Presentation Problems 5

21-355 A

For these problems, assume all sets are subsets of R unless otherwise speci-
fied.

1. Let P and @ be partitions of [a,b] such that P C Q. Then U(f, P) >
U(f,Q) and L(f, P) < L(f,Q). Use this to show that for any partitions
Py and P of [a,b] that L(f, P1) < U(f, P»).

Proof. First, we will prove that U(f, P) > U(f,Q) and L(f, P) < L(f, Q).
Let [xg—1, ] be an subinterval of P and suppose there exists z € @ such
that xp_1 < 2z < z;. Denote

My, = sup{f(z): x € [xp_1, 2]}
M] = sup{f(2) : 2 € [z 1, ]}
M =sup{f(z): z € [z, 2k]}

It follows that My > M|, and M > M,/, and we have that

MypAy = My (x), — x5-1)
= Mk(ajk —zZ+z— zk—l)
= My(zr — 2) + Mi(z — x5-1)
> M (zg — 2) + My(z — x5_1)

Further, we can employ induction to prove this fact for any finite number
of points in this interval [zf_1, k] that are also in . As such, we know
that the upper sum cannot get larger when we add more points to a
partition. That is U(f, P) > U(f, Q).

Similarly, denote

my, = inf{f(z) : z € [xp_1,zx]}
my, =inf{f(z) : x € [z_1, 2]}
my =inf{f(x): x € [z, 23]}



It follows that m; < mj, and m; < mj/, and we have that

mipAp = my(Tr — Tp—1)
=mp(ry — 2+ 2—Tp_1)
=mg(zr — 2) + m(z — Tp—1)
(

<mi(zk —2) + mp(z — xp_1)

Then the lower sum cannot get smaller when we add more points to a
partition. That is L(f, P) < L(f, Q).

Consider partitions P; and P» of [a,b]. Define @ = PyUP,. Then P C Q
and P, C @. Then by our previously proved fact

O

. Let f: [a,b] = R be bounded. Then f is integrable on [a, 8] if and only if
for all € > 0, there exists some partition P. of [a, b] such that

U(f7ps)_L(f1P€) <e.

Proof. (<) Let € > 0. Then by assumption, there exists some partition
P, such that

U(fvpe)*L(f,Pe) < e

However, U(f) < U(f,P.). L(f) > L(f,P.). Then, U(f) — L(f) <
U(f,P.) — L(f,P.) < e. Thus, 0 < U(f) — L(f) < € for all ¢ > 0, so
U(f) = L(f), and thus f is integrable.

(=) Since U(f) is the infimum of all the upper sums, for ¢ > 0, we can
find P such that U(f, P1) < U(f) + §. Similarly, we can find P, such
that L(f, P») > L(f) — §. Now, we can define P. = P; U P,. Then,

U(f, Pe) = L(f, Pe) <U(f, Pr) = L(f, P)

<U(f) +5 - (L) - 5)

_|_

N
N ™

because f is integrable, U(f) = L(f)

—€



3. Let f: [a,b] = R be bounded. Then f is integrable on [a, ] if and only if
there exists some sequence of partitions (P,) of [a, b] such that
Proof. (=) Let € > 0,3 some natural number N such that U(f, Py) —

L(f,Py) < € It follows from the result of problem number 2 that f is
integrable

(<) Assume f is integrable so P, is a sequence of p guaranteed that
U(f,P,) — L(f,P,) < 1/n then it follows from the result of problem
number 2 that there exists P, such that

limy o0 U(f, Pp) — L(f, P,) = 0

4. Let f: [a,b] — R be increasing. Then f is integrable on [a, b].

Proof. Since f : [a,b] — R is an increasing function, f(a) < f(x) < f(b)
for all « € [a,b]. Therefore, f is bounded on [a, b].

