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Entropy/Entropy Flux Pairs

Consider the hyperbolic equation

∂tU + divx G (U) = 0 (1)

where U : Ω ⊂ Rn 7→ Rm. Examples include the inviscid Burgers’
equation (G (U) = 1

2U
2). Consider functions E(U, x , t) and Q(U, x , t)

such that
DQ = (DG )(DE)

E is called an entropy and Q and entropy flux for (1). Together, they are
called an entropy/entropy flux pair.
For weak solutions to the hyperbolic problem (1),

∂tE + divx Q ≤ 0.



Examples of Entropy/Entropy Flux Pairs I

Consider

∂tU + ∂xG (U) = 0. (2)

If E is any function, and

Q(U) =

∫ U

E ′(U)G ′(U) dU,

then E and Q are an entropy/entropy flux pair.



Examples of Entropy/Entropy Flux Pairs II
Consider the one-dimensional Euler equations for compressible fluids:

∂t%+ ∂x(%u) = 0 (3)

∂t(%u) + ∂x
(
%|u|2 + pF (%)

)
= 0 (4)

with pF (%) = a%γ .
We have the entropy/entropy flux pair

E(%, u) :=
1

2
%|u|2 +

a

γ − 1
%γ

and

Q(%, u) =
1

2
%|u|3 +

aγ

γ − 1
%γu.

If ψ is a continuous function, we also have the entropy/entropy flux pair

Eψ(%, u) := %

∫ 1

−1

ψ(u + %γ−1s)(1− s2)λ ds

Qψ(%, u) := %

∫ 1

−1

(
u +

γ − 1

2
%γ−1s

)
ψ(u + %γ−1s)(1− s2)λ ds

where λ = 3−γ
2(γ−1) .



Relative Entropy

Consider an entropy/entropy flux pair (E ,Q). We define the relative
entropy H(U|U) as

H(U|U) := E(U)− E(U)− DE(U) · (U − U) (5)

Note that this definition will only consider quadratic terms, but not linear
terms in the entropy.



Example of a Relative Entropy

Consider the Euler model (3)-(4). The relative mechanical entropy is

H(%, u|%, u) =
1

2
%|u − u|2 + EF (%, %) (6)

where EF (%, %) := a
γ−1 (%γ − %γ)− aγ

γ−1%
γ−1(%− %).



Fluid-Particle Interaction

I Fluid-particle interaction models are of interest to engineers and
scientists studying biotechnolgy, medicine, waste-water recycling,
mineral processing, and combustion theory.

I The macroscopic model considered in this talk, the
Navier-Stokes-Smoluchowski system, is formally derived from a
Fokker-Planck type kinetic equation coupled with fluid equations.

I This coupling is from the mutual frictional forces between the
particles and the fluid, assumed to follow Stokes’ Law.

I The fluid is a viscous, Newtonian, compressible fluid.



Navier-Stokes-Smoluchowski System

∂t%+ divx(%u) = 0 (7)

∂t(%u) + divx(%u⊗ u) +∇x (a%γ + η)

= divx S(∇xu)− (β%+ η)∇xΦ (8)

∂tη + divx(ηu− η∇xΦ) = ∆xη (9)∫
Ω

1

2
%|u|2 +

a

γ − 1
%γ + η ln η + (β%+ η)Φ dx(τ)

+

∫ τ

0

∫
Ω

µ|∇xu|2 + λ| divx u|2 + |∇x
√
η +
√
η∇xΦ|2 dx dt

≤
∫

Ω

1

2
%0|u0|2 +

a

γ − 1
%γ0 + η0 ln η0 + (β%0 + η0)∇xΦ dx (10)



Constitutive Relations and Boundary and Initial Conditions

Newtonian Condition for a Viscous Fluid:

S(∇xu) := µ(∇xu +∇T
x u) + λ divx uI

µ > 0, λ+
2

3
µ ≥ 0

Pressure Conditions:

γ >
3

2
, a > 0

Boundary and Initial Conditions:

u|∂Ω = (∇xη + η∇xΦ) · n|∂Ω = 0 (11)

%0 ∈ Lγ(Ω) ∩ L1
+(Ω) (12)

m0 ∈ L
6
5 (Ω;R3) ∩ L1(Ω;R3) (13)

η0 ∈ L2(Ω) ∩ L1
+(Ω) (14)



Confinement Hypotheses

Take Φ : Ω 7→ R+ where Ω is C 2,ν .
Bounded Domain

I Φ is bounded and Lipschitz on Ω.

