%(x, t)ω(x)

(∫ x

−∞
%(y, t)u(y, t)ω(y) dy

)
dx dt

+

∫
R
%0ω

(∫ x

−∞
%0u0ω dy

)
dx dt + r1(T ) + r2(T )

where

r1(T ) =

∫ T

0

∫
R
%ω

(∫ x

−∞
(%u2 + p(%)− ε∂xu)ωx dy

)
dx dt

+

∫ T

0

∫
R
%uωx

(∫ x

−∞
%uω dy

)
dx dt
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and

r2(T ) =

∫ T

0

∫
R
%ω

(∫ x

−∞
ηωx − (β%+ η)Φxω dy

)
dx dt

−
∫ T

0

∫
R
η%ω2 dx dt.

Noting that %2ω2 ≤ %2 ≤ C(1 + %γ+1) since γ > 1, Young’s inequality yields

(3.32) ε

∫ T

0

∫
R
%∂xuω

2 dx dt ≤ ε2

δ

∫ T

0

∫
R
|∂xu|2 dx dt+ δ

∫ T

0

∫
R
%2ω4 dx dt

≤ ε0

δ
ε

∫ T

0

∫
R
|∂xu|2 dx dt+ Cδ

∫ T

0

∫
R
(1 + %γ+1)ω2 dx dt

≤ C

δ
+ Cωδ + Cδ

∫ T ∫
R
%γ+1ω2 dx dt.

Noting that by Hölder’s inequality and the the bound % ≤ C(1 + e∗(%, %))∣∣∣∣∫ x

−∞
%uω dy

∣∣∣∣ ≤ ∫
K′
|%u| dy

≤
(∫

K′
% dy

) 1
2
(∫

K′
%u2 dy

) 1
2

≤ C

where K ′
def
= supp(ω) ∩ (−∞, x), the estimate

(3.33)

∫
R
%(x, t)ω(x)

(∫ x

−∞
%uω dy

)
dx ≤ C

holds for any t ∈ [0, T ], using the compact support of ω. By similar arguments,
r1(T ) and the first integral of r2(T ) are bounded by some C, and the second integral
in r2(T ) is non-negative, so combining (3.31)-(3.33) and taking δ small enough
complete the proof. �

Next, (2.19) is used to help prove the following estimate.

Lemma 3.4. Let %0 and u0 be such that, in addition to the conditions in Proposi-
tion 3.1 and Lemma 3.2,

(3.34)

∫
R
%0u0 dx ≤M0 <∞

where M0 is some constant independent of ε. Also assume that

η

%
≤ C

for some constant C independent of ε for any (x, t) ∈ R × [0, T ]. Then for any
compact subset K of R and T > 0, there is a constant independent of ε such that

(3.35)

∫ T

0

∫
K

%|u|3 + %γ+θ dx dt ≤ C.
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Proof. Multiplying (1.2a) by ∂%H
#, (1.2b) by ∂mH

#, and adding these equations
together yields

(3.36) ∂tH
#(%,m) + ∂xQ

#(%,m) = −∂mH#(%,m)[∂xη − (β%+ η)Φx]

+ ε∂x(∂mH
#(%,m)∂xu)− ε∂muH#(%,m)(∂xu)2 − ε∂m%H#(%,m).

Integrating over (0, T )× (−∞, x) gives

(3.37)

∫ x

−∞
H#(%(y, T ),m(y, T ))−H#(%0(y),m0(y)) dy

+

∫ T

0

Q#(%(x, t),m(x, t)) dt

= −
∫ T

0

∫ x

−∞
∂mH

#(%,m)∂xη dy dt

−
∫ T

0

∫ x

−∞
∂mH

#(%,m)(β%+ η)Φx dy dt

+ ε

∫ T

0

∂mH
#(%(x, t),m(x, t))∂xu(x, t) dt

− ε
∫ T

0

∫ x

−∞
∂m%H

#(%,m)∂x% · ∂xu dy dt

− ε
∫ T

0

∫ x

−∞
∂muH

#(%,m)|∂xu|2 dy dt + Q,

where Q
def
= Q#(%, 0)T . It follows from Proposition 3.1 and Lemma 2.2 that

(3.38)

∣∣∣∣∣ε
∫ T

0

∫ x

−∞
∂muH

#(%,m)|∂xu|2 dy dt

∣∣∣∣∣ ≤ C.
Using Young’s inequality and Lemma 2.2,

(3.39)

