Presentation Problems 5

21-355 A

For these problems, assume all sets are subsets of \mathbb{R} unless otherwise specified.

1. Let P and Q be partitions of $[a, b]$ such that $P \subseteq Q$. Then $U(f, P) \geq$ $U(f, Q)$ and $L(f, P) \leq L(f, Q)$. Use this to show that for any partitions P_{1} and P_{2} of $[a, b]$ that $L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right)$.

Proof. First, we will prove that $U(f, P) \geq U(f, Q)$ and $L(f, P) \leq L(f, Q)$. Let $\left[x_{k-1}, x_{k}\right]$ be an subinterval of P and suppose there exists $z \in Q$ such that $x_{k-1}<z<x_{k}$. Denote

$$
\left\{\begin{array}{l}
M_{k}=\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \\
M_{k}^{\prime}=\sup \left\{f(x): x \in\left[x_{k-1}, z\right]\right\} \\
M_{k}^{\prime \prime}=\sup \left\{f(x): x \in\left[z, x_{k}\right]\right\}
\end{array}\right.
$$

It follows that $M_{k} \geq M_{k}^{\prime}$ and $M_{k} \geq M_{k}^{\prime \prime}$, and we have that

$$
\begin{aligned}
M_{k} \Delta_{k} & =M_{k}\left(x_{k}-x_{k-1}\right) \\
& =M_{k}\left(x_{k}-z+z-x_{k-1}\right) \\
& =M_{k}\left(x_{k}-z\right)+M_{k}\left(z-x_{k-1}\right) \\
& \geq M_{k}^{\prime \prime}\left(x_{k}-z\right)+M_{k}^{\prime}\left(z-x_{k-1}\right)
\end{aligned}
$$

Further, we can employ induction to prove this fact for any finite number of points in this interval $\left[x_{k-1}, x_{k}\right]$ that are also in Q. As such, we know that the upper sum cannot get larger when we add more points to a partition. That is $U(f, P) \geq U(f, Q)$.
Similarly, denote

$$
\left\{\begin{array}{l}
m_{k}=\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \\
m_{k}^{\prime}=\inf \left\{f(x): x \in\left[x_{k-1}, z\right]\right\} \\
m_{k}^{\prime \prime}=\inf \left\{f(x): x \in\left[z, x_{k}\right]\right\}
\end{array}\right.
$$

It follows that $m_{k} \leq m_{k}^{\prime}$ and $m_{k} \leq m_{k}^{\prime \prime}$, and we have that

$$
\begin{aligned}
m_{k} \Delta_{k} & =m_{k}\left(x_{k}-x_{k-1}\right) \\
& =m_{k}\left(x_{k}-z+z-x_{k-1}\right) \\
& =m_{k}\left(x_{k}-z\right)+m_{k}\left(z-x_{k-1}\right) \\
& \leq m_{k}^{\prime \prime}\left(x_{k}-z\right)+m_{k}^{\prime}\left(z-x_{k-1}\right)
\end{aligned}
$$

Then the lower sum cannot get smaller when we add more points to a partition. That is $L(f, P) \leq L(f, Q)$.
Consider partitions P_{1} and P_{2} of $[a, b]$. Define $Q=P_{1} \cup P_{2}$. Then $P_{1} \subseteq Q$ and $P_{2} \subseteq Q$. Then by our previously proved fact

$$
L\left(f, P_{1}\right) \leq L(f, Q) \leq U(f, Q) \leq U\left(f, P_{2}\right)
$$

2. Let $f:[a, b] \mapsto \mathbb{R}$ be bounded. Then f is integrable on $[a, b]$ if and only if for all $\varepsilon>0$, there exists some partition P_{ε} of $[a, b]$ such that

$$
U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon
$$

Proof. (\Leftarrow) Let $\epsilon>0$. Then by assumption, there exists some partition P_{ϵ} such that

$$
U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right)<\epsilon .
$$

However, $U(f) \leq U\left(f, P_{\epsilon}\right)$. $L(f) \geq L\left(f, P_{\epsilon}\right)$. Then, $U(f)-L(f) \leq$ $U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right)<\epsilon$. Thus, $0 \leq U(f)-L(f)<\epsilon$ for all $\epsilon>0$, so $U(f)=L(f)$, and thus f is integrable.
(\Rightarrow) Since $U(f)$ is the infimum of all the upper sums, for $\epsilon>0$, we can find P_{1} such that $U\left(f, P_{1}\right)<U(f)+\frac{\epsilon}{2}$. Similarly, we can find P_{2} such that $L\left(f, P_{2}\right)>L(f)-\frac{\epsilon}{2}$. Now, we can define $P_{\epsilon}=P_{1} \cup P_{2}$. Then,