I β 6= 0.

I The sub-level sets [Φ < k] are connected in Ω for all k > 0.

Unbounded Domain

I Φ ∈W 1,∞
loc (Ω).

I β > 0.

I The sub-level sets [Φ < k] are connected in Ω for all k > 0.

I e−Φ/2 ∈ L1(Ω).

I |∆xΦ(x)| ≤ c1|∇xΦ(x)| ≤ c2Φ(x) for x with sufficiently large
magnitude.



Weak Formulation I

Carrillo et al. (2010) established the existence of renormalized weak
solutions in the following sense:
Assume that Φ,Ω satisfy the confinement hypotheses. Then {%,u, η}
represent a renormalized weak solution to (7)-(10) if and only if

I % ≥ 0 in L∞(0,T ; Lγ(Ω)) represents a renormalized solution of (7)
on (0,∞)× Ω, i.e., for any test function φ ∈ D([0,T )× Ω),T > 0
and any b,B such that

b ∈ L∞([0,∞)) ∩ C ([0,∞)), B(%) := B(1) +

∫ %

1

b(z)

z2
dz ,

the renormalized continuity equation∫ T

0

∫
Ω

B(%)∂tφ+B(%)u·∇xφ−b(%)φ divx u dx dt = −
∫

Ω

B(%0)φ(0, ·) dx

(15)
holds.



Weak Formulation II
I The balance of momentum holds in the sense of distributions, i.e.,

for any w ∈ D([0,T );D(Ω;R3)),∫ T

0

∫
Ω

%u · ∂tw + %u⊗ u : ∇xw + (pF (%) + η) divx w dx dt

=

∫ ∞
0

∫
Ω

µ∇xu∇xw + λ divx u divx w− (β%+ η)∇xΦ ·w dx dt

−
∫

Ω

m0 ·w(0, ·) dx (16)

All quantities are required to be integrable, so in particular,
u ∈ L2(0,T ;W 1,2(Ω;R3)), thus the velocity field can be required to
vanish on ∂Ω in the sense of traces.

I η ≥ 0 is a weak solution of (9), i.e.,∫ T

0

∫
Ω

η∂tφ+ηu·∇xφ−η∇xΦ·∇xφ−∇xη·∇xφ dx dt = −
∫

Ω

η0φ(0, ·) dx

(17)
Again, terms in this equation must be integrable on (0,T )× Ω, so

in particular η ∈ L2(0,T ; L3(Ω)) ∩ L1(0,T ;W 1, 3
2 (Ω)).



Weak Existence

I The existence result of Carrillo et al. is established by implementing
a time-discretization approximation supplemented with an artificial
pressure approximation.

I Their paper also handles the case of unbounded domains and proves
the convergence to a steady-state solution as t →∞.



Weakly Dissipative Solutions I

Next, we define a new version of solution.

Definition (Weakly Dissipative Solutions)
{%,u, η} are called a weakly dissipative solution to the NSS system if and
only if

I {%,u, η} form a renormalized weak solution with the energy
inequality∫

Ω

1

2
%|u|2 +

a

γ − 1
%γ + η ln η + ηΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu + |2∇x
√
η +
√
η∇xΦ|2 dx dt

≤
∫

Ω

1

2
%0|u0|2 +

a

γ − 1
%γ0 + η0 ln η0 + η0Φ dx

− β
∫ τ

0

∫
Ω

%u · ∇xΦ dx dt (18)

for all τ .



