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Fluid-Particle Interaction

I Fluid-particle interaction models are of interest to engineers and
scientists studying biotechnolgy, medicine, waste-water recycling,
mineral processing, and combustion theory.

I The macroscopic model considered in this talk, the
Navier-Stokes-Smoluchowski system, is formally derived from a
Fokker-Planck type kinetic equation coupled with fluid equations.

I This coupling is from the mutual frictional forces between the
particles and the fluid, assumed to follow Stokes’ Law.

I The fluid is a viscous, Newtonian, compressible fluid.



Navier-Stokes-Smoluchowski System

∂t%+ divx(%u) = 0 (1)

∂t(%u) + divx(%u⊗ u) +∇x

(
a%γ +

D

ζ
η

)
= divxS(∇xu)− (β%+ η)∇xΦ (2)

∂tη + divx(ηu− ζη∇xΦ) = D∆xη (3)∫
Ω

1

2
%|u|2 +

a

γ − 1
%γ +

D

ζ
η ln η + (β%+ η)Φ dx(τ)

+

∫ τ

0

∫
Ω

µ|∇xu|2 + λ|divxu|2 +

∣∣∣∣2D√
ζ
∇x
√
η +

√
ζη∇xΦ

∣∣∣∣2 dx dt

≤
∫

Ω

1

2
%0|u0|2 +

a

γ − 1
%γ0 +

D

ζ
η0 ln η0 + (β%0 + η0)∇xΦ dx (4)



Constitutive Relations and Boundary and Initial Conditions

Newtonian Condition for a Viscous Fluid:

S(∇xu) := µ(∇xu +∇T
x u) + λdivxuI

µ > 0, λ+
2

3
µ ≥ 0

Pressure Conditions:

γ >
3

2
, a > 0

Boundary and Initial Conditions:

u|∂Ω = (D∇xη + ζη∇xΦ) · n|∂Ω = 0 (5)

%0 ∈ Lγ(Ω) ∩ L1
+(Ω) (6)

m0 ∈ L
6
5 (Ω;R3) ∩ L1(Ω;R3) (7)

η0 ∈ L2(Ω) ∩ L1
+(Ω) (8)

For the purposes of this talk, we take D, ζ = 1.



Smoluchowski Equation and Vlasov-Fokker-Planck
Equation I

The cloud of particles is described by its distribution function fε(t, x , ξ)
on phase space, which is the solution to the dimensionless
Vlasov-Fokker-Planck equation

∂t fε +
1√
ε

(ξ · ∇x fε −∇xΦ · ∇ξfε) =
1

ε
divξ

((
ξ −
√
εuε
)

f +∇ξfε
)
.

The friction force is assumed to follow Stokes law and thus is
proportional to the relative velocity vector, i.e., is proportional to the
fluctuations of the microscopic velocity ξ ∈ R3 around the fluid velocity
field u. The RHS of the momentum equation in the Navier-Stokes
system takes into account the action of the cloud of particles on the fluid
through the forcing term

Fε =

∫
R3

(
ξ√
ε
− uε(t, x)

)
f (t, x , ξ) dξ.



Smoluchowski Equation and Vlasov-Fokker-Planck
Equation II

The density of the particles ηε(t, x) is related to the probability
distribution function fε(t, x , ξ) through the relation

ηε(t, x) =

∫
R3

fε(t, x , ξ) dξ.



Confinement Hypotheses

Take Φ : Ω 7→ R+ where Ω is a C 2,ν domain.
Bounded Domain

I Φ is bounded and Lipschitz on Ω.

I β 6= 0.

I The sub-level sets [Φ < k] are connected in Ω for all k > 0.

Unbounded Domain

I Φ ∈W 1,∞
loc (Ω).

I β > 0.

I The sub-level sets [Φ < k] are connected in Ω for all k > 0.

I e−Φ/2 ∈ L1(Ω).