∣∣∣∣∣ε
∫ T

0

∫ x

−∞
∂m%H

#(%,m)∂x%∂xu dy dt

∣∣∣∣∣
≤ Cε

∫ T

0

∫
R
%γ−3|∂x%|2 + |∂xu|2 dx dt,

which is bounded by a constant using Proposition 3.1 and Lemma 3.2. Using
Lemma 2.2 and Young’s inequality,

(3.40)

∣∣∣∣∣ε
∫ T

0

∂mH
#∂xu dt

∣∣∣∣∣ ≤ Cε
∫ T

0

|u||∂xu|+ %θ|∂xu| dt

≤ Cε

∫ T

0

|u|2 + %γ−1 + |∂xu|2 dt.
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Integrating (3.37) over the compact set K ⊂ R and using the bounds (3.38)-(3.40)
and using the lower bound for Q# from Lemma 2.2 yields

(3.41)

∫ T

0

∫
K

%|u|3 + %γ+θ dx dt ≤
∫ T

0

∫
K

Q# dx dt

≤ −
∫
K

∫ x

−∞
H#(%(y, T ),m(y, T ))−H#(%0(y),m0(y)) dy dx

−
∫ T

0

∫
K

∫ x

−∞
∂mH

#(%,m)[β%Φx + (∂xη + ηΦx)] dy dx dt

+ Cε

∫ T

0

∫
K

|u|2 + %γ−1 + |∂xu|2 dx dt + CK

where CK is a constant depending on the compact set K.
Invoking Lemma 2.2,

(3.42)

∣∣∣∣∫
K

∫ x

−∞
H#(%(y, T ),m(y, T ))−H#(%0(y),m0(y)) dy dx

∣∣∣∣ ≤ CK .
Using Proposition 3.1 and Lemma 3.2,

(3.43) Cε

∫ T

0

∫
K

%γ−1 + |∂xu|2 dx dt ≤ CK .

To handle the |u|2 term in the last integral in (3.41), it is noted that the set

B(t)
def
=

{
x ∈ R : %(x, t) ≤ %

2

}
has measure

(3.44) |B(t)| ≤ C(t)

e∗
(
%
2 , %
)

by using Proposition 3.1 to obtain

(3.45)

∫
%(x,t)≤%/2

e∗(%, %) dx ≤ C(t)

for some non-decreasing function C(t) > 0. For any interval [a, b] ⊂ K such that

b− a = 2C(t)
e∗(%/2,%) , there is some measurable A(t) ⊂ (a, b) such that

|A(t)| ≤ C(t)

e∗
(
%
2 , %
) .

Defining uA(t) to be the average value of u(x, t) on the set A, it is clear that for
any x ∈ [a, b] that

(3.46) |u(x, t)| ≤ |uA(t)|+
∫
K

|∂xu| dx.

Using a simple Hölder’s inequality argument and Proposition 3.1 yields that

|uA(t)| ≤ CK ,
so

(3.47) ε

∫ T

0

∫
K

|u|2 dx dt ≤ CK .
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To control the ∂mH
#(%,m)β%Φx term of the second integral on the right side

of (3.41), let K ′ = (−∞, x) ∩ supp Φx. Then using Lemma 2.2,

(3.48)

∣∣∣∣∣
∫ T

0

∫
K

∫ x

−∞
∂mH

#(%,m)β%Φx dy dx dt

∣∣∣∣∣
≤ C

∫ T

0

∫
K

∫
K′
%|u|+ %(γ+1)/2 dy dx dt

≤ C

∫ T

0

∫
K

∫
K′
%+ %|u|2 + 1 + %γ+1 dy dx dt ≤ CK

using Lemma 3.3 and the techniques therein, and by Proposition 3.1.
Now, it is left to bound the term

−
∫ T

0

∫
K

∫ x

−∞
∂mH

#(%,m)[∂xη + ηΦx] dy dx dt.

This value is bounded by

(3.49) C

∫ T

0

∫
R

(|u|+ %θ)
√
%

√
η

%

∣∣∣∣∂xη√η +
√
ηΦx

∣∣∣∣ dx dt
≤ C

∫ T

0

∫
R
%|u|2 + e∗(%, %) +

η

%

∣∣∣∣∂xη√η +
√
ηΦx

∣∣∣∣2 dx dt ≤ C.

the last inequality following immediately from Proposition 3.1 and that

η

%
≤ C

for some positive constant C independent of ε. �

4. Compactness of Weak Entopy Measures

Next, the H−1 compactness of weak entropy dissipation measures for (1.2) is
considered using the estimates from the previous section. The entropies considered
are those induced by functions ψ ∈ C2

c (R) in the sense of (2.10) and (2.11).

