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Entropy/Entropy Flux Pairs

Consider the hyperbolic equation
0:U +div, G(U) =0 (1)

where U : Q C R" — R™. Examples include the inviscid Burgers’
equation (G(U) = 3U?). Consider functions £(U, x, t) and Q(U, x, t)
such that

DQ = (DG)(D¢E)

€ is called an entropy and Q and entropy flux for (1). Together, they are
called an entropy/entropy flux pair.
For weak solutions to the hyperbolic problem (1),

81—5 + diVX Q S 0.



Examples of Entropy/Entropy Flux Pairs |

Consider
o:U+ 0,G(U) =0.

If £ is any function, and

o(u>=/ue'(U)G’<U)du,

then £ and Q are an entropy/entropy flux pair.



Examples of Entropy/Entropy Flux Pairs Il

Consider the one-dimensional Euler equations for compressible fluids:
dro + Ox(ou) =0 3)
B¢ (ou) + Ox (olul® + pr(0)) =0 (4)

with pr(0) = ag”.
We have the entropy/entropy flux pair

1 a
E(o,u) == EQMQ + o o’

1

and

ay

1
Qo u) = §Q|U|3 + ﬁ@vu-

If ¢ is a continuous function, we also have the entropy/entropy flux pair

1
£¥(0.u) = o / B(u+ g ts)(1— ) ds

-1

1
Q“(e.0)=¢ [ ( . 72—19> P(u+ 0 Is)(1 - s2) ds

-1



Relative Entropy

Consider an entropy/entropy flux pair (£, Q). We define the relative
entropy H(U|U) as

H(U[T) = E(U) — £(U) — DE(U) - (U - T) (5)

Note that this definition will only consider quadratic terms, but not linear
terms in the entropy.



Example of a Relative Entropy

Consider the Euler model (3)-(4). The relative mechanical entropy is

1
H(o, ulo, @) = Solu - 4> + Er(0,2) (6)

where E(0,0) == 523(0" —0") — ;11@_1(@ ~2).



Fluid-Particle Interaction

» Fluid-particle interaction models are of interest to engineers and
scientists studying biotechnolgy, medicine, waste-water recycling,
mineral processing, and combustion theory.

» The macroscopic model considered in this talk, the
Navier-Stokes-Smoluchowski system, is formally derived from a
Fokker-Planck type kinetic equation coupled with fluid equations.

» This coupling is from the mutual frictional forces between the
particles and the fluid, assumed to follow Stokes' Law.

» The fluid is a viscous, Newtonian, compressible fluid.



Navier-Stokes-Smoluchowski System

Oro + divk(ou) =0 (M)
Ot(ou) + divy(ou @ u) + V, (a0” + 1)

= div, S(Veu) — (Bo + n) V@ (8)
9 + divy(nu — nV,®) = A (9)

1 a
/ Solul+ ——0" +ninn+ (Bo+n)® dx(r)
Q v—1

+/ /u|VXu|2+)\|divXu|2+|VX\/77+\/77VX¢|2 dx dt
0 Q

1 a
< [ ool + g5 + oI+ (o + m)V® e (10)
A -



Constitutive Relations and Boundary and Initial Conditions

Newtonian Condition for a Viscous Fluid:

S(Vxu) == u(Viu + V] u) + Adiv, ul

2
/.t>0,/\+§/.l20

Pressure Conditions:

3
’Y>§,a>0

Boundary and Initial Conditions:
ulog = (Vxn +1Vx®) -nlgg =0 (11)
00 € L(Q) N LL(Q) (12)
mo € L3 (Q;R3) N LY R?) (13)
o € LX(Q2) N LL(R) (14)



Confinement Hypotheses

Take @ : Q — RT where Q is C2V.
Bounded Domain

» & is bounded and Lipschitz on Q.
> B0,
» The sub-level sets [¢ < k] are connected in Q for all k > 0.