Weakly Dissipative Solutions II

Definition (Weakly Dissipative Solutions)

I for all suitably smooth solutions {r ,U, s} of the NSS system, the
following relative entropy inequality holds for all τ .∫

Ω

1

2
%|u−U|2 + EF (%, r) + EP(η, s) dx(τ)

+

∫ τ

0

∫
Ω

[S(∇xu)− S(∇xU)] : ∇x(u−U) dx dt

≤
∫

Ω

1

2
%0|u0 −U0|2 + EF (%0, r0) + EP(η0, s0) dx

+

∫ τ

0

R(%,u, η, r ,U, s) dt (19)



Remainder Term
The remainder term in (19) has the form

R(%,u, η, r ,U, s)

:=

∫
Ω

divx(S(∇xU)) · (U− u) dx −
∫

Ω

%(∂tU + u · ∇xU) · (u−U) dx

−
∫

Ω

∂tPF (r)(%− r) +∇xPF (r) · (%u− rU) dx

−
∫

Ω

[%(PF (%)− PF (r))− EF (%, r)] divx U dx

−
∫

Ω

∂tPP(s)(η − s) +∇xPP(s) · (ηu− sU) dx

−
∫

Ω

[η(PP(η)− PP(s))− EP(η, s)] divx U dx

−
∫

Ω

∇x(PP(η)− PP(s)) · (∇xη + η∇xΦ) dx

−
∫

Ω

[
(β%+ η)∇xΦ +

η∇xs

s

]
· (u−U) dx



Here we define

HF (%) :=
a

γ − 1
%γ

PF (%) := H ′F (%) =
aγ

γ − 1
%γ−1

EF (%, r) := HF (%)− H ′F (r)(%− r)− HF (r)

HP(η) := η ln η

PP(η) := H ′P(η) = ln η + 1

EP(η, s) := HP(η)− H ′P(s)(η − s)− HP(s)



Approximation Scheme

A three-level approximation scheme is employed

I Artificial pressure parameterized by small δ

I Vanishing viscosity parameterized by small ε

I Faedo-Galerkin approximation where test functions for the
momentum equation are taken from n-dimensional function spaces
Xn of smooth functions on Ω



Approximate System

∂t%n + divx(%nun) = ε∆x%n (20)

∂tηn + divx(ηnun − ηn∇xΦ) = ∆xηn (21)∫
Ω

∂t(%nun) ·w dx =

∫
Ω

%nun ⊗ un : ∇xw + (a%γn + ηn + δ%αn ) divx w dx

−
∫

Ω

S(∇xun) : ∇xw + ε∇x%n · ∇xun ·w dx −
∫

Ω

(β%n + ηn)∇xΦ ·w dx

(22)

with the additional conditions

∇x%n · n = 0 on (0,T )× ∂Ω

un = (∇xηn + ηn∇xΦ) · n = 0 on (0,T )× ∂Ω



Existence of Approximate Solutions

I Existence of un is obtained from the Faedo-Galerkin approximation
and an iteration argument.

I %n, ηn obtained from un using fixed point arguments in the spirit of
Ladyzhenskaya.



Approximate Energy Inequality

Using un as a test function in (22) and some straight-forward
manipulations:∫

Ω

1

2
%n|un|2 +

a

γ − 1
%γn +

δ

α− 1
%αn + ηn ln ηn + ηnΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xun) : ∇xun + |2∇x
√
ηn +

√
ηn∇xΦ|2 dx dt

+ ε

∫ τ

0

∫
Ω

|∇x%n|2(aγ%γ−2
n + δa%α−2

n ) dx dt

≤
∫

Ω

1

2
%0,δ|u0,δ|2 +

a

γ − 1
%γ0,δ +

δ

α− 1
%α0,δ + η0,δ ln η0,δ + η0,δΦ dx

− β
∫ τ

0

∫
Ω

%nun · ∇xΦ dx dt (23)



Uniform Bounds

From the energy inequality, we find that

{u}n,ε,δ ∈b L2(0,T ;W 1,2
0 (Ω;R3))

{√%u}n,ε,δ ∈b L∞(0,T ; L2(Ω;R3))

{%}n,ε,δ ∈b L∞(0,T ; Lγ(Ω))

{η ln η}n,ε,δ ∈b L∞(0,T ; L1(Ω))

{∇x
√
η}n,ε,δ ∈b L2(0,T ; L2(Ω;R3))

{η}n,ε,δ ∈b L2(0,T ;W 1, 3
2 (Ω))



Faedo-Galerkin Limit I
I From the approximate energy balance, the term

εδ

∫ T

0

∫
Ω

|∇x%n|2%α−2
n dx dt

is bounded independently of n. Thus by Poincaré’s inequality,

{%}n ∈b L2(0,T ;W 1,2(Ω)).