Proposition 4.1. Fix ψ ∈ C2
c (R) and let Hψ and Qψ be as defined in (2.10)

and (2.11), respectively. For each fixed ε ∈ (0, ε0], let (%ε, uε, ηε) solve (1.2). Then
the sequence of entropy dissipation measures

(4.1)
{
∂tH

ψ(%ε, uε) + ∂xQ
ψ(%ε, uε)

}
ε∈(0,ε0]

is contained in a compact subset of H−1
loc ([0,∞)× R).

Proof. For clarity of notation, the subscripts of %ε, uε, and ηε are omitted. Mul-
tiplying (1.2a) by ∂%H

ψ(%,m) and (1.2b) by ∂mH
ψ(%,m) and adding the results

together gives

(4.2) ∂tH
ψ + ∂xQ

ψ

= −∂mHψ∂xη − ∂mHψ(β%+ η)Φx + ε∂mH
ψ∂xxu

= −∂mHψ(∂xη + ηΦx)− β∂mHψ%Φx + ε∂x
(
∂mH

ψ∂xu
)

− ε∂muHψ|∂xu|2 − ε∂m%Hψ∂x%∂xu.



16 J. BALLEW

Using Young’s inequality, Corollary 3.2, Proposition 3.1 and Lemma 2.1,

(4.3)

∣∣∣∣∣
∫ T

0

∫
R
∂mH

ψ(∂x + ηΦx) dx dt

∣∣∣∣∣
≤ Cψ

∫ T

0

∫
R
η +

∣∣∣∣ ∂x√η +
√
ηΦx

∣∣∣∣ dx dt ≤ Cψ.

Therefore, {∂mHψ(∂xη+ ηΦx)}ε∈(0,ε0] is uniformly bounded in ε in L1([0, T ]×R),

so it is compact in W−1,q1
loc ([0,∞)× R) for q1 ∈ (1, 2).

Using the bound % ≤ C(1 + e∗(%, %)) and the bound on ∂mH
ψ ≤ Cψ, it is clear

using the compact support and bounds of Φx and using Proposition 3.1 that

(4.4)
∥∥β∂mHψ%Φx

∥∥
L1([0,T ]×R)

≤ Cψ,

so
{
β∂mH

ψ%Φx
}
ε∈(0,ε0]

is compact in W−1,q1
loc ([0,∞) × R) for any q1 ∈ (1, 2). By

Lemma 2.1, Proposition 3.1, Young’s Inequality, and Lemma 3.2,

(4.5) ε

∫ T

0

∫
R
∂muH

ψ|∂xu|2 + ∂m%∂x%∂xu dx dt

≤ εCψ
∫ T

0

∫
R
|∂xu|2 + %θ−1∂x%∂xu dx dt

≤ Cψ + εCψ

∫ T

0

∫
R
%γ−3|∂x%|2 + |∂xu|2 dx dt ≤ Cψ.

Thus, {
−ε∂muHψ|∂xu|2 − ε∂m%Hψ∂x%∂xu

}
ε∈(0,ε0]

is uniformly bounded in ε in L1([0, T ]×R), which means it is contained in a compact

subset of W−1,q1
loc ([0,∞)× R) for any q1 ∈ (1, 2).

By Lemma 2.1,
∣∣∂mHψ(%,m)

∣∣ ≤ Cψ, so using Proposition 3.1,

(4.6) ε2

∫ T

0

∫
R

∣∣∂mHψ
∣∣2 |∂xu|2 dx dt ≤ Cψε→ 0,

which means ε∂mH
ψ∂xu → 0 in L2([0, T ] × R). Therefore, ∂x

(
ε∂mH

ψ∂xu
)
→ 0

in W−1,2([0, T ] × R), and in particular, in W−1,q1
loc ([0,∞) × R) for any q1 ∈ (1, 2).

From (4.2) and combining the results from (4.3)-(4.6), it is clear that

(4.7)
{
∂tH

ψ + ∂xQ
ψ
}
ε∈(0,ε0]

is contained in a compact set in W−1,q1
loc ([0,∞)× R) for any q1 ∈ (1, 2).

For γ ∈ (1, 3], Lemma 2.1 gives that Hψ and Qψ are bounded by Cψ%. Fixing a
compact set K ⊂ R, Lemma 3.3 makes it clear that

(4.8)
{∣∣Hψ

∣∣+
∣∣Qψ∣∣}

ε∈(0,ε0]

is bounded in ε in Lγ+1([0, T ]×K). Thus

∂tH
ψ + ∂xQ

ψ

is uniformly bounded in W−1,γ+1([0,∞)×K) in ε. �
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5. Young Measure

To start this section, a somewhat classical definition of Young measure is given
(see [16]).