Unbounded Domain

)
» 3>0.

» The sub-level sets [¢ < k] are connected in Q for all k > 0.
» e %2 ¢ 1Y(Q).

> [AP(x)| < | Vid(x)] < 2®(x) for x with sufficiently large

magnitude.



Weak Formulation |

Carrillo et al. (2010) established the existence of renormalized weak
solutions in the following sense:

Assume that ¢, Q satisfy the confinement hypotheses. Then {o,u,n}
represent a renormalized weak solution to (7)-(10) if and only if

» 0>0in L>(0, T; L7(S2)) represents a renormalized solution of (7)
on (0,00) x £, i.e., for any test function ¢ € D([0, T) x Q), T >0
and any b, B such that

b e L*([0,00)) N C([0,00)), B(o) := B(1) —l—/ —*dz,

1Z2

the renormalized continuity equation

(15)
holds.



Weak Formulation Il
» The balance of momentum holds in the sense of distributions, i.e.,
for any w € D([0, T); D(Q; R?)),

-
/ /gu-@tw—f—gu@u:wa+(pp(g)+7])divxw dx dt
o Jo
=/ /uvxuvxw—i—)\divxudivxw—(,6’g+77)VX¢-wdx dt
o Jo

—/mo-w(O,-) dx (16)
Q

All quantities are required to be integrable, so in particular,
u € L2(0, T; WH2(Q;R3)), thus the velocity field can be required to
vanish on 0L in the sense of traces.

» 7 >0 is a weak solution of (9), i.e.,

T
/ /n8t¢+nu'vx¢_nvx¢'vx¢_vx77'vx¢ dx dt = _/ 770¢(07 ) dx
0 Q Q

(17)
Again, terms in this equation must be integrable on (0, T) x Q, so
in particular 5 € L2(0, T; L3(Q)) N L}(0, T; W3 (Q)).



Weak Existence

» The existence result of Carrillo et al. is established by implementing
a time-discretization approximation supplemented with an artificial
pressure approximation.

» Their paper also handles the case of unbounded domains and proves
the convergence to a steady-state solution as t — co.



Weakly Dissipative Solutions |

Next, we define a new version of solution.

Definition (Weakly Dissipative Solutions)
{0,u,n} are called a weakly dissipative solution to the NSS system if and
only if

» {o,u,n} form a renormalized weak solution with the energy

inequality

1
/52§Q|u|2+7ilgv+nln7]+n¢ dx(7)

+/ /S(qu):vxu—i—pvx\/ﬁ—i- ViV<®|? dx dt

1
—B//Qqudedt (18)

for all 7.

< / ~ooluo)?® + T@Q + 10 Inno + 7® dx



Weakly Dissipative Solutions Il

Definition (Weakly Dissipative Solutions)

» for all suitably smooth solutions {r, U, s} of the NSS system, the
following relative entropy inequality holds for all 7.

/ olu—U> + Er(o,r) + Ep(n,s) dx(7)
//[S W) — S(V,U)] : Ve (u—U) dx dt
< / ~oo0luo — Uo|* + Ef(00, ro) + Ep(10, 50) dx

/ R(o,u,n,r,U,s)d (19)



Remainder Term

The remainder term in (19) has the form
R(o,u,n,r,U,s)
; / divk(S(VxU)) - (U —u) dx — /Q 0(0tU +u-V,U) - (u—U) dx
/3tPF 0—r)+ VxPe(r) - (ou—rU) dx
/[Q Pe(o — Er(o,r)]div, U dx
- / 0¢Pp(s)(n — s) + VxPp(s) - (nu — sU) dx

/[77 Pe(n — Ep(n, s)]divy U dx

- /va (Pp(n) = Pp(s)) - (Vin + nVx®) dx

Vs

- [ et nver T2 - ) ox



Here we define

He(o) = =0

Pr(0) := He(e) = 7?1@”*1

Er (o, r) := He(0) — He(r)(e — r) — Hr(r)
Hp(n) :==nlnn

Pp(n) = Hp(n) = Inn+1

Ep(n.s) := Hp(n) — Hp(s)(n — s) — Hp(s)