Let d = b_T“. Let P, be a finite set of points {xg, 1, x2, ...., z, } such that
2x = a+ kd. Then P, is a partition of [a,b] because a = 29 < a+d =
r1<a+2d=x2<...<a+nd=x, =b. Since [ is increasing, we have

myp = inf  f(2) = fzr-1).
TE[TR—1,Tk]

My = sup f(z)= f(zx)-

TE[TK—1,Tk]

Therefore,
UG, P) = 3 Milok —m1) = 7 fa)
k=1 k=1
LU P =S milwn — an1) = =25 fonon)
k=1 k=1



And

lim U(f,P,) — L(f,P,) = lim

ree ree ( k=1 k=1
i (5 - 350 0)
k=1 k=1
- i (5 (S pe0 - X s6a0)
k=1 k=0
= tim (227 — F(ao))
— lim ((bfa)(f b) ff(a)))

Therefore, by Presentation 5 Problem 3, we have f is integrable on [a, b].
O

. Let f : [a,b] — R be continuous. Then f is integrable on [a, b].

Proof. Let f : [a,b] — R be continuous

Notice that [a, b] is compact, therefore f is uniformly continuous.

Arbitrarily pick € > 0

36 > 0 such that |z —y| < d = |f(z) — f(y)| < ¢/(b—a)

Now let P be a partition of [a, b] where the distance between any consec-

utive term is smaller than §

Given a particular subinterval [zy_1, zx] of the P

Based on the extreme value theorem, the function achieves extreme value

somewhere in the bound.

Hence M}, = f(zy) for some z;, € [xg_1, 2] and also my = f(yx) for some

Yk € [Th—1, Tk

Since |z — xk—1| < 0 and zg, yx € [Tr—1, Tk

|2k — yk| <O

So My, —my = f(z) — flyr) < ¢/(b—a)
U(f,P) = L(f, P) = 2oy (My — mp)(xk — @x—-1)

<X, e/(b— a) x (2 — 2x1)

=¢/(b—a)x(b—a)

=€

Hence U(f,P) — L(f,P) <e

Therefore f is integrable. O

. Let f, g be integrable on [a, b] and let o, 8 € R. Then af 4 B¢ is integrable
on [a,b] and

/abaf—kﬂgdx:a/abfdx—kﬁ/abgdx.

4



Proof. Since f,g are integrable, by presentation problem 3, we know there
exists sequence of partitions (P,), (@Qn) s.t.

n—oo

Then, we can create a sequence of partitions (K,) = (P, U Q). Since
P, C K, and Q, C K, we know (by problem 1):

o L(f, Pn) < L(f, Kn) SU(f, Kn) SU(f, Pa)

e L(g,Qn) < L(g, Kn) < U(g, Kn) <U(9,Qn)

which means:

U(.fa K’n) - L(.fv Kn) < U(fa Pn) - L(fa Pn) and U(gv Kn) - L(97Kn) <
U(ga Qn) - L(ga Qn)

Because U(f, K,)—L(f, K,,) > 0 while it is less than or equal to U(f, P,)—
L(f, Py), the lim,, o [U(f, Ky,) — L(f, K,)] is squeezed to 0; it is the same
case for lim,,—,[U(g, Ky,) — L(g, K,,)] = 0.

Using Algebratic Limit Thm, we obtain lim,,—, o U(f, K,,) = lim,, o0 L(f, Ky)
and lim, o U(g, K,) = lim, o L(g, K).

Lemma: Ul(af + 8g,P) = aX(f,P) + BY (g, P), where X = U if
a >0, X = L otherwise, and Y = U if § > 0, Y = L otherwise. And vice
verse for L(af + By, P).

Proof: We know that if A CR and cA:={c-a|a € A}, thenif ¢ > 0,
supcA = csup A and inf cA = cinf A, but if ¢ < 0 then supcA = cinf A
and inf cA = csup A.

So if f(x) = a- g(z) for some ¢ > 0 € R and g: R +— R, then

my = inf{f(z) | z € [zk_1,zx]} = inf{a- g(x) | © € [xp—1, 2]} = ainf{g(x) | = € [xK—1, 24|}
My = sup{f(z) | 2 € [2_1,24]} = supla- g(z) | = € [zn_1, 4]} = asup{g(z) | = € [2x_1, 74]}

L(f,P) = ka Tp — Tp—1) Zalnf{g | © € [xp—1,xk]}(zK — 2R=1) = aL(g, P)
k=1

U(f,P)= ZM’“ Tp — Tp—1) Zasup{g | © € [xg—1,2k) H(xr — 2—1) = aU(g, P)
k=1
And if f(z) = a- g(x) for some a <0 € R and g : R — R, then

L(fvp)zzmk (T — Tp—1) ZGSHP{Q ) | @ € [we—1, xi]}(2k — 2p—1) = aU(g, P)
k=1

U(f,P)= ZMk Tk — Th—1) Zalnf{g | z € k1, 2z} (2 — 2k—1) = aL(g, P)
k=1



So we have scalar multiplication of L and U, with the property we are try-
ing to show. Also on a homework problem, we went over that suprema add,
which can be used to say that infima add as well. Thus, U and L satisfy the
claim. Now we will resume the proof. 0.