I From this, ∇x%n · un ∈b L1(0,T ; L3/2(Ω)). To get higher time
integrability, multiply (20) by G ′(%n) where G (%n) := %n ln %n. Then

ε

∫ T

0

∫
Ω

|∇x%n|2

%n
dx dt

is bounded independently of n. Using Hölder’s and interpolation,

{∇x%n · un}n ∈b Lq(0,T ; Lp(Ω))

for some p ∈
(
1, 3

2

)
and q ∈ (1, 2). Thus, %ε,uε obey

∂t%ε + divx(%εuε) = ε∆x%ε.



Faedo-Galerkin Limit II

I Strong convergence of ∇x%n → ∇x%ε follows from letting
G (z) = z2.

I Similar techniques show convergence of ηn → ηε and ∇xηn → ∇xηε
to allow

∂tηε + divx(ηεuε − ηε∇xΦ) = ∆xηε.

I Terms in the momentum equation converge as we want using the
bounds and the above convergences, except for the convective term.

I Convergence of the convective term %nun ⊗ un in Lq((0,T )×Ω;R3)
follows from convergence of %nun and Arzela-Ascoli.

The following lemma is of use throughout the analysis for convergence of
the η terms:

Lemma (Simon)
Let X ⊂ B ⊂ Y be Banach spaces with X ⊂ B compactly. Then, for
1 ≤ p <∞, {v : v ∈ Lp(0,T ;X ), vt ∈ L1(0,T ;Y )} is compactly
embedded in Lp(0,T ;B).

Thus, {η}n,ε → ηδ in L2(0,T ; L3(Ω)).



Vanishing Viscosity Approximation I

∂t%ε + divx(%εuε) = ε∆x%ε (24)

∂tηε + divx(ηεuε − ηε∇xΦ) = ∆xηε (25)∫
Ω

∂t(%εuε) ·w dx =

∫
Ω

%εuε ⊗ uε : ∇xw + (a%γε + ηε + δ%αε ) divx w dx

−
∫

Ω

S(∇xuε) : ∇xw + ε∇x%ε · ∇xuε ·w dx −
∫

Ω

(β%ε + ηε)∇xΦ ·w dx

(26)

∇x%ε · n = 0

uε|∂Ω = (∇xηε + ηε∇xΦ) · n|∂Ω = 0



Vanishing Viscosity Approximation II

∫
Ω

1

2
%ε|uε|2 +

a

γ − 1
%γε +

δ

α− 1
%αε + ηε ln ηε + ηεΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xuε) : ∇xuε + |2∇x
√
ηε +

√
ηε∇xΦ|2 dx dt

+ ε

∫ τ

0

∫
Ω

|∇x%ε|2(aγ%γ−2
ε + δa%α−2

ε ) dx dt

≤
∫

Ω

1

2
%0,δ|u0,δ|2 +

a

γ − 1
%γ0,δ +

δ

α− 1
%α0,δ + η0,δ ln η0,δ + η0,δΦ dx

− β
∫ τ

0

∫
Ω

%εuε · ∇xΦ dx dt (27)



Vanishing Viscosity Limit I

I We begin by using the uniform bounds and obtaining weak limits
%δ,uδ, ηδ.

I We show that since
√
ε∇x%ε → 0 in L2(0,T ; L2(Ω;R3)), and using

Arzela-Ascoli, we have that %δ,uδ solve the continuity equation
weakly.

I Similar analysis shows that ηδ,uδ solve the Smoluchowski equation
weakly.



Vanishing Viscosity Limit II

I Convergence of the momentum equation is fairly straight-forward
except for the pressure-related terms. Using the Bogovskii operator
(analogous to an inverse divergence operator) and an appropriate
test function, we find that a%γε + ηε + δ%αε has a weak limit.

I To show this weak limit is a%γδ + ηδ + δ%αδ , we have to show the
strong convergence of the fluid density (strong convergence of the
particle density follows from the lemma of Simon).

I This is obtained by using the test function ψ(t)ζ(x)ϕ1(x) where
ψ ∈ C∞c (0,T ), ζ ∈ C∞c (Ω), ϕ1(x) := ∇x∆−1

x (1Ω%ε), and analysis
involving the double Reisz transform and the Div-Curl Lemma.