Approximation Scheme

A three-level approximation scheme is employed
> Artificial pressure parameterized by small §
» Vanishing viscosity parameterized by small ¢

» Faedo-Galerkin approximation where test functions for the
momentum equation are taken from n-dimensional function spaces
X, of smooth functions on



Approximate System

8th + diVx(@nun) - €Axgn (20)
Onn + diVX(nnun - 77nv><¢) = Aynn (21)

/ Or(onuy) - w dx = / Onlp @ Uy, VoW + (a0]) + np + 005 ) dive w dx
Q Q
— / S(Vxup) : Vaw 4+ V0, - Viu, - w dx — /(ﬁgn + 1)V ® - w dx
Q Q
(22)
with the additional conditions

Vxon-n=0o0n (0, T) x 00
u, = (Vanin +1,Vx®) -n=0o0n (0, T) x 9Q



Existence of Approximate Solutions

» Existence of u, is obtained from the Faedo-Galerkin approximation
and an iteration argument.

> 0n, 7, obtained from u, using fixed point arguments in the spirit of
Ladyzhenskaya.



Approximate Energy Inequality

Using u, as a test function in (22) and some straight-forward
manipulations:

1)
/ ~0nlunl® +,y 19n+719n+nn|nnn+nn¢dx()

+/ / S(Vxup) : Vil + 2V /T + /1n V<@ dx dt
0 Q
b [ 190y 2+ G ?) de e

1 a )
S/zgoalanl + _1Q3,5+a_198,5+no,5lnno,s+no,a¢ dx

—ﬁ/ /Q,,un V. dx dt (23)




Uniform Bounds

From the energy inequality, we find that

{u}nes €5 L2(0, T; W2 (2 RY))
{/outnes €p L0, T; L2(; R?))
{0}nes €6 L(0, T; L7(Q))
{nnn}ncs €5 L0, T; LY(Q))
(VN nes €6 L2(0, T; L2(R?))
{(M}nes €5 120, T; WH3(Q))



Faedo-Galerkin Limit |

» From the approximate energy balance, the term

.
55/ /|vxgn|2@f:—2 dx dt
0 Q

is bounded independently of n. Thus by Poincaré’s inequality,
{o}n €p L2(0, T; WH2(Q)).

> From this, V0, - u, €5 L1(0, T; L3/2(Q)). To get higher time
integrability, multiply (20) by G'(¢,) where G(g,) := ¢, In g,. Then

E/T/ 7‘VXQ"‘2 dx dt

o Ja On

is bounded independently of n. Using Holder's and interpolation,
{Vx:gn : un}n S Lq(oa T; LP(Q))

for some p € (1, %) and g € (1,2). Thus, 9., u. obey

8t@s + diVx(qus) = 5Ax@s-



Faedo-

>

Galerkin Limit [l

Strong convergence of V0, = Vxo. follows from letting
G(z) = 22
Similar techniques show convergence of 1, — 7. and V1, — V1.
to allow

Orne + divg(neue — Vi ®) = Ayne.
Terms in the momentum equation converge as we want using the
bounds and the above convergences, except for the convective term.

Convergence of the convective term g,u, @ u, in L9((0, T) x Q; R3?)
follows from convergence of g,u, and Arzela-Ascoli.

The following lemma is of use throughout the analysis for convergence of
the 1 terms:

Lemma (Simon)

Let X C B C Y be Banach spaces with X C B compactly. Then, for
1<p<oo, {v:ivelP(0,T;X), v € LX0,T;Y)} is compactly
embedded in LP(0, T; B).

Thus, {n}ne — 15 in L2(0, T: L3(Q)).