I |∆xΦ(x)| ≤ c1|∇xΦ(x)| ≤ c2Φ(x) for x with sufficiently large
magnitude.



Weak Formulation

Carrillo et al. (2010) established the existence of renormalized weak
solutions in the following sense:

Definition
Assume that Φ,Ω satisfy the confinement hypotheses. Then {%,u, η}
represent a renormalized weak solution to (1)-(4) if and only if

I % ≥ 0,u represent a renormalized solution of (1),

I equations (2) and (3) are satisfied in the sense of distributions,

I inequality (4) is satisfied for all τ ∈ [0,T ], and

I all the weak formulations are well-defined, that is,
% ∈ C ([0,T ]; L1(Ω)) ∩ L∞(0,T ; Lγ(Ω)), u ∈ L2(0,T ; W 1,2

0 (Ω;R3)),

and η ∈ L2(0,T ; L3(Ω)) ∩ L1(0,T ; W 1, 3
2 (Ω)).



Weak Existence

I This existence result of Carrillo et al. was established by
implementing a time-discretization approximation supplemented with
an artificial pressure approximation.

I Their paper also handles the case of unbounded domains and proves
the convergence to a steady-state solution as t →∞.



Entropy/Entropy Flux Pairs

For simplicity, consider the hyperbolic equation for a one-dimensional
spatial domain equation

∂tU + ∂xG (U) = 0 (9)

Examples include the inviscid Burgers’ equation (G (U) = 1
2 U2). Consider

functions E(U, x , t) and Q(U, x , t) such that

DQ = DEDG

E is called an entropy and Q and entropy flux for (9). Together, they are
called an entropy/entropy flux pair.
If (9) has such a pair,

∂tE + ∂xQ ≤ 0.

For smooth solutions, the above inequality becomes an equality.



Relative Entropy

Consider
∂tU + ∂xG (U) = 0

endowed with an entropy/entropy-flux pair (E ,Q). We define the relative
entropy H(U|U) as

H(U|U) := E(U)− E(U)− DE(U)(U − U) (10)

Note that this definition will only consider quadratic terms, but not linear
terms in the entropy.
We choose this definition because if we have that c1, c2 > 0 and D2E
positive definite such that

c1I ≤ D2E ≤ c2I,

then there are c3, c4 > 0 such that

c3|U − U|2 ≤ H(U|U) ≤ c4|U − U|2.



Weakly Dissipative Solutions I

Next, we define a stronger version of solution:

Definition (Weakly Dissipative Solutions)
{%,u, η} are called a weak dissipative solution to the NSS system if and
only if

I {%,u, η} form a renormalized weak solution with the energy
inequality∫

Ω

1

2
%|u|2 +

a

γ − 1
%γ + η ln η + ηΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu + |2∇x
√
η +
√
η∇xΦ|2 dx dt

≤
∫

Ω

1

2
%0|u0|2 +

a

γ − 1
%γ0 + η0 ln η0 + η0Φ dx

− β
∫ τ

0

∫
Ω

%u · ∇xΦ dx dt (11)

satisfied for all τ .



Weakly Dissipative Solutions II

Definition (Weakly Dissipative Solutions)

I for all suitably smooth solutions {r ,U, s} of the NSS system, the
following relative entropy inequality holds for all τ .

∫
Ω

1

2
%|u−U|2 + EF (%, r) + EP(η, s) dx(τ)

+

∫ τ

0

∫
Ω

[S(∇xu)− S(∇xU)] : ∇x(u−U) dx dt

≤
∫

Ω

1

2
%0|u0 −U0|2 + EF (%0, r0) + EP(η0, s0) dx

+

∫ τ

0

R(%,u, η, r ,U, s) dt (12)



Remainder Term
The remainder term in (12) has the form

R(%,u, η, r ,U, s)