Definition 5.1. Let {fε} be a bounded sequence in L∞(Ω;Rn) where Ω is a domain
in Rm. Then there exists a subsequence (not relabeled) {fε} and a probability
measure νy for almost every y ∈ Ω on Rn such that for each φ ∈ C(Rn), φ(fε)
converges to

∫
Ω
φ(y) dνy weakly-∗ in L∞(Ω). The measures νy are called the Young

measures generated by {fε}.

The existence of these Young measures is a fairly classical result at this point.
For a proof, see [16, Theorem 11].

Remark 5.1. At this point onward to avoid confusion, (%ε, uε, ηε) represent solutions
to (1.2) and (%, u, η) are the limits as ε→ 0.

In this section, the Young measures associated with the sequence of solutions
(%ε, uε, ηε) of (1.2) are considered. Specifically, νx,t is a Young measure corre-
sponding to the sequence (%ε, uε) from the sequence of solutions to (1.2). The
Young measures are derived from the fluid density and fluid velocity and not with
respect to the particle density due to the well-known difficulties in developing en-
tropies for systems of more than two unknowns. Following the techniques in [19]
which are used in [12, Section 5], define the space

H def
= {(%, u) : % > 0}

and letH be the compactification of H with C(H) isometrically isomorphic to C(H),
the set of all φ ∈ C(H) such that φ(0, u) is constant and the function (%, u) 7→
lims→∞ φ(s%, su) is a continuous function on the intersection of H and S1.

In light of the above spaces, the Young measures considered in the current work
will obey the following definition from [1], which uses the work in [4, 22].

Definition 5.2 (Young Measure). Let (%ε, uε) be a sequence of functions from
R×(0,∞) to H. The Young measure is the measure νx,t ∈ L∞w (R×(0,∞); Prob(H))

such there is a subsequence (not relabeled) (%ε, uε) such that for all φ ∈ C(H),

(5.1) φ(%ε(x, t), uε(x, t))→
∫
H
φ(%, u) dνx,t(%, u)

weakly-∗ in L∞(R×(0,∞)). The sequence (%ε, uε) converges to (%, u) : R×(0,∞)→
H if and only if νx,t = δ(%(x,t),m(x,t)) for almost all (x, t).

The following propositions extend the class of test functions for the Young mea-
sure νx,t to a set larger than C(H). The first is proven using the bounds from
Lemma 3.4 and the Lebesgue dominated convergence theorem and follows from the
proof from [12, Proposition 5.1(i)].

Proposition 5.1. For the Young measure νx,t,

(5.2)

∫
H
%γ+1 + %|u|3 dνx,t ∈ L1

loc(R× (0,∞)).

Next, the class of test functions is expanded as follows.

Proposition 5.2. Let φ : (0,∞)× R 7→ R such that

(1) φ ∈ C(H) and φ ≡ 0 on ∂H,
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(2) there is some a > 0 such that

suppφ ⊂
{

(%, u) : %θ + u ≥ −a and u− %θ ≤ a
}
,

and
(3) |φ(%, u)| ≤ %κ(γ+1) for some κ ∈

(
0, 1

2

)
.

Then φ is integrable over H with respect to the measure νx,t and

(5.3) φ(%ε, uε)→
∫
H
φ(%, u) dνx,t

weakly in L1
loc((0,∞)× R).

Remark 5.2. The condition on κ above differs from that in [12, Proposition 5.1(ii)]
in order that Lemma 5.1 can be proven. The corresponding claim in the proof
of [12, Proposition 5.1(ii)] does not go through for κ close to one.

The following lemma is used in the proof of Proposition 5.2.

Lemma 5.1. Let K be a compact subset of R and let ωk(%, u) be a non-negative,
smooth function such that ωk(%, u) = 1 on the set{

(%, u) : %θ ∈
[

1

k
, k

]
, |u| ≤ k

}
and such that ωk(%, u) = 0 outside the set{

(%, u) : %θ ∈
[

1

2k
, 2k

]
, |u| ≤ 2k

}
.

Then for φ meeting the hypotheses of Proposition 5.2,

(5.4) lim
k→∞

∫
K×[0,T ]

∫
H

(φωk)(%ε, uε) dνx,t dx dt =

∫
K×[0,T ]

∫
H
φ(%ε, uε) dνx,t dx dt.

Moreover, this convergence is uniform in ε.

Remark 5.3. This is the claim in the proof of Proposition 5.2 in [12]. A clearer
presentation of its proof is presented here.