HIEI;O[U(O[JC + 597 Kn) - L(af + Bg, Kn)]
= lim U(af + Bg, Ky) — lim L(af + Bg, Kn)
n—r00 n—00
= lim U(af,K,)+ lim U(Bg, K,)— lim L(af, K,)— lim L(B8g, K,)
n—oo n—oo n—o00 n—oo
Now we will case on « and 8 being greater than or equal to zero.
If a > 0 and 5 < 0 then
nll_)II;o[U(Oéf + ﬁg7 Kn) - L(O[f + ﬂg7 Kn)]
= lim U(af,K,)+ lim U(Bg, K,,) — lim L(af, K,)— lim L(Bg, K,)
n—o00 n—o0 n—o00 n—o0
=a lim U(f,K,)+ 8 lim L(g9,K,) —« lim U(f,K,)— 8 lim L(g,K,)=0
n— 00 n— o0 n— oo n— o0
Similarly, if & < 0 and 8 > 0, then
Jim [U(af + Bg, Kn) — L(af + By, Kn)]
= lim U(af,K,)+ lim U(Bg, K,,) — lim L(af, K,)— lim L(Bg, K,)
n—oo n—oo n—oo n—oo
=a lim L(f,K,)+ B lim U(g,K,) —« lim L(f,K,)—p lim U(g,K,)=0
n—oo n—oo n—oo n—oo
If both are less than 0, then
Jim [U(af + Bg, Kn) — L(af + By, Kn)]
= lim U(af,K,)+ lim U(Bg, K,,) — lim L(af, K,)— lim L(Bg, K,)
n—o00 n—o0 n—o00 n—o0
=« lim L(f,K,)+ B lim L(g9,K,) —«a lim U(f,K,)— 8 lim U(g,K,) =0
n— o0 n— oo n—oo n—00
= —a( lim U(f, Kn) - lim L(f, K,)) - 6( lim U(g, Kn) — lim L(g, Kn))
If both are greater than 0, then
Jim [U(af + By, Kn) = L(af + Bg, Kn)]
= lim U(af,K,)+ lim U(Bg, K,,) — lim L(af, K,)— lim L(Bg, K,)
n—oo n—oo n—oo n—oo
=a lim U(f,K,)+ 8 lim U(g,K,) —« lim L(f,K,)—p lim L(g,K,)=0
n—oo n—oo n—oo n—oo
= O‘(nlgrolo U(f, Kn) — nlggo L(f, Kn)) + /B(nlggo Ulg, Kn) — RILIEOL(Q’ Ky))
= a lim [U(f, K») = L(f, Kn)] + 8 lim [U(g, Kn) = L(g, K»)]
=a-0+8-0=0



Since in all cases the limit is zero, we have that af + g is integrable.

Since
b

fdr= lim U(f, K,)
n—oo

a

and

b
/ gdx = lim U(g, K,)
a n—oo

Given af 4 (g is integrable, we know that fab fdx = L(f,K,)=U(f, K,)
and fab gdx = L(g,K,) = U(g, K,). Thus, we can say

b

[ar+sgds = lm Ulaf +89.K,)

a lim X(f,K,)+ 8 lim Y(g,K,)
n—roo n—oo

b b
a/ fdx+ ﬁ/ gdr  since X, Y are either U or L
a a

O

7. Let f, g be integrable on [a, ]
(a) If m < f(z) < M for all x € [a,b], then

m(b— a) </bf dz < M(b—a).
Proof. Recall that
L(f) = sup {L(f, P) : P € P([a,b])}

U(f) =inf {U(f,P): P €P([a,b])}
Let P € P([a,b]) where |P| =n.
Then by definition of supremum and infimum, we have