:=

∫
Ω

divx(S(∇xU)) · (U− u) dx −
∫

Ω

%(∂tU + u · ∇xU) · (u−U) dx

−
∫

Ω

∂tPF (r)(%− r) +∇xPF (r) · (%u− rU) dx

−
∫

Ω

[%(PF (%)− PF (r))− EF (%, r)]divxU dx

−
∫

Ω

∂tPP(s)(η − s) +∇xPP(s) · (ηu− sU) dx

−
∫

Ω

[η(PP(η)− PP(s))− EP(η, s)]divxU dx

−
∫

Ω

∇x(PP(η)− PP(s)) · (∇xη + η∇xΦ) dx

−
∫

Ω

[
(β%+ η)∇xΦ +

η∇xs

s

]
· (u−U) dx



Approximation Scheme

A three-level approximation scheme is employed

I Artificial pressure parameterized by small δ

I Vanishing viscosity parameterized by small ε

I Faedo-Galerkin approximation where test functions for the
momentum equation are taken from n-dimensional function spaces
Xn of smooth functions on Ω



Approximate System

∂t%n + divx(%nun) = ε∆x%n (13)

∂tηn + divx(ηnun − ηn∇xΦ) = ∆xηn (14)∫
Ω

∂t(%nun) ·w dx =

∫
Ω

%nun ⊗ un : ∇xw + (a%γn + ηn + δ%αn )divxw dx

−
∫

Ω

S(∇xun) : ∇xw + ε∇x%n · ∇xun ·w dx −
∫

Ω

(β%n + ηn)∇xΦ ·w dx

(15)

with the additional conditions

∇x%n · n = 0 on (0,T )× ∂Ω

un = (∇xηn + ηn∇xΦ) · n = 0 on (0,T )× ∂Ω



Existence of Approximate Solutions

I Existence of un is obtained from the Faedo-Galerkin approximation
and an iteration argument in the spirit of Feireisl.

I %n, ηn obtained from un using fixed point arguments in the spirit of
Ladyzhenskaya.



Approximate Energy Inequality

Using un as a test function in (15) and some straight-forward
manipulations:∫

Ω

1

2
%n|un|2 +

a

γ − 1
%γn +

δ

α− 1
%αn + ηn ln ηn + ηnΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xun) : ∇xun + |2∇x
√
ηn +

√
ηn∇xΦ|2 dx dt

+ ε

∫ τ

0

∫
Ω

|∇x%n|2(aγ%γ−2
n + δa%α−2

n ) dx dt

≤
∫

Ω

1

2
%0,δ|u0,δ|2 +

a

γ − 1
%γ0,δ +

δ

α− 1
%α0,δ + η0,δ ln η0,δ + η0,δΦ dx

− β
∫ τ

0

∫
Ω

%nun · ∇xΦ dx dt (16)



Uniform Bounds

From the energy inequality, we find that

{u}n,ε,δ ∈b L2(0,T ; W 1,2
0 (Ω;R3))

{√%u}n,ε,δ ∈b L∞(0,T ; L2(Ω;R3))

{%}n,ε,δ ∈b L∞(0,T ; Lγ(Ω))

{η ln η}n,ε,δ ∈b L∞(0,T ; L1(Ω))

{∇x
√
η}n,ε,δ ∈b L2(0,T ; L2(Ω;R3))

{η}n,ε,δ ∈b L2(0,T ; W 1, 3
2 (Ω))



Faedo-Galerkin Limit I
I From the approximate energy balance, the term

εδ

∫ T

0

∫
Ω

|∇x%n|2%α−2
n dx dt

is bounded independently of n. Thus by Poincaré’s inequality,

{%}n ∈b L2(0,T ; W 1,2(Ω)).

I From this, ∇x%n · un ∈b L1(0,T ; L3/2(Ω)). To get higher time
integrability, multiply (13) by G ′(%n) where G (%n) := %n ln %n. Then

ε

∫ T

0

∫
Ω

|∇x%n|2

%n
dx dt

is bounded independently of n. Using Hölder’s and interpolation,

{∇x%n · un}n ∈b Lq(0,T ; Lp(Ω))

for some p ∈
(
1, 3

2

)
and q ∈ (1, 2). Thus, %ε,uε obey

∂t%ε + divx(%εuε) = ε∆x%ε.