Proof. Let k1 < k2. It is clear that ωk1 − ωk2 = 0 for

(%, u) ∈
([

1

k1
, k1

]
× [−k1, k1]

)
∪
([

1

2k2
, 2k2

]
× [−2k2, 2k2]

)c
and

sup
0≤%θ≤k−1

1

|φ(%, u)| ≤ k−κ(γ+1)/θ
1

def
= ck1 ,

which goes to zero as k1 →∞.
For

(%, u) ∈ suppφ ∩
{

1

k1
≤ %θ ≤ k1, |u| ≤ k1

}c
,

either %θ ≤ k−1
1 or %θ ≥ k1 − a provided k1 − a ≥ k−1

1 .
Fixing α > 0, Young’s inequality shows that for % such that %θ ≥ k1 − a,

(5.5) |φ(%, u)| ≤ C(κ, α) + α%γ+1
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for any α > 0. Then,

(5.6)

∣∣∣∣∣
∫

[0,T ]×K
(φ(ωk1 − ωk2)(%ε, uε) dx dt

∣∣∣∣∣
≤ T |K|ck1 + C(κ, α)|([0, T ]×K) ∩ {(x, t) : %θε > k1 − a})|

+ α

∫
[0,T ]×K

%γ+1
ε dx dt.

Using Chebyshev’s inequality and Lemma 3.3,

(5.7)

∣∣∣∣∣
∫

[0,T ]×K
(φ(ωk1 − ωk2)(%ε, uε) dx dt

∣∣∣∣∣ ≤ T |K|ck1 + C(κ, α)k
−(γ+1)/θ
1 + Cα

→ Cα

as k1 →∞. Since α > 0 is arbitrary, this proves the lemma. �

Proof of Proposition 5.2. Let K be a compact subset of R. Then using Proposi-
tion 5.1 and the dominated convergence theorem, for almost all (x, t) ∈ K × [0, T ],

(5.8) lim
k→∞

∫
H
φωk dνx,t =

∫
H
φ dνx,t

and

(5.9) lim
k→∞

∫
K×[0,T ]

∫
H
φωk dνx,t =

∫
K×[0,T ]

∫
H
φ dνx,t.

Using dominated convergence, the definition of Young measure, and (5.9),

(5.10) lim
k→∞

lim
ε→0

∫
K×[0,T ]

(φωk)(%ε, uε) dx dt =

∫
K×[0,T ]

∫
H
φ dνx,t dx dt.

Using Lemma 5.1 and dominated convergence arguments,

(5.11) lim
ε→0

∫
[0,T ]×K

φ(%ε, uε) dx dt

= lim
ε→0

lim
k→∞

∫
[0,T ]×K

(φωk)(%ε, uε) dx dt

= lim
k→∞

lim
ε→0

∫
[0,T ]×K

(φωk)(%ε, uε) dx dt

= lim
k→∞

∫
[0,T ]×K

∫
H
φωk dνx,t =

∫
[0,T ]×K

∫
H
φω dνx,t,

proving the proposition. �

Next, it is remarked that the Young measure νx,t is concentrated in H and the
vacuum state % = 0. This follows from the definition of the Young measure, the
definition of H, and the uniform bounds from Section 3.

Lemma 5.2. Consider νx,t as an element of (C(H))∗. Then

(5.12) νx,t[H \ (H ∪ {% = 0})] = 0.
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6. Measure-Valued Solutions

In this section, the convergence of solutions (%ε, uε, ηε) of (1.2) to measure-valued
solutions (%, u, η) to (1.1) is investigated. This section begins with the definition of
measure-valued solutions for (1.1).

Definition 6.1 (Measure-Valued Solutions). Let {%ε, uε, ηε}ε∈(0,ε0] be a sequence
of solutions to (1.2). Then νx,t is a measure-valued solution to (1.1) if and only if
ηε → η weakly and for any function of s ψ ∈ {±1, ±s, s2},

(6.1) ∂t〈νx,t, Hψ〉+ ∂x〈νx,t, Qψ〉 ≤ −〈νx,t, ∂mHψ[∂xη + (β%+ η)Φx]〉
and

(6.2) 〈νx,t, Hψ〉(·, 0) = Hψ(%0,m0)

in the sense of distributions.

This definition and the work above lead to the following proposition.

Proposition 6.1. The Young measure νx,t derived from the solutions {%ε, uε, ηε}
of (1.2) is a measure-valued solution to (1.1).