L(f,P) < L(f) <U(f) <U(f,P)

By definition, we know that

n

L(f7 P) = ka(xk — .’L‘k_l)



where
my =inf {f(z) : z € [xp_1,zk]}

My =sup {f(z) : x € [xp_1, x|}
Since M, m are upper and lower bounds on f, we have that
m < mg

My <M

Then we can see that

L(f,P) = mx(wr — 2x_1)
k=1

k=1
= m(x, — x9)
=m(b—a)

By definition of integrability, we know that

b
L(f) = / fde = U(f)
It follows that

m(b—a)g/bfdeM(b—a)

(b) If f(z) < g(x) on [a,b], then

b b
/fdxg/ g dz.



Proof. Since f(z) < g(x), we know that
h@) = f(2) — g(x) <0

Then by part (a), we know that

/ /f 9)dz<0-(b—a)=0

By linearity, we know that

[(f—g)dw/ffdm—[gdm

b b

/fdx—/gdeO
b b
/fdacg/gdx

(c) |f| is integrable on [a,b] and

/abfdx s/abm da.

Proof. First, we prove that |f| is integrable Let P = {zq,21,...,2Zn}
be an arbitrary partition of [a, b].

It follows that

SO

Claim: We show that for any interval I, = [zr_1, 2],
sup || — inf || < sup f — inf
Iy Iy I Iy

Proof: By the triangle inequality, for any x,y € I,

[f@)] = 1fW)] < 1f(2) = f()

Since
Lf(@)|=1f )] < [f(x)=f(y)] = max{f(z), f(y)}—min{f(z), f(y)} < S}lpf—i}}cff
then supy, f — infy, f is an upper bound on |f(x)] ~ |7(y)] and 50
sup{[f(z)| — [f(y)| : x,y € I} < S}lpf - igff

Since

sup{|f(2)| = [f(Y)| : 2,y € Ik} = S}lp|f| — inf|f|



the claim holds.
So we have, for all k =1,...,n,

sup |f| —inf | f| < sup f —inf f
Iy I Iy I

> (sup | f| —inf |f)(zx — xp—1) <D (sup f —inf f)(z) —zp1)
=1 Ik T k=1 & L
U(If,P) = L(|f,P) < U(f,P) = L(f, P)
By the theorem from class, a function g is integrable on [a, ] if and

only if for all € > 0, there exists P, € P such that U(g, P.)—L(g, P.) <
€.

3

We are given that it holds for f. For arbitrary e > 0, we know that
U(lfl, P.) — L(|f], P.) <U(f,P.) — L(f, P.) < ¢, so it also holds for
|f|. Therefore, |f]| is integrable on [a, b].

Next, since |f| is integrable,

—[f(@)] < fz) < [f(2)]
Then by part (b), we know that

/ab—fldwé/abfdxé/:lfldx

By linearity, we have

/:Ifldxé/abfdxé/ablfdr
L]

8. Let (f,) be a sequence of real-valued functions on [a, b] integrable on [a, b].
If f, — f uniformly on [a, b], then f is integrable on [a, b] and

It follows that

|f| de
O

lim fn dzf/ f dz.

n—oo
Proof. We will begin by showing that f is bounded on [a, b]. Since f,, — f
uniformly, for any € > 0 there exists an N € NT such that for all n > N,
x € [a,b], we have |f,(z) — f(x)] < e. Let € =1 be arbitrary and choose

an M > N that is guaranteed by our assertion. f, is integrable for any
function in our sequence so we also know it is bounded. Then let us choose

10



a B > 0 that is guaranteed by this property, giving us |f(z)| < B for all
x € [a,b]. Then by the Triangle Inequality,

[f(@)] = [f(@) = far(2) + far (0)] < | (@) = far (@) + [faa ()] =
[f(@)] = [ far (@) < [f(2) = fu(z)] <1

Adding |far(z)| to both sides of the outermost inequality gives us

[f(@)] <1+ [fu ()

This holds for any = € [a, b], so we have proven that f is bounded as well.