Artificial Pressure Approximation I

∫ T

0

∫
Ω

%δB(%δ)(∂tφ+ uδ · ∇xφ) dx dt +

∫
Ω

%0,δB(%0,δ)φ(0, ·) dx

=

∫ T

0

∫
Ω

b(%δ) divx uδφ dx dt (28)∫ T

0

∫
Ω

ηδ∂tφ+ (ηδuδ − ηδ∇xΦ−∇xηδ) · ∇xφ dx dt = −
∫

Ω

η0,δφ(0, ·) dx

(29)∫
Ω

∂t(%δuδ)w dx =

∫
Ω

%δuδ ⊗ uδ : ∇xw + (a%γδ + ηδ + δ%αδ ) divx w dx

−
∫

Ω

S(∇xuδ) : ∇xw dx −
∫

Ω

(β%δ + ηδ)∇xΦ ·w dx (30)



Artificial Pressure Approximation II

∫
Ω

1

2
%δ|uδ|2 +

a

γ − 1
%γδ +

δ

α− 1
%αδ + ηδ ln ηδ + ηδΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xuδ) : ∇xuδ + |2∇x
√
ηδ +

√
ηδ∇xΦ|2 dx dt

≤
∫

Ω

1

2
%0,δ|u0,δ|2 +

a

γ − 1
%γ0,δ +

δ

α− 1
%α0,δ + η0,δ ln η0,δ + η0,δΦ dx

− β
∫ τ

0

∫
Ω

%δuδ · ∇xΦ dx dt (31)



Artificial Pressure Limit

I Again, from uniform bounds, we are able to obtain the existence of
weak limits %,u, η.

I Much of the difficulty in taking the artificial pressure limit is
controlling the oscillation defect measure for the fluid density %.



Oscillation Defect Measure and Strong Convergence

Definition
Let Q ⊂ Ω and q ≥ 1. Then

oscq[%δ − %](Q) := sup
k≥1

(
lim sup
δ→0+

∫
Q

|Tk(%δ)− Tk(%)|q dx

)
.

Here, {Tk} is a family of appropriately concave cutoff functions.
Using these cutoff functions, we can control the oscillation defect
measure and obtain strong convergence of the fluid density.



Approximate Relative Entropy Inequality

I We formulate an approximate relative entropy inequality for each
fixed n, ε, δ.

I We define smooth functions Um ∈ C 1([0,T ];Xm) zero on the
boundary and positive rm, sm on [0,T ]× Ω.

I We take un −Um as a test function on the Faedo-Galerkin
approximate momentum equation and perform some calculations to
obtain an approximate relative entropy inequality.

I We take the limits to obtain the relative entropy inequality.



Relative Entropy Inequality

Regularity of r ,U, s are imposed to ensure that all integrals in the
formula for the relative entropy are defined.

r ∈ Cweak([0,T ]; Lγ(Ω))

U ∈ Cweak([0,T ]; L2γ/γ−1(Ω;R3))

∇xU ∈ L2(0,T ; L2(Ω;R3×3)), U|∂Ω = 0

s ∈ Cweak([0,T ]; L1(Ω)) ∩ L1(0,T ; L6γ/γ−3(Ω))

∂tU ∈ L1(0,T ; L2γ/γ−1(Ω;R3)) ∩ L2(0,T ; L6γ/5γ−6(Ω;R3))

∇2
xU ∈ L1(0,T ; L2γ/γ+1(Ω;R3×3×3)) ∩ L2(0,T ; L6γ/5γ−6(Ω;R3×3×3))

∂tPF (r) ∈ L1(0,T ; Lγ/γ−1(Ω))

∇xPF (r) ∈ L1(0,T ; L2γ/γ−1(Ω;R3)) ∩ L2(0,T ; L6γ/5γ−6(Ω;R3))

∂tPP(s) ∈ L1(0,T ; L∞(Ω)) ∩ L∞(0,T ; L3/2(Ω))

∇xPP(s) ∈ L∞(0,T ; L3(Ω;R3))

∇xs ∈ L∞(0,T ; L2(Ω;R3)) ∩ L2(0,T ; L6γ/5γ+3(Ω;R3)). (32)



Uniqueness of Weakly Dissipative Solutions

Theorem (Weak-Strong Uniqueness)
Assume {%,u, η} is a weakly dissipative solution of the NSS system.
Assume that {r ,U, s} is a smooth solution of the NSS system with
appropriate regularity with the same initial data. Then {%,u, η} and
{r ,U, s} are identical.