Vanishing Viscosity Approximation |

8t@5 + diVx(Qeue) =cA,0. (24)
Oene + divx(neue — 0 Vi®) = Ayne (25)

/ Or(ocu:) -w dx = / 0:u: @ u. : Vew + (ag) + 1. + 60%) divy, w dx
Q Q

- / S(Vxue) : Viw + V0 - Vyue - w dx — /(/BQE + ) Vi® - w dx
Q Q (26)

Vx0: -n=0

ucfoe = (Vine +1:Vx®) -nlag =0



Vanishing Viscosity Approximation |l

)
/ 9€‘u6| + 195 +7195 + 1 Inne + 0 dx(7)

+/ /S(VXUE) Ve + 2V, /1 + 0V ®|? dx dt
0 Q

+5/ / |V 0:|?(ay0l ™% + §a0%~2) dx dt
Q

1 5o
< 2905|U05|+ 1905+ 190,5+770,5|n770,5+770,5¢dx

fﬂ/ /geus V& dx dt (27)



Vanishing Viscosity Limit |

» We begin by using the uniform bounds and obtaining weak limits
05, U5, 75

» We show that since v/eV,0. — 0 in L2(0, T; L?(Q;R3)), and using
Arzela-Ascoli, we have that g5, us solve the continuity equation
weakly.

» Similar analysis shows that 75, us solve the Smoluchowski equation
weakly.



Vanishing Viscosity Limit |l

» Convergence of the momentum equation is fairly straight-forward
except for the pressure-related terms. Using the Bogovskii operator
(analogous to an inverse divergence operator) and an appropriate
test function, we find that ap} 4 7. 4 002 has a weak limit.

» To show this weak limit is ag] + 15 + do§', we have to show the
strong convergence of the fluid density (strong convergence of the
particle density follows from the lemma of Simon).

> This is obtained by using the test function 1(t){(x)y1(x) where
¥ e C2(0,T),¢ € C(Q),¢1(x) = VxA*(1ao:), and analysis
involving the double Reisz transform and the Div-Curl Lemma.



Artificial Pressure Approximation |

]
/ / 05B(05)(De> + w5 - V) dx dit + / 0058(00.5)(0, ) dx
0 Q Q
T
:/ /b(g(;)divxu(;qb dx dt (28)
0 Q

:
/ / N50:d + (nsus — N5V ® — Vins) - Vi dx dt = —/ 70,69(0, ) dx
o Ja Q
(29)

/ Or(0sus)w dx = / 05us ® us 1 Vew + (ag] + 15 + 005 ) dive w dx
Q Q

- / S(Vaus) : Vaw dx — / (Bos + 1) V® - w dx (30)
Q Q



Artificial Pressure Approximation |l

1 5 a 4 1)
= = ¢ 4+l ®d
/ngalu(sl g0t 708 T eI s x(1)

+/ /S(VXU5) L Vs + 2V, /5 + /15 VX ®|? dx dt
0 Q

1 2 a o
< /Q 2@0,5|U0,5| + - 1@&5 +t 7% T s Inno,5 + 10,5P dx

—6/ /95U5~VXCD dx dt (31)
0o Ja




Artificial Pressure Limit

» Again, from uniform bounds, we are able to obtain the existence of
weak limits o, u, 7.

> Much of the difficulty in taking the artificial pressure limit is
controlling the oscillation defect measure for the fluid density o.



Oscillation Defect Measure and Strong Convergence

Definition
Let QCQand g > 1. Then

oscqlos — 0(Q) := sup (Ilm sup/ | Te(os) — Ti(0)|? dx) .

5—0*

Here, {Tx} is a family of appropriately concave cutoff functions.
Using these cutoff functions, we can control the oscillation defect
measure and obtain strong convergence of the fluid density.



Approximate Relative Entropy Inequality

» We formulate an approximate relative entropy inequality for each
fixed n, e, 4.