$$
\begin{aligned}
U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right) & \leq U\left(f, P_{1}\right)-L\left(f, P_{2}\right) \\
& <U(f)+\frac{\epsilon}{2}-\left(L(f)-\frac{\epsilon}{2}\right) \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2}
\end{aligned}
$$

because f is integrable, $U(f)=L(f)$

$$
=\epsilon
$$

3. Let $f:[a, b] \mapsto \mathbb{R}$ be bounded. Then f is integrable on $[a, b]$ if and only if there exists some sequence of partitions $\left(P_{n}\right)$ of $[a, b]$ such that

$$
\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=0
$$

Proof. (\Rightarrow) Let $\epsilon>0, \exists$ some natural number N such that $U\left(f, P_{N}\right)-$ $L\left(f, P_{N}\right)<\epsilon$ It follows from the result of problem number 2 that f is integrable
(\Leftarrow) Assume f is integrable so P_{n} is a sequence of p guaranteed that $U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<1 / n$ then it follows from the result of problem number 2 that there exists P_{n} such that
$\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=0$
4. Let $f:[a, b] \mapsto \mathbb{R}$ be increasing. Then f is integrable on $[a, b]$.

Proof. Since $f:[a, b] \rightarrow \mathbb{R}$ is an increasing function, $f(a) \leq f(x) \leq f(b)$ for all $x \in[a, b]$. Therefore, f is bounded on $[a, b]$.

Let $d=\frac{b-a}{n}$. Let P_{n} be a finite set of points $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $x_{k}=a+k d$. Then P_{n} is a partition of $[a, b]$ because $a=x_{0}<a+d=$ $x_{1}<a+2 d=x_{2}<\ldots<a+n d=x_{n}=b$. Since f is increasing, we have

$$
\begin{aligned}
& m_{k}=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=f\left(x_{k-1}\right) . \\
& M_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=f\left(x_{k}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& U\left(f, P_{n}\right)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)=\frac{b-a}{n} \sum_{k=1}^{n} f\left(x_{k}\right) \\
& L\left(f, P_{n}\right)=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)=\frac{b-a}{n} \sum_{k=1}^{n} f\left(x_{k-1}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\lim _{x \rightarrow \infty} U\left(f, P_{n}\right)-L\left(f, P_{n}\right) & =\lim _{x \rightarrow \infty}\left(\frac{b-a}{n} \sum_{k=1}^{n} f\left(x_{k}\right)-\frac{b-a}{n} \sum_{k=1}^{n} f\left(x_{k-1}\right)\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{b-a}{n}\left(\sum_{k=1}^{n} f\left(x_{k}\right)-\sum_{k=1}^{n} f\left(x_{k-1}\right)\right)\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{b-a}{n}\left(\sum_{k=1}^{n} f\left(x_{k}\right)-\sum_{k=0}^{n-1} f\left(x_{k}\right)\right)\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{b-a}{n}\left(f\left(x_{n}\right)-f\left(x_{0}\right)\right)\right) \\
& =\lim _{x \rightarrow \infty}\left(\frac{(b-a)(f(b)-f(a))}{n}\right) \\
& =0
\end{aligned}
$$

Therefore, by Presentation 5 Problem 3, we have f is integrable on $[a, b]$.
5. Let $f:[a, b] \mapsto \mathbb{R}$ be continuous. Then f is integrable on $[a, b]$.

Proof. Let $f:[a, b] \mapsto \mathbb{R}$ be continuous
Notice that $[a, b]$ is compact, therefore f is uniformly continuous.
Arbitrarily pick $\epsilon>0$
$\exists \delta>0$ such that $|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\epsilon /(b-a)$
Now let P be a partition of $[a, b]$ where the distance between any consecutive term is smaller than δ
Given a particular subinterval $\left[x_{k-1}, x_{k}\right]$ of the P
Based on the extreme value theorem, the function achieves extreme value somewhere in the bound.
Hence $M_{k}=f\left(z_{k}\right)$ for some $z_{k} \in\left[x_{k-1}, x_{k}\right]$ and also $m_{k}=f\left(y_{k}\right)$ for some $y_{k} \in\left[x_{k-1}, x_{k}\right]$
Since $\left|x_{k}-x_{k-1}\right|<\delta$ and $z_{k}, y_{k} \in\left[x_{k-1}, x_{k}\right]$
$\left|z_{k}-y_{k}\right|<\delta$
So $M_{k}-m_{k}=f\left(z_{k}\right)-f\left(y_{k}\right)<\epsilon /(b-a)$
$U(f, P)-L(f, P)=\sum_{k=1}^{n}\left(M_{k}-m_{k}\right)\left(x_{k}-x_{k-1}\right)$
$<\sum_{k=1}^{n} \epsilon /(b-a) *\left(x_{k}-x_{k-1}\right)$
$=\epsilon /(b-a) *(b-a)$
$=\epsilon$
Hence $U(f, P)-L(f, P)<\epsilon$
Therefore f is integrable.
6. Let f, g be integrable on $[a, b]$ and let $\alpha, \beta \in \mathbb{R}$. Then $\alpha f+\beta g$ is integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f+\beta g \mathrm{~d} x=\alpha \int_{a}^{b} f \mathrm{~d} x+\beta \int_{a}^{b} g \mathrm{~d} x
$$