Note that the following hypotheses are imposed on the smooth solutions

∇x r ∈ L2(0,T ; Lq(Ω;R3))

∇2
xU ∈ L2(0,T ; Lq(Ω;R3×3×3))

α := ∇xs + s∇xΦ ∈ L2(0,T ; Lq(Ω;R3)) (33)

where

q > max

{
3,

3

γ − 1

}
The proof involves analysis bounding the remainder terms in terms of the
relative entropy and using Gronwall’s inequality on the result.



Remarks

I The result can be generalized to unbounded spatial domains by
creating a sequence of bounded domains and passing the limits
through using the confinement hypotheses.

I This result does not show the existence of appropriately smooth
{r ,U, s}, which is the focus of other work.



Low Stratification

∂t%ε + divx(%εuε) = 0 (34)

ε2[∂t(%εuε) + divx(%εuε ⊗ uε)] +∇x

(
a%γε +

D

ζ
ηε

)
= ε2(µ∆xuε + λ∇x divx uε)− ε(β%ε + ηε)∇xΦ (35)

∂tηε + divx(ηεuε)− ε divx(ζηε∇xΦ)− D∆xηε = 0 (36)

d

dt

∫
Ω

ε2

2
%ε|uε|2 +

a

γ − 1
%γε +

Dηε
ζ

ln ηε + ε(β%ε + ηε)Φ dx

+

∫
Ω

D2 |∇xηε|2

ζηε
+ 2εD∇xηε · ∇xΦ + ε2ζηε|∇xΦ|2 dx

+

∫
Ω

ε2S(∇xuε) : ∇xuε dx ≤ 0 (37)



Formal Evaluation of the Low Stratification Low Mach
Number Limit

I Assume the following expansions:

%ε = %+
∞∑
i=1

εi%(i)
ε

ηε = η +
∞∑
i=1

εiη(i)
ε

uε = u +
∞∑
i=1

εiu(i)
ε

I By considering the energy inequality, ∇xη = 0, so
η = 1

|Ω|
∫

Ω
η0(x) dx .

I By equating terms of order 1 in the momentum equation,

∇x

(
a%γ + D

ζ η
)

= 0, implying % = 1
|Ω|
∫

Ω
%0(x) dx .

I Thus, u satisfies the incompressibility condition divx u = 0.



Low Stratification Limit

η =
1

|Ω|

∫
Ω

η0(x)dx (38)

% =
1

|Ω|

∫
Ω

%0(x)dx (39)

divx u = 0 (40)

%[∂tu + divx(u⊗ u)] +∇xΠ = µ∆xu− (βr + θ)∇xΦ (41)

where r , θ satisfy

∇x

(
arγ +

D

ζ
θ

)
= −(β%+ η)∇xΦ



Low Stratification System Weak Formulation I
{%ε,uε, ηε} form a weak solution to the scaled low stratification
equations if:
%ε ≥ 0 and uε form a renormalized solution of the scaled continuity
equation, i.e.,∫ T

0

∫
Ω

B(%ε)∂tϕ+ B(%ε)uε · ∇xϕ− b(%ε) divx uεϕ dx dt

= −
∫

Ω

B(%0)ϕ(0, ·) dx (42)

where b ∈ L∞ ∩ C [0,∞), B(%) := B(1) +
∫ %

1
b(z)
z2 dz .