> We define smooth functions U, € C*([0, T]; Xn) zero on the
boundary and positive ry,, sm on [0, T] x Q.

» We take u, — U,, as a test function on the Faedo-Galerkin
approximate momentum equation and perform some calculations to
obtain an approximate relative entropy inequality.

» We take the limits to obtain the relative entropy inequality.



Relative Entropy Inequality

Regularity of r,U, s are imposed to ensure that all integrals in the
formula for the relative entropy are defined.

r € Cpeak(10, T1: L7(Q))

U € Cpeak([0, T]; L2771 R?))

V.U € 20, T; L*(; R3*3)), Ulpg = 0

5 € Cpeak(0, T LH(Q)) N LY (0, T; LO/773(Q))

d:U € 110, T; L2/ 7=H; R?) N L2(0, T; L59/5775(Q; R?))

V2U e L1(0, T; L2/ 7+ (Q; R3*3%3)) 0 12(0, T; L&7/5775(Q; R3*3%3))

O:PE(r) € 110, T; L7/771(Q))

V. Pe(r) € LX0, T; L2/771(Q; R?)) N L2(0, T; L97/57=8(Q; R?))

d:Pp(s) € LX(0, T; L=(Q)) N L>=(0, T; L3/%(Q))

V.Pp(s) € L>=(0, T; L3(; R?))

Vs € L0, T; L2(Q;R3)) N L2(0, T; L57/57+3(Q; RY)). (32)



Uniqueness of Weakly Dissipative Solutions

Theorem (Weak-Strong Uniqueness)

Assume {o,u,n} is a weakly dissipative solution of the NSS system.
Assume that {r,U, s} is a smooth solution of the NSS system with

appropriate regularity with the same initial data. Then {o,u,n} and
{r,U,s} are identical.

Note that the following hypotheses are imposed on the smooth solutions
Vr € L2(0, T; L9(Q; R?))
V2U € L%(0, T; L9(Q; R¥3%3))
o= V,s+sV,dc 20, T; LY R?)) (33)

q>max{3,3}
v—1

The proof involves analysis bounding the remainder terms in terms of the
relative entropy and using Gronwall's inequality on the result.

where



Remarks

» The result can be generalized to unbounded spatial domains by
creating a sequence of bounded domains and passing the limits
through using the confinement hypotheses.

» This result does not show the existence of appropriately smooth
{r,U, s}, which is the focus of other work.



Low Stratification

8t95 + diVx(qua) =0 (34)

D
52[8t(gsue) + diVx(qus & us)] + Vi <ag; + <776>

= 62(/’[’Axua + )\Vx diVX uE) - €(ﬁga + TIE)VXd) (35)
(9t775 + diVx(neua) - EdiVx(Cner‘D) - DAxn5 =0 (36)
d g2 a D
o ) — eluel® + o 1 CE Inn. + &(Bo- +1)® dx
2 |vx77€|2 2 2
+/ D o + 26DV 1. - Vi@ + £2Cne |V ®|? dx
Q e

+ / 52S(qus) :Viyue dx <0 (37)
Q



Formal Evaluation of the Low Stratification Low Mach
Number Limit

» Assume the following expansions:

oo
0- =0+ &gl
i=1
e . .
Ne =1+ ZE'UQ)
i=1

u. =u-+ Zeiug)
i=1

» By considering the energy inequality, V77 =0, so
n= ﬁ Jq m0(x) dx.

> By equating terms of order 1 in the momentum equation,
Vi (aﬁy + %ﬁ) =0, implying o0 = ﬁ Jo 00(x) dx.

» Thus, u satisfies the incompressibility condition div, u = 0.