Faedo-Galerkin Limit II

I Strong convergence of ∇x%n → ∇x%ε follows from letting
G (z) = z2.

I Similar techniques show convergence of ηn → ηε and ∇xηn → ∇xηε
to allow

∂tηε + divx(ηεuε − ηε∇xΦ) = ∆xηε.

I Terms in the momentum equation converge as we want using the
bounds and the above convergences, except for the convective term.

I Convergence of the convective term %nun ⊗ un in Lq((0,T )×Ω;R3)
follows from convergence of %nun and Arzela-Ascoli.

The following lemma is of use throughout the analysis for convergence of
the η terms:

Lemma (Simon)
Let X ⊂ B ⊂ Y be Banach spaces with X ⊂ B compactly. Then, for
1 ≤ p <∞, {v : v ∈ Lp(0,T ; X ), vt ∈ L1(0,T ; Y )} is compactly
embedded in Lp(0,T ; B).

Thus, {η}n,ε → ηδ in L2(0,T ; L3(Ω)).



Vanishing Viscosity Approximation I

∂t%ε + divx(%εuε) = ε∆x%ε (17)

∂tηε + divx(ηεuε − ηε∇xΦ) = ∆xηε (18)∫
Ω

∂t(%εuε) ·w dx =

∫
Ω

%εuε ⊗ uε : ∇xw + (a%γε + ηε + δ%αε )divxw dx

−
∫

Ω

S(∇xuε) : ∇xw + ε∇x%ε · ∇xuε ·w dx −
∫

Ω

(β%ε + ηε)∇xΦ ·w dx

(19)

∇x%ε · n = 0

uε|∂Ω = (∇xηε + ηε∇xΦ) · n|∂Ω = 0



Vanishing Viscosity Approximation II

∫
Ω

1

2
%ε|uε|2 +

a

γ − 1
%γε +

δ

α− 1
%αε + ηε ln ηε + ηεΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xuε) : ∇xuε + |2∇x
√
ηε +

√
ηε∇xΦ|2 dx dt

+ ε

∫ τ

0

∫
Ω

|∇x%ε|2(aγ%γ−2
ε + δa%α−2

ε ) dx dt

≤
∫

Ω

1

2
%0,δ|u0,δ|2 +

a

γ − 1
%γ0,δ +

δ

α− 1
%α0,δ + η0,δ ln η0,δ + η0,δΦ dx

− β
∫ τ

0

∫
Ω

%εuε · ∇xΦ dx dt (20)



Vanishing Viscosity Limit I

I We begin by using the uniform bounds and obtaining weak limits
%δ,uδ, ηδ.

I We show that since
√
ε∇x%ε → 0 in L2(0,T ; L2(Ω;R3)), and using

Arzela-Ascoli, we have that %δ,uδ solve the continuity equation
weakly.

I Similar analysis shows that ηδ,uδ solve the Smoluchowski equation
weakly.



Vanishing Viscosity Limit II

I Convergence of the momentum equation is fairly straight-forward
except for the pressure-related terms. Using the Bogovskii operator
(analogous to an inverse divergence operator) and an appropriate
test function, we find that a%γε + ηε + δ%αε has a weak limit.

I To show this weak limit is a%γδ + ηδ + δ%αδ , we have to show the
strong convergence of the fluid density (strong convergence of the
particle density follows from the lemma of Simon).

I This is obtained by using the test function ψ(t)ζ(x)ϕ1(x) where
ψ ∈ C∞c (0,T ), ζ ∈ C∞c (Ω), ϕ1(x) := ∇x∆−1

x (1Ω%ε), and analysis
involving the double Reisz transform and the Div-Curl Lemma.