The scaled momentum balance holds in the sense of distributions:∫ T

0

∫
Ω

ε2 (%εuε · ∂tv + %εuε ⊗ uε : ∇xv) +

(
pF (%ε) +

D

ζ
ηε

)
divx v dx dt

=

∫ T

0

∫
Ω

ε2 (µ∇xuε∇xv + λ divx uε divx v)− ε(β%ε + ηε)∇xΦ · v dx dt

− ε2

∫
Ω

m0 · v(0, ·) dx (43)



Low Stratification System Weak Formulation II
I ηε ≥ 0 is a weak solution of the scaled Smoluchowski equation:∫ T

0

∫
Ω

ηε∂tϕ+ ηεuε · ∇xϕ− ζηε∇xΦ · ∇xϕ− D∇xηε · ∇xϕ dx dt

= −
∫

Ω

η0ϕ(0, ·) dx (44)

I The energy inequality is satisfied:∫
Ω

ε2

2
%ε|uε|2 +

a

γ − 1
%γε +

D

ζ
ηε ln ηε + ε(β%ε + ηε)Φ dx(T )

+

∫ T

0

∫
Ω

ε2(µ|∇xuε|2 + λ| divx uε|2) dx dt

+

∫ T

0

∫
Ω

∣∣∣∣2 D√
ζ
∇x
√
ηε + ε

√
ζηε∇xΦ

∣∣∣∣2 dx dt

≤
∫

Ω

ε2

2
%0|u0|2 +

a

γ − 1
%γ0 +

D

ζ
η0 ln η0 + ε(β%0 + η0)Φ dx (45)



Target System

Definition (Low Stratification Target System)
We say that {u, r , s} solve the low stratification target system if

divx u = 0 weakly on (0,T )× Ω,∫ T

0

∫
Ω

%u · ∂tv + %u⊗ u : ∇xv dx dt

=

∫ T

0

∫
Ω

(µ∇xu− (βr + s)∇xΦ) · v dx dt −
∫

Ω

%u · v(0, ·) dx ,

for any divergence-free test function v and

r = − 1

aγ%γ−1

[
(β%+ η)Φ +

D

ζ
s

]
weakly.



Main Result I

Theorem (Low Stratification Limit)
Let (Ω,Φ) satisfy the confinement hypothesis and for each ε > 0,
{%ε,uε, ηε} solves (42)-(45). Assume the initial data can be expressed as

%ε(0, ·) = %ε,0 = %+ε%
(1)
ε,0, uε(0, ·) = uε,0, and ηε(0, ·) = ηε,0 = η+εη

(1)
ε,0.

where %, η are the spatially uniform densities on Ω. Assume also that as
ε→ 0,

%
(1)
ε,0 ⇀ %

(1)
0 ,uε,0 ⇀ u0, η

(1)
ε,0 ⇀ η

(1)
0

weakly-∗ in L∞(Ω) or L∞(Ω;R3).

Then up to a subsequence and letting q := min{γ, 2},

%ε → % in C ([0,T ]; L1(Ω)) ∩ L∞(0,T ; Lq(Ω))

ηε → η in L2(0,T ; L2(Ω))

uε → u weakly in L2(0,T ;W 1,2(Ω;R3))



Main Result II

and

%(1)
ε =

%ε − %
ε
→ %(1)weakly- ∗ in L∞(0,T ; Lq(Ω))

η(1)
ε =

ηε − η
ε
→ η(1) weakly in L2(0,T ; L2(Ω))

where {u, %(1), η(1)} solve the target system mentioned previously.



Free Energy Inequality

Recasting the energy inequality using the free energy

EF (%) + EP(η) :=
a

γ − 1
%γ − (%− %)

aγ

γ − 1
%γ−1 − a

γ − 1
%γ

+
D

ζ
η ln η − D

ζ
(η − η)(ln η + 1)− D

ζ
η ln η,

we obtain∫
Ω

1

2
%ε|uε|2 +

1

ε2
(EF (%ε) + EP(ηε)) +

1

ε
(β%ε + ηε)Φ dx(T )

+

∫ T

0

∫
Ω

µ|∇xuε|2 + λ| divx uε|2 +
1

ε2

∣∣∣∣2D∇x
√
ηε√

ζ
+ ε
√
ζηε∇xΦ

∣∣∣∣2 dx dt

≤
∫

Ω

1

2
%0|u0|2 +

1

ε2
(EF (%0) + EP(η0)) +

1

ε
(β%0 + η0)Φ dx (46)



Momentum Equation

By using the uniform bounds and Sobolev embeddings, %εuε ⊗ uε
converges to a limit %u⊗ u. Thus, the momentum equation converges to
becomes ∫ T