Proof. Using Hψ and Qψ in (4.2), the equations (2.10) and (2.11) yield

(6.3) ∂tH
ψ(%ε,mε) + ∂xQ

ψ(%ε,mε)

= ε∂x
[
∂mH

ψ(%ε, uε)∂xuε
]
− ∂mHψ(∂xη + ηΦx)− β∂mHψ%Φx

−
∫ 1

−1

ψ′′
(
mε

%ε
+ s%θε

)
(1− s2)λ

[
ε|∂xuε|2 + εθ%θεs∂x%ε∂xuε

]
ds.

Since ψ ∈ {±1, ±s, s2}, ψ′′(s) ≥ 0 for s ∈ [−1, 1], which means (6.1) holds after
taking ε→ 0 in (6.3). �

The next step is to explore the commutator relation for Hψ and Qψ. For ease
of notation, define the entropy kernel as

χ(ξ)
def
=
[
%2θ − (u− ξ)2

]λ
+

and the define for any function f(%, u) such that

|f(%, u)| ≤ %|u|3 + %γ+max{1,θ}

the weak limit of f(%ε, uε) as

f(%ε, uε) ⇀ f(%, u)(x, t)
def
= 〈νx,t, f(%, u)〉.

Using the uniform bounds from Section 3 and the div-curl lemma, for any C2
c

functions φ and ψ, HψQφ−HφQψ is weakly continuous with respect to the weakly
convergent sequence (%ε, uε) ⇀ (%, u) and

(6.4) Hψ(%ε, uε)Q
φ(%ε, uε)−Hφ(%ε, uε)Q

ψ(%ε, uε)

⇀ Hψ(%, u)Qφ(%, u) −Hφ(%, u)Qψ(%, u)

which yields the Tartar-Murat commutator relation

(6.5) Hψ(%, u)Qφ(%, u)−Hφ(%, u)Qψ(%, u)

= Hψ(%, u)Qφ(%, u) −Hφ(%, u)Qψ(%, u).
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Using the definitions of the entropy/entropy-flux pairs based off the arbitrary con-
tinuous functions ψ and φ, the above becomes

(6.6)

∫
R2

ψ(s1)φ(s2)χ(s1)[θs2 + (1− θ)u]χ(s2) ds1 ds2

−
∫
R2

ψ(s2)φ(s1)χ(s1)[θs1 + (1− θ)u]χ(s2) ds1 ds2

=

∫
R
ψ(s1)χ(s1) ds1

∫
R
φ(s2)[θs2 + (1− θ)u]χ(s2) ds2

−
∫
R
ψ(s2)χ(s2) ds2

∫
R
φ(s1)[θs1 + (1− θ)u]χ(s1) ds1

=

∫
R2

ψ(s1)φ(s2)χ(s1) [θs2 + (1− θ)u]χ(s2) ds1 ds2

−
∫
R2

ψ(s2)φ(s1)χ(s2) [θs1 + (1− θ)u]χ(s1) ds1 ds2.

Letting φ ≡ ψ and noting that ψ is arbitrary, it is clear that

(6.7) χ(s1) [θs2 + (1− θ)u]χ(s2)− χ(s2) [θs1 + (1− θ)u]χ(s1)

= θ(s2 − s1)χ(s1)χ(s2)

which yields the following result.

Lemma 6.1. The measure-valued solution νx,t of (1.1) obeys the following com-
mutator relation: for almost all s1, s2 ∈ R,

(6.8) θ(s2 − s1)[χ(s1)χ(s2)− χ(s1) χ(s2)]

= (1 − θ)[uχ(s2) χ(s1) − uχ(s1) χ(s2)].

7. Reduction of the Measure-Valued Solutions

In this section, the measure-valued solution νx,t is a delta measure in the coor-
dinates (%, u) almost everywhere for (x, t). The argument is broken into two cases:
γ > 3 and γ ∈ (1, 3]. It follows the compensated compactness framework from [12],
also used in [13] and relies upon results on the commutator of the entropy kernel
developed in [20].

7.1. Reduction Large Adiabatic Constant. First, the case where γ > 3 is
considered. To begin with, the following result for the weak limit of the entropy
kernel is presented which allows for the passage of the weak limit done in the proof
of the measure reduction.

Lemma 7.1. If γ > 3, then for p ∈
[
1, γ−1

γ−3

)
,

χ(s) ∈ L1
loc((0,∞)× R;Lp(R)).

This calculation is done in [12, Lemma 6.1] and is omitted here.
Next, let A be the open set that is the union of intervals of the form

(u− %θ, u+ %θ)

for (%, u) in the support of νx,t, and let J be a connected component of A.