Proof. Since f,g are integrable, by presentation problem 3, we know there exists sequence of partitions $\left(P_{n}\right),\left(Q_{n}\right)$ s.t.

$$
\lim _{n \rightarrow \infty}\left[U\left(f, P_{n}\right)-L\left(f, P_{n}\right)\right]=0 \& \lim _{n \rightarrow \infty}\left[U\left(g, Q_{n}\right)-L\left(g, Q_{n}\right)\right]=0
$$

Then, we can create a sequence of partitions $\left(K_{n}\right)=\left(P_{n} \cup Q_{n}\right)$. Since $P_{n} \subseteq K_{n}$ and $Q_{n} \subseteq K_{n}$, we know (by problem 1):

- $L\left(f, P_{n}\right) \leq L\left(f, K_{n}\right) \leq U\left(f, K_{n}\right) \leq U\left(f, P_{n}\right)$
- $L\left(g, Q_{n}\right) \leq L\left(g, K_{n}\right) \leq U\left(g, K_{n}\right) \leq U\left(g, Q_{n}\right)$
which means:
$U\left(f, K_{n}\right)-L\left(f, K_{n}\right) \leq U\left(f, P_{n}\right)-L\left(f, P_{n}\right)$ and $U\left(g, K_{n}\right)-L\left(g, K_{n}\right) \leq$ $U\left(g, Q_{n}\right)-L\left(g, Q_{n}\right)$.
Because $U\left(f, K_{n}\right)-L\left(f, K_{n}\right) \geq 0$ while it is less than or equal to $U\left(f, P_{n}\right)-$ $L\left(f, P_{n}\right)$, the $\lim _{n \rightarrow \infty}\left[U\left(f, K_{n}\right)-L\left(f, K_{n}\right)\right]$ is squeezed to 0 ; it is the same case for $\lim _{n \rightarrow \infty}\left[U\left(g, K_{n}\right)-L\left(g, K_{n}\right)\right]=0$.
Using Algebratic Limit Thm, we obtain $\lim _{n \rightarrow \infty} U\left(f, K_{n}\right)=\lim _{n \rightarrow \infty} L\left(f, K_{n}\right)$ and $\lim _{n \rightarrow \infty} U\left(g, K_{n}\right)=\lim _{n \rightarrow \infty} L\left(g, K_{n}\right)$.

Lemma: $\quad U(\alpha f+\beta g, P)=\alpha X(f, P)+\beta Y(g, P)$, where $X=U$ if $\alpha>0, X=L$ otherwise, and $Y=U$ if $\beta>0, Y=L$ otherwise. And vice verse for $L(\alpha f+\beta g, P)$.
Proof: We know that if $A \subseteq \mathbb{R}$ and $c A:=\{c \cdot a \mid a \in A\}$, then if $c \geq 0$, $\sup c A=c \sup A$ and $\inf c A=c \inf A$, but if $c<0$ then $\sup c A=c \inf A$ and $\inf c A=c \sup A$.
So if $f(x)=a \cdot g(x)$ for some $a \geq 0 \in \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$, then

$$
\begin{aligned}
& m_{k}=\inf \left\{f(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}=\inf \left\{a \cdot g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}=a \inf \left\{g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\} \\
& M_{k}=\sup \left\{f(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}=\sup \left\{a \cdot g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}=a \sup \left\{g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\} \\
& L(f, P)=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} a \inf \left\{g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k-1}\right)=a L(g, P) \\
& U(f, P)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} a \sup \left\{g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k-1}\right)=a U(g, P)
\end{aligned}
$$

And if $f(x)=a \cdot g(x)$ for some $a<0 \in \mathbb{R}$ and $g: \mathbb{R} \mapsto \mathbb{R}$, then

$$
\begin{aligned}
& L(f, P)=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} a \sup \left\{g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k-1}\right)=a U(g, P) \\
& U(f, P)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} a \inf \left\{g(x) \mid x \in\left[x_{k-1}, x_{k}\right]\right\}\left(x_{k}-x_{k-1}\right)=a L(g, P)
\end{aligned}
$$

So we have scalar multiplication of L and U, with the property we are trying to show. Also on a homework problem, we went over that suprema add, which can be used to say that infima add as well. Thus, U and L satisfy the claim. Now we will resume the proof.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[U\left(\alpha f+\beta g, K_{n}\right)-L\left(\alpha f+\beta g, K_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} U\left(\alpha f+\beta g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\alpha f+\beta g, K_{n}\right) \\
& =\lim _{n \rightarrow \infty} U\left(\alpha f, K_{n}\right)+\lim _{n \rightarrow \infty} U\left(\beta g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\alpha f, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\beta g, K_{n}\right)
\end{aligned}
$$