Low Stratification Limit

_ 1/

= — x)dx

n |Q|Q770()

2= g | eo)d

0= = [ oo(x)dx
1l Jo°

div,u=20
0[0:u + divy(u@u)] + VM = pAu — (Br+ 0)V®

where r, 0 satisfy

Vx (ar” + ?9> = —(Be+7m)Vx®



Low Stratification System Weak Formulation |

{0c,uc, 1} form a weak solution to the scaled low stratification
equations if:

0: > 0 and u. form a renormalized solution of the scaled continuity
equation, i.e.,

/0 /Q B(0:)0rp + B(0:)ue - Vi — b(p:) diviup dx dt
= —/93(90)90(0,-) dx (42)

where b € L> N C[0,00), B(o) := B(1) + [ %2dz.
The scaled momentum balance holds in the sense of distributions:

T
D
/ / 52 (qus : ai.‘V + 0:u: ® ug : VXV) + (pF(Qg) + C’ﬂg) diVXV dx dt
0o Ja
-
= / / 2 (uV,u. Vv + Adivy u, dive v) — (8o + 1: ) Vi@ - v dx dt
0o Ja

—52/m0~v(0,-) dx (43)
Q



Low Stratification System Weak Formulation |l

» 1. > 0 is a weak solution of the scaled Smoluchowski equation:

-

/ / ’f]gatSD + neug - Vx‘P — (M VP - VXSD - DV, - vx‘P dx dt
0 Q

__ / 10(0, ) dx (44)
Q

» The energy inequality is satisfied:

-1 ¢

;
+/ /62(/1|qu5\2+)\\divxug|2) dx dt
0 Q

e? 5 a_ D
EQ6|UE| + O¢ +77’E|n77€+6(/805+7]€)¢ dX(T)
Q

T D 2
T = VX € € Xd)
+/0 /Q'Q\va Ve + e/ NV dx dt

g2 a D
S/*QO|U0|2+7Qg+*770|nno+€(ﬂ90+770)¢ dx (45)
Q 2 y—1 ¢



Target System

Definition (Low Stratification Target System)

We say that {u, r, s} solve the low stratification target system if

div,u = 0 weakly on (0, T) x Q,
T
//g’u-@w—f—@@ﬁzvxvdxdt
0o Ja

-
:/ / (uVxu — (Br+s)Vi®) - v dx dtf/§ﬁ~v(0,~) dx,
0o Ja Q
for any divergence-free test function v and

1

r=———-
ayo' !

(R

weakly.



Main Result |

Theorem (Low Stratification Limit)
Let (2, ®) satisfy the confinement hypothesis and for each € > 0,
{0=,u.,m:} solves (42)-(45). Assume the initial data can be expressed as

0:(0,-) = 0c0 = E+EQ§%, u:(0,-) = u.o, and 1-(0,-) = -0 = ﬁ+€n§3.

where 0,7 are the spatially uniform densities on Q). Assume also that as

=0 @ _. W
%0 — Qo

weakly-+ in L>(Q) or L>=(Q; R3).

Then up to a subsequence and letting ¢ := min{~, 2},

_ 1
,Ug 0 — Uo, 7723 - 77(() )

0- — o in C([0, T]; L1(Q)) N L>(0, T; L9())
ne — 7 in L2(0, T; L(Q))
u. — u weakly in L2(0, T; WH?(Q; R?))



Main Result Il

and
oM = Q= E_Q — oW weakly-x in L>(0, T; L9(Q))

nb = B0, n® weakly in L2(0, T; L3(R))

where {u, o), 17(1)} solve the target system mentioned previously.



Free Energy Inequality

Recasting the energy inequality using the free energy

ay _.,_ a
0" 1_

Er(0) + Ep(n) := — po—

@’Y

N
— ¢ — (e @)7

D D D
+—nlnn——=Mm—-1)(n+1)— —7In7,
R <( ) ) R
we obtain

/Q 1Q5|u8| + (EF(QE) + EP(ne)) + 1(/895 + na)d) dX(T)

2DV, 2
/ /,u|VXuE|2+)\|d|vXu5\2—|—— T%—l—s\/CnEVX(D dx dt

< [ Geoluol? + 5(Ex(oo) + Eom)) + £ (3o -+ m) o (46)