Artificial Pressure Approximation I

∫ T

0

∫
Ω

%δB(%δ)(∂tφ+ uδ · ∇xφ) dx dt +

∫
Ω

%0,δB(%0,δ)φ(0, ·) dx

=

∫ T

0

∫
Ω

b(%δ)divxuδφ dx dt (21)∫ T

0

∫
Ω

ηδ∂tφ+ (ηδuδ − ηδ∇xΦ−∇xηδ) · ∇xφ dx dt = −
∫

Ω

η0,δφ(0, ·) dx

(22)∫
Ω

∂t(%δuδ)w dx =

∫
Ω

%δuδ ⊗ uδ : ∇xw + (a%γδ + ηδ + δ%αδ )divxw dx

−
∫

Ω

S(∇xuδ) : ∇xw dx −
∫

Ω

(β%δ + ηδ)∇xΦ ·w dx (23)



Artificial Pressure Approximation II

∫
Ω

1

2
%δ|uδ|2 +

a

γ − 1
%γδ +

δ

α− 1
%αδ + ηδ ln ηδ + ηδΦ dx(τ)

+

∫ τ

0

∫
Ω

S(∇xuδ) : ∇xuδ + |2∇x
√
ηδ +

√
ηδ∇xΦ|2 dx dt

≤
∫

Ω

1

2
%0,δ|u0,δ|2 +

a

γ − 1
%γ0,δ +

δ

α− 1
%α0,δ + η0,δ ln η0,δ + η0,δΦ dx

− β
∫ τ

0

∫
Ω

%δuδ · ∇xΦ dx dt (24)



Artificial Pressure Limit

I Again, from uniform bounds, we are able to obtain the existence of
weak limits %,u, η.

I Much of the difficulty in taking the artificial pressure limit is
controlling the oscillation defect measure for the fluid density %.



Oscillation Defect Measure and Strong Convergence

Definition
Let Q ⊂ Ω and q ≥ 1. Then

oscq[%δ − %](Q) := sup
k≥1

(
lim sup
δ→0+

∫
Q

|Tk(%δ)− Tk(%)|q dx

)
.

Here, {Tk} is a family of appropriately concave cutoff functions.
Using these cutoff functions, we can control the oscillation defect
measure and obtain strong convergence of the fluid density.



Approximate Relative Entropy Inequality

I We formulate an approximate relative entropy inequality for each
fixed n, ε, δ.

I We define smooth functions Um ∈ C 1([0,T ]; Xm) zero on the
boundary and positive rm, sm on [0,T ]× Ω.

I We take un −Um as a test function on the Faedo-Galerkin
approximate momentum equation and perform some calculations to
obtain an approximate relative entropy inequality.

I We take the limits to obtain the relative entropy inequality.



Relative Entropy Inequality

Regularity of r ,U, s are imposed to ensure that all integrals in the
formula for the relative entropy are defined.

r ∈ Cweak([0,T ]; Lγ(Ω))

U ∈ Cweak([0,T ]; L2γ/γ−1(Ω;R3))

∇xU ∈ L2(0,T ; L2(Ω;R3×3)), U|∂Ω = 0

s ∈ Cweak([0,T ]; L1(Ω)) ∩ L1(0,T ; L6γ/γ−3(Ω))

∂tU ∈ L1(0,T ; L2γ/γ−1(Ω;R3)) ∩ L2(0,T ; L6γ/5γ−6(Ω;R3))

∇2
xU ∈ L1(0,T ; L2γ/γ+1(Ω;R3×3×3) ∩ L2(0,T ; L6γ/5γ−6(Ω;R3×3×3))

∂tPF (r) ∈ L1(0,T ; Lγ/γ−1(Ω))

∇xPF (r) ∈ L1(0,T ; L2γ/γ−1(Ω;R3)) ∩ L2(0,T ; L6γ/5γ−6(Ω;R3))

∂tPP(s) ∈ L1(0,T ; L∞(Ω)) ∩ L∞(0,T ; L3/2(Ω))