Proposition 7.1. Any connected component J of A is bounded.
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Proof. Assume by contradiction, first, that J is not bounded below. Since J is
unbounded below, fix M0 < 0 such that M0 + 1 ∈ J and let s2 ∈ (M0,M0 + 1). Let
s1 ≤ −2|M0|. Then

(7.1) |M0 − s1| >
|s1|
2
.

For (%, u) ∈ supp(χ(s1)) ∩ supp(χ(s2)),

(7.2) %θ − u+ s2 = %θ − u+ s1 + (s2 − s1) ≥ s2 − s1 ≥M0 − s1 >
|s1|
2

where the first inequality follows from the fact that (%, u) ∈ suppχ(s1). Since for
γ > 3, λ < 0, it follows using the definition of χ

(7.3)

∫
H
χ(s1)χ(s2) dνx,t =

∫
H
χ(s1)(%θ − u+ s2)λ+(%+ u− s2)λ+ dνx,t

≤ 2−λ|s1|λ
∫

suppχ(s2)

χ(s1)(%θ + u − s2)λ+ dνx,t.

Integrating (7.3) in s2 over (M0,M0 + 1) yields

(7.4)

∫ M0+1

M0

∫
H
χ(s1)χ(s2) dνx,t ds2

≤ 2−λ|s1|λ
∫ M0+1

M0

∫
suppχ(s2)

χ(s1)(%θ + u− s2)λ+ dνx,t ds2

= 2−λ|s1|λ
∫
H

(∫
(M0,M0+1)∩(u−%θ,u+%θ)

(%θ + u− s2)λ+ ds2

)
dνx,t.

If %θ + u ≥ M0 + 2, then %θ + u − s2 ≥ M0 + 2 − (M0 + 1) = 1, so the integral in
parenthesis in (7.4) reduces to

(7.5)

∫
(M0,M0+1)∩(u−%θ,u+%θ)

(%θ + u− s2)λ+ ds2 ≤ 1.

If %θ + u < M0 + 2, then

(7.6)

∫
(M0,M0+1)∩(u−%θ,u+%θ)

(%θ + u− s2)λ+ ds2 ≤
∫ M0+1

M0

(%θ + u− s2)λ+ ds2

≤ 1

λ+ 1
(%θ + u −M0)λ+1

+ ≤ 2λ+1

λ+ 1

since λ+ 1 = γ+1
2(γ−1) > 0. Thus, there is some constant C(λ) depending only on λ

(and thus only on γ) such that

(7.7)

∫ M0+1

M0

∫
H
χ(s1)χ(s2) dνx,t ds2 ≤ C(λ)|s1|λχ(s1).

However, it is noted that if s is fixed and if χ(s) is taken as a function of (%, u),
that

suppχ(s) = {(%, u) : s ∈ [u− %θ, u+ %θ]}.
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Since J is a connected component of A, χ(s) > 0 for almost all s ∈ J by Proposi-

tion 5.2 and the definition of J (c.f. [12]). Thus, for χ(s1) χ(s2) 6= 0, Lemma 6.1
yields

(7.8)
1− θ
θ

1

s2 − s1

(
uχ(s2)

χ(s2)
− uχ(s1)

χ(s1)

)
=

χ(s1)χ(s2)

χ(s1) χ(s2)
− 1.

Following the techniques in the proof of Theorem 5 in [20], taking s1, s2 → s above
yields

(7.9)
1− θ
θ

∂

∂s

(
uχ(s)

χ(s)

)
=

χ2(s)

(χ(s))2
− 1 ≥ 0.

Thus,

1− θ
θ

uχ(s)

χ(s)

is non-decreasing in s, which means from (7.8)

(7.10)
χ(s1)χ(s2)

χ(s1)
≥ χ(s2)

for s1 < s2. Combining (7.7) and (7.10) yields

(7.11) 0 < C(M0, λ)
def
=

∫ M0+1

M0

χ(s2) ds2 ≤ C(λ)|s1|λ.

Since |s1| has no upper bound and λ < 0, this is a contradiction. Thus J must be
bounded below. A similar argument shows J must also be bounded above. �

The rest of the argument that νx,t reduces to a delta mass is based on [20, Lemma
6]. Indeed, let J = (s−, s+) be a connected component of A. Then the values (%, u)
such that χ(s) > 0 on (s+ − ε, s+) must satisfy

u+ %θ ≥ s+ − ε.
However, for these values (%, u), s− ≤ u− %θ, so as in [12, Section 6],

(7.12) lim
s→s+

uχ(s)

χ(s)
≥ s+ + s−

2

and

(7.13) lim
s→s−

uχ(s)

χ(s)
≤ s+ + s−

2
.