Momentum Equation

By using the uniform bounds and Sobolev embeddings, o-u. ® u.
converges to a limit pu ® u. Thus, the momentum equation converges to
becomes

T
/ /g’u-@tv—i—gu@uzvxvdxdt
0o Ja

-
= / / uVu: Vv — (59(1) + n(l))VXCD -vdx dt — / OoUp - v dx
0o Ja Q

By dividing (43) by £ and taking ¢ — 07, we have weakly

1 D
oW = Tt [(IBQ-H?)CD + 77(1)}
Yo ¢



Helmholtz Decomposition

Consider a vector v € R3. We can decompose the vector into a gradient
part
Irg . 1 4
Ho[v] .= VA divev

and a divergence-free part
H[v] := v — H[v]

Note that the Helmholtz projections are continuous and linear.



Convective Term |

We decompose the tensor p.u. ® u. using the Helmholtz projections into
qus ® u: = H[Qeue] ® Ue + HL[Q8U€] ® H[UE] + HL[QEUE] ® Hl[UE]

Using the properities of the Helmholtz projections and the convergence
results earlier,
H[que] - H[@] =ou

N Cweak([o’ T; L2q/q+1(Q;R3)),
and Hu.] — @ in L2(0, T; L2(Q; R3)), so

Hlo.u] ®u. > pu®u

H*[o.u.] ® H[u.] — 0
weakly in [2(0, T; L89/4a13(Q; R3*3)).



Convective Term Il

After some manipulations, the scaled NSS system becomes
T T
/ /sraat¢+va~vx¢ dx dt:/ /h§~VX¢ dx dt (47)
o Ja o Ja
T
/ /5V5~3tv+wrsdivxv dx dt
o Ja

:
:/ /[5(@—gs)+(ﬁ—m)lvx¢-v+h§:vxv—hgdivxvdx dt
0 Q

(48)
where
V. = o.u.
ro= o + D W (5@+ﬁ2¢
e’ ¢ ae’”

w:=ayp' !

and h!, h?, and h3 are quantities converging to zero.
1> 1> 1> g g



Convective Term llI

In light of (47)-(48), we consider the eigenvalue problem

- qu = Aq
Vxq-njpa =0
)\2

A=
w

with a countable system of eigenvalues 0 = Ag < A; < Ay < A3 < ... and
eigenvectors {gn}52,.



Decomposition of L%(; R3)

Defining
Wiy (= ii“ /\ivan
n

where g,, A\, are defined from the previous eigenvalue problem. Thus, we
decompose the space

200.3) — 12(0- T3 2(0. 3
L(QRY) = L(RY) © Ly (4 RY)
where
2(0-R3) — i =
Lo (Q; R”) := closure,> {span { " w,,}n_l}

L2(Q; R3) := closure;2{v € C°(Q; R?)| div, v = 0}

and define the projection

—i
Py : [2(Q;R?) — span {w,,}
\/a n<M

Note that we define H,\L,, := PyH' = H1Py, since the operators
H* and Py commute.



Return to the Singular Term

Rewriting the singular term and noting convergences, the problem of
showing the singular term converges weakly to a gradient reduces to

showing
-
/ / HALA[QEUE] ® H,\L/,[ggug] :Vevdxdt — 0
0 Ja

for each fixed M € N as ¢ — 0.



Concluding Remarks

» The mechanical relative entropy for the NSS system can be used to
obtain a weak-strong uniqueness result by finding the relative
entropy between a weakly-dissipative solution and a smooth solution.

» A modification of the mechanical relative entropy between a weak
solution and a solution to a given target system is used to find
uniform bounds to show the convergence of the weak solutions to
the target system as the Mach number becomes small.

» Current work is investigating the use of the relative entropy to show
the existence of measure-valued solutions to a corresponding model
for inviscid fluids.
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