∇xPP(s) ∈ L∞(0,T ; L3(Ω;R3))

∇xs ∈ L∞(0,T ; L2(Ω;R3)) ∩ L2(0,T ; L6γ/5γ+3(Ω;R3)). (25)



Uniqueness of Weakly Dissipative Solutions

Theorem (Weak-Strong Uniqueness)
Assume {%,u, η} is a weakly dissipative solution of the NSS system.
Assume that {r ,U, s} is a smooth solution of the NSS system with
appropriate regularity with the same initial data. Then {%,u, η} and
{r ,U, s} are identical.

Note that the following hypotheses are imposed on the smooth solutions

∇x r ∈ L2(0,T ; Lq(Ω;R3))

∇2
xU ∈ L2(0,T ; Lq(Ω;R3×3×3))

α := ∇xs + s∇xΦ ∈ L2(0,T ; Lq(Ω;R3)) (26)

where

q > max

{
3,

3

γ − 1

}
The proof involves analysis bounding the remainder terms in terms of the
relative entropy and using Gronwall’s inequality on the result.



Remarks

I The result can be generalized to unbounded spatial domains by
creating a sequence of bounded domains and passing the limits
through using the confinement hypotheses.

I This result does not show the existence of appropriately smooth
{r ,U, s}, which is the focus of current work.

I First, existence of local strong solutions for appropriate initial data
will be shown along the lines of Cho and Kim.

I Second, appropriate blow-up conditions will be formulated that will
enable us to extend the local result to a global result in the style of
Fan, Jian, and Ou.



Local Existence of Strong Solutions

Proof for local-in-time existence requires the following regularity on the
initial data with q ∈ (3, 6]

%0 ∈W 1,q(Ω)

u0 ∈W 1,2
0 (Ω;R3) ∩W 2,2(Ω;R3) (27)

η0 ∈W 1,2
0 (Ω) ∩W 2,2(Ω)

and a vector field h ∈ L2(Ω;R3) satisfying the compatibility conditions

Φ ∈W 2,2(Ω)
√
%0h = ∇x(a%γ0 + η0)− divxS(∇xu0) + η0∇xΦ (28)



Local Existence Result

Theorem (Local In Time Existence)
Consider the NSS system (1)-(3) with the boundary conditions (5),
initial conditions (27) and compatibility conditions (28). Then there
exists a unique solution {%,u, η} such that

% ∈ C ([0,T ]; W 1,q(Ω))

%t ∈ C ([0,T ]; Lq(Ω))

u ∈ C ([0,T ]; W 1,2
0 (Ω;R3) ∩W 2,2(Ω;R3)) ∩ L2(0,T ; W 2,q(Ω;R3))

ut ∈ L2(0,T ; W 1,2
0 (Ω;R3))

η ∈ C ([0,T ]; W 1,2
0 (Ω) ∩W 2,2(Ω)) ∩ L2(0,T ; W 2,q(Ω))

ηt ∈ L2(0,T ; W 1,2
0 (Ω)).

for some finite T > 0.



Linear System

Analysis for local existence of strong solutions uses existence and
estimates on solutions to the linear NSS system

∂t%+ divx(%v) = 0 (29)

∂t(%u) + divx(%v⊗ u) +∇x(a%γ + η)

= µ∆xu + λ∇xdivxu− (β%+ η)∇xΦ (30)

∂tη + divx(ηv− η∇xΦ)−∆xη = 0 (31)

where

v ∈ C ([0,T ]; W 1,2
0 (Ω;R3) ∩W 2,2(Ω;R3)) ∩ L2(0,T ; W 2,q(Ω;R3))

vt ∈ L2(0,T ; W 1,2
0 (Ω;R3)).

We also assume
0 < δ ≤ %0

to approximate the initial fluid density with one that does not have a
vacuum.