Let € > 0 be arbitrary. Again, since f,, — f uniformly, there exists
an N € N such that |f,(z) — f(z)|] < T (for all n > N, and all

x € [a,b]. Choose an M > N. Then f), is integrable by assumption. By
our integrability criterion, we know there is a partition P. € Pla,b] (let
the number of components in the partition be P := |P.|) such that

p p p
U(fm, Pe)—L(fm, Pe) = Z MfM,k(xk—xk—l)—Z My k(T —2K-1) = Z(MfM,K_MfM7K)(xk_xk—l)
k=1 k=1 k=1

Now, since M > N, we have that | fa(z) — f(z)| < Ty forallz e [a,b].
For such x, by properties of absolute values,

€ €

16— IO G

fu(x) —

By the fact that every upper integral over a function is at least equal to
the lower integral,

€

Mk T gy =) < Tk S Mypp < Myy k+

4b—a)

By using the definitions of upper and lower integrals,

P P
U(f,P.) = L(f,P.) =Y Mpg(wr — vx-1) — Y mypn(zp — 251
k=1

k=1

Combine the sums: the above is equivalent to

p
Z My —myp) (@ — Tp—1)
k=1

11



By our above chain of inequalities,

kz: My p—my k) (Tp—Tr-1) i ((MfM,k + 4(b6—a)) - (me,k - 4(b6—a)) (g xk_1)> =

k=1

p p
2e
;(MfM,k - me,k)(xk — Tp-1t Z: m(xk - xkfl) <

5+

M\m

As aresult, U(f, P.)— L(f, P.) < € for an arbitrary e. By our integrability
criteria (Problem 2, Presentation Set 5), f is integrable on [a, b]. It remains

to show that f[f fdr = lim,_ s f; fndz. Let € > 0 be arbitrary. Since
Jn — f uniformly, there exists an N € N such that |f,(z) — f(z)| < 3%
for all n € N such that n > N and z € [a,b]. As a result of linearity of
integration (Problem 6, Presentation Set 5):

/abfndx—/abfdx

for all such n. Then by Problem 7, Presentation Set 5, we obtain the
absolute value bounds

L?n—wa

Since € was arbitrary, we conclude that lim,, ‘ f:( fn — f)da:‘ =0, and

Lﬂn—fo

b b, c
< _ —(b— _
_/a | fr f|d3:</a bfadx (b a)b—a €

by properties of absolute values we acquire lim,, ., fab fndx = ff fdzx., as
desired. O

. Let A C R be countable. Then A has measure zero. (Note: the converse
is not true.)

Proof. Suppose A = {z,} where n =1,2,3,...,00
Let € > 0, define open intervals

I, = (n — 5752, Tn + 5ayz) Where n =1,2,3, ..., 00

Then the length of each interval £(I,,) = 525
And Ac | I,

n=1

12



10.

11.

We get 07, €)= Y00, e < ¢
Therefore if A C R is countable, then A has measure zero. O

Let {Ax}7_, be a finite collection of sets of measure zero. Show that
n
U 4
k=1

also has measure zero.

Proof. Let € > 0. Since each Ay is of measure zero, then for <, there

exists a collection of open intervals {Oy,, } for each A such that

Ay C O,

1

m

T C8

and

> €
> Ok, < =
m=1 n

Then

n n
JacU
k=1 k=1

s

Ok,
1

m

and

> Y 0k, <n() =e

k=1m=1

because each collection of open intervals is countable, so the unions and
summations are all well defined. Thus [ J;_; Ax has measure zero. O

Let f : [a,b] — R be continuous. Then there exists ¢ € (a,b) such that

[ rae= s

Proof. Let f : [a,b] — R be continuous.
Define

F(z) := / " r) ar.

Thus, F' is continuous on [a, b].

13



If f is continuous at ¢, then F is differentiable at ¢ and F'(¢) = f(c). Thus
for all ¢ € (a,b), F'(c) = f(c).

Since F' is continuous on [a, b] and differentiable on (a,b), we can invoke
the Mean Value Theorem. Thus there exists ¢ € (a,b) such that

Fl(c) = F(bl)) : f(a)
b a b
== (/ f(®) dt—/a £(#) dt) :ﬁ/ F(t) dt.
So we have
1 b
J&) =P = [ s

or

14