Combined with the fact that uχ(s)

χ(s)
is non-increasing, this means that

(7.14) χ(s)2 = (χ(s))2.

Since νx,t is a probability measure, this leads to the conclusion that

(7.15) νx,t = δ(%(x,t),m(x,t))

for γ > 3.
For the case that γ = 3, the analysis is much simpler. In that case, the commu-

tator relation (6.8) immediately leads to

(7.16) χ(s1)χ(s2) = χ(s1) χ(s2)
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and the rest of the proof follows as for the γ > 3 case from the realization that (7.14)
holds for the γ = 3 case as well. Thus, (7.15) holds for γ ≥ 3 .

7.2. Reduction for Small Adiabatic Constant. The next step is to show that
in the case γ ∈ (1, 3) the Young measure νx,t reduces to a delta measure. As in the
case where γ ≥ 3, the key point is to show that connected components of the set A
as defined in the previous subsection are bounded. First, the following lemma gives
conditions on the entropy kernel χ used in the argument that connected components
of A are bounded.

Lemma 7.2. For γ ∈ (1, 3), χ(s) and χ(s1)χ(s2) are continuous and weakly dif-
ferentiable in their respective arguments and furthermore

∂

∂s
χ(s)

def
= χ′(s) ∈ L1

loc((0,∞)× R;L1(R))

and

∂

∂s
χ(s1)χ(s2)

def
= χ′(s1)χ(s2) ∈ L1

loc((0,∞)× R;L1(R2)).

The reader is referred to [12, Lemma 7.1] for the proof of this lemma. This leads
to the main proposition of this subsection.

Proposition 7.2. Let A
def
=
⋃
{(u − %θ, %θ + u) : (%, u) ∈ supp νx,t}. Then any

connected component J of A is bounded.

Proof. The proof is in the spirit as that for [12, Proposition 7.2]. As for the large γ
case, the proof is by contradiction. First, assume that J is unbounded below. Let
M0 be the supremum of J , which may be infinite. Pick s1, s2, and s3 such that
s1 < s2 < s3 < M0 and χ(s1), χ(s3) 6= 0. Using (6.8) and (7.8)

(7.17) (s2 − s1)
χ(s1)χ(s2)

χ(s1)
+ (s3 − s2)

χ(s2)χ(s3)

χ(s3)

= (s3 − s1)χ(s2)
χ(s1)χ(s3)

χ(s1) χ(s3)
.

Differentiating (7.17) by s2 using Lemma 7.2 and dividing by s3 − s1 gives

(7.18)
s2 − s1

s3 − s1

χ(s1)χ′(s2)

χ(s1)
+
s3 − s2

s3 − s1

χ(s3)χ′(s2)

χ(s3)

+
1

s3 − s1

χ(s1)χ(s2)

χ(s1)
− 1

s3 − s1

χ(s3)χ(s2)

χ(s3)
= χ′(s2)

χ(s1)χ(s3)

χ(s1) χ(s3)
.

Next, using the fact that χ(s) → 0 as s goes to ∞ and to M0 as shown in [12,

Proposition 7.2, Step 2], since χ(s) ≥ 0 is not identically zero, there must exist

some s2 ∈ J such that χ(s2), χ′(s2) > 0. Since χ(s) is continuous in s, there is

some s3 ∈ (s2,M0) such that χ(s3) > 0.
Taking s1 → −∞ in (7.17) yields

(7.19)
χ(s1)χ(s2)

χ(s1)
=
s3 − s1

s2 − s1
χ(s2)

χ(s1)χ(s3)

χ(s1) χ(s3)
+ o(1).
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By using (7.6) and (7.7) in [12], it can be shown that

(7.20)

(
χ′(s2)− 2λ+ 1

s2 − s1
χ(s2)

)
χ(s1)χ(s3)

χ(s1) χ(s3)
≤ o(1).

However, this is a contradiction in light of the way s2 is selected and the fact that
by (6.8),

(7.21)
χ(s1)χ(s3)

χ(s1) χ(s3)
≥ 1

for any s1, s3 ∈ J . Thus, J is bounded below. Similar arguments show also that J
is bounded above. �

In light of the above proposition and the well-known result in [14], among other
places, the following result holds

Proposition 7.3. For γ ∈ (1, 3), the Young measure νx,t is a delta mass in the
coordinates (%,m), that is,

(7.22) νx,t = δ(%(x,t),u(x,t)).

Thus, in light of similar arguments as in [12, Section 8], this proves Theorem 1.1.
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