0

∫
Ω

%u · ∂tv + %u⊗ u : ∇xv dx dt

=

∫ T

0

∫
Ω

µ∇xu : ∇xv− (β%(1) + η(1))∇xΦ · v dx dt −
∫

Ω

%0u0 · v dx

By dividing (43) by ε and taking ε→ 0+, we have weakly

%(1) = − 1

aγ%γ−1

[
(β%+ η)Φ +

D

ζ
η(1)

]



Helmholtz Decomposition

Consider a vector v ∈ R3. We can decompose the vector into a gradient
part

H⊥[v] := ∇x∆−1
x divx v

and a divergence-free part

H[v] := v−H⊥[v]

Note that the Helmholtz projections are continuous and linear.



Convective Term I

We decompose the tensor %εuε ⊗ uε using the Helmholtz projections into

%εuε ⊗ uε = H[%εuε]⊗ uε + H⊥[%εuε]⊗H[uε] + H⊥[%εuε]⊗H⊥[uε]

Using the properities of the Helmholtz projections and the convergence
results earlier,

H[%εuε]→ H[%u] = %u

in Cweak([0,T ]; L2q/q+1(Ω;R3)),
and H[uε]→ u in L2(0,T ; L2(Ω;R3)), so

H[%εuε]⊗ uε → %u⊗ u

H⊥[%εuε]⊗H[uε]→ 0

weakly in L2(0,T ; L6q/4q+3(Ω;R3×3)).



Convective Term II

After some manipulations, the scaled NSS system becomes∫ T

0

∫
Ω

εrε∂tφ+ Vε · ∇xφ dx dt =

∫ T

0

∫
Ω

h2
ε · ∇xφ dx dt (47)∫ T

0

∫
Ω

εVε · ∂tv + ωrε divx v dx dt

=

∫ T

0

∫
Ω

[β(%− %ε) + (η − ηε)]∇xΦ · v + h1
ε : ∇xv− h3

ε divx v dx dt

(48)

where

Vε := %εuε

rε := %(1)
ε +

D

aγ%γ−1ζ
η(1)
ε +

(β%+ η)Φ

aγ%γ−1

ω := aγ%γ−1

and h1
ε, h2

ε, and h3
ε are quantities converging to zero.



Convective Term III

In light of (47)-(48), we consider the eigenvalue problem

−∆xq = Λq

∇xq · n|∂Ω = 0

− Λ =
λ2

ω

with a countable system of eigenvalues 0 = Λ0 < Λ1 ≤ Λ2 ≤ Λ3 ≤ ... and
eigenvectors {qn}∞n=0.



Decomposition of L2(Ω;R3)
Defining

w±n := ±i
√

ω

Λn
∇xqn

where qn, Λn are defined from the previous eigenvalue problem. Thus, we
decompose the space

L2(Ω;R3) = L2
σ(Ω;R3)⊕ L2

g (Ω;R3)

where

L2
g (Ω;R3) := closureL2

{
span

{
−i
ω

wn

}∞
n=1

}
L2
σ(Ω;R3) := closureL2{v ∈ C∞c (Ω;R3)| divx v = 0}

and define the projection

PM : L2(Ω;R3)→ span

{
−i√
ω
wn

}
n≤M

Note that we define H⊥M := PMH⊥ = H⊥PM since the operators
H⊥ and PM commute.



Return to the Singular Term

Rewriting the singular term and noting convergences, the problem of
showing the singular term converges weakly to a gradient reduces to
showing ∫ T

0

∫
Ω

H⊥M [%εuε]⊗H⊥M [%εuε] : ∇xv dx dt → 0

for each fixed M ∈ N as ε→ 0.



Concluding Remarks

I The mechanical relative entropy for the NSS system can be used to
obtain a weak-strong uniqueness result by finding the relative
entropy between a weakly-dissipative solution and a smooth solution.

I A modification of the mechanical relative entropy between a weak
solution and a solution to a given target system is used to find
uniform bounds to show the convergence of the weak solutions to
the target system as the Mach number becomes small.

I Current work is investigating the use of the relative entropy to show
the existence of measure-valued solutions to a corresponding model
for inviscid fluids.
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