Linear Approximation Existence

Using the method of characteristics and classical results on parabolic
equations, we obtain the existence of solutions {%,u, η} to (29)-(31) such
that for some T > 0,

% ∈ C ([0,T ]; W 1,q(Ω)), %t ∈ C ([0,T ]; Lq(Ω))

η ∈ C ([0,T ]; W 1,2
0 (Ω) ∩W 2,2(Ω)) ∩ L2(0,T ; W 2,q(Ω))

ηt ∈ C ([0,T ]; L2(Ω)) ∩ L2(0,T ; W 1,2
0 (Ω))

ηtt ∈ L2(0,T ; W−1,2(Ω))

u ∈ C ([0,T ]; W 1,2
0 (Ω;R3) ∩W 2,2(Ω;R3)) ∩ L2(0,T ; W 2,q(Ω;R3))

ut ∈ C ([0,T ]; L2(Ω;R3)) ∩ L2(0,T ; W 1,2
0 (Ω;R3))

utt ∈ L2(0,T ; W−1,2(Ω;R3)).



Uniform Bounds

In order to be able to pass through the limit of δ → 0, we obtain the
bounds uniform in δ on various quantities. Key among them are the ones
on fluid density % and pressure a%γ + η below.

‖%(t)‖W 1,q(Ω) ≤ Cc0

‖%t(t)‖Lq(Ω) ≤ Cc2

P(%, η)(t) is continuous on Ω

‖∇xP(%, η)(t)‖Lq(Ω;R3) ≤ Cc0 + cg

‖∂tP(%, η)(t)‖L2(Ω) ≤ Cc2 + cg

The pressure bounds are used to obtain δ-independent bounds on u, and
then the analysis follows that of Cho and Kim.



Vacuum Case

Because of the uniform bounds, we can take δ → 0, eliminating the
positive lower bound for %0.

I For each δ, a positive initial density %δ0 := %0 + δ and an
approximation for h, hδ is defined. Because of the uniform-in-δ
bounds, we find a solution {%,u, η} to the linear problem.

I These solutions are shown to converge to a solution of the linear
problem with the following regularity.



Regularity of Linear-Vacuum System Solutions

% ∈ C ([0,T ]; W 1,q(Ω)), %t ∈ C ([0,T ]; Lq(Ω))

η ∈ C ([0,T ]; W 1,2
0 (Ω) ∩W 2,2(Ω)) ∩ L2(0,T ; W 2,q(Ω))

ηt ∈ L2(0,T ; W 1,2
0 (Ω))

u ∈ C ([0,T ]; W 1,2
0 (Ω;R3) ∩W 2,2(Ω;R3)) ∩ L2(0,T ; W 2,q(Ω;R3))

ηt ∈ L2(0,T ; W 1,2
0 (Ω;R3))

√
%ut ∈ L∞(0,T ; L2(Ω;R3)). (32)



Solutions to Nonlinear System

To find solutions to the nonlinear system, we find a sequence of solutions
to the linear system with a sequence of functions {vk} defined
inductively.

I v0 solves the initial value problem

∂tw−∆xw = 0, w(0, ·) = u0

I vk+1 = uk where uk solves the linear system using vk for v.

I Using this induction, we get a sequence of solutions {%k ,uk , ηk}
that converge to some {%,u, η} which are smooth and solve the
nonlinear system (1)-(3) for some finite time T > 0.

I Combined with the weak-strong uniqueness result, we know that if
the initial data have compatibility conditions (27)-(28), then there is
a unique smooth solution for some finite time.



Conclusion

I We have given another proof of the existence of renormalized
solutions to the NSS system, albeit with a slightly different energy
inequality. The key aspect of this class of solution is that it obeys
the relative entropy inequality.

I If there is a solution with regularity given in (25)-(26), then there is
only one weakly dissipative solution.

I If the initial data satisfy (27) and (28), then there is a unique strong
solution for finite time.

I It remains to develop blow-up conditions for the NSS system.
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