Now we will case on α and β being greater than or equal to zero.
If $\alpha \geq 0$ and $\beta<0$ then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[U\left(\alpha f+\beta g, K_{n}\right)-L\left(\alpha f+\beta g, K_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} U\left(\alpha f, K_{n}\right)+\lim _{n \rightarrow \infty} U\left(\beta g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\alpha f, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\beta g, K_{n}\right) \\
& =\alpha \lim _{n \rightarrow \infty} U\left(f, K_{n}\right)+\beta \lim _{n \rightarrow \infty} L\left(g, K_{n}\right)-\alpha \lim _{n \rightarrow \infty} U\left(f, K_{n}\right)-\beta \lim _{n \rightarrow \infty} L\left(g, K_{n}\right)=0
\end{aligned}
$$

Similarly, if $\alpha<0$ and $\beta \geq 0$, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[U\left(\alpha f+\beta g, K_{n}\right)-L\left(\alpha f+\beta g, K_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} U\left(\alpha f, K_{n}\right)+\lim _{n \rightarrow \infty} U\left(\beta g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\alpha f, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\beta g, K_{n}\right) \\
& =\alpha \lim _{n \rightarrow \infty} L\left(f, K_{n}\right)+\beta \lim _{n \rightarrow \infty} U\left(g, K_{n}\right)-\alpha \lim _{n \rightarrow \infty} L\left(f, K_{n}\right)-\beta \lim _{n \rightarrow \infty} U\left(g, K_{n}\right)=0
\end{aligned}
$$

If both are less than 0 , then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[U\left(\alpha f+\beta g, K_{n}\right)-L\left(\alpha f+\beta g, K_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} U\left(\alpha f, K_{n}\right)+\lim _{n \rightarrow \infty} U\left(\beta g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\alpha f, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\beta g, K_{n}\right) \\
& =\alpha \lim _{n \rightarrow \infty} L\left(f, K_{n}\right)+\beta \lim _{n \rightarrow \infty} L\left(g, K_{n}\right)-\alpha \lim _{n \rightarrow \infty} U\left(f, K_{n}\right)-\beta \lim _{n \rightarrow \infty} U\left(g, K_{n}\right)=0 \\
& =-\alpha\left(\lim _{n \rightarrow \infty} U\left(f, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(f, K_{n}\right)\right)-\beta\left(\lim _{n \rightarrow \infty} U\left(g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(g, K_{n}\right)\right) \\
& =-\alpha \lim _{n \rightarrow \infty}\left[U\left(f, K_{n}\right)-L\left(f, K_{n}\right)\right]-\beta \lim _{n \rightarrow \infty}\left[U\left(g, K_{n}\right)-L\left(g, K_{n}\right)\right] \\
& =-\alpha \cdot 0-\beta \cdot 0=0
\end{aligned}
$$

If both are greater than 0 , then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left[U\left(\alpha f+\beta g, K_{n}\right)-L\left(\alpha f+\beta g, K_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty} U\left(\alpha f, K_{n}\right)+\lim _{n \rightarrow \infty} U\left(\beta g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\alpha f, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(\beta g, K_{n}\right) \\
& =\alpha \lim _{n \rightarrow \infty} U\left(f, K_{n}\right)+\beta \lim _{n \rightarrow \infty} U\left(g, K_{n}\right)-\alpha \lim _{n \rightarrow \infty} L\left(f, K_{n}\right)-\beta \lim _{n \rightarrow \infty} L\left(g, K_{n}\right)=0 \\
& =\alpha\left(\lim _{n \rightarrow \infty} U\left(f, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(f, K_{n}\right)\right)+\beta\left(\lim _{n \rightarrow \infty} U\left(g, K_{n}\right)-\lim _{n \rightarrow \infty} L\left(g, K_{n}\right)\right) \\
& =\alpha \lim _{n \rightarrow \infty}\left[U\left(f, K_{n}\right)-L\left(f, K_{n}\right)\right]+\beta \lim _{n \rightarrow \infty}\left[U\left(g, K_{n}\right)-L\left(g, K_{n}\right)\right] \\
& =\alpha \cdot 0+\beta \cdot 0=0
\end{aligned}
$$

Since in all cases the limit is zero, we have that $\alpha f+\beta g$ is integrable.
Since

$$
\int_{a}^{b} f d x=\lim _{n \rightarrow \infty} U\left(f, K_{n}\right)
$$

and

$$
\int_{a}^{b} g d x=\lim _{n \rightarrow \infty} U\left(g, K_{n}\right)
$$

Given $\alpha f+\beta g$ is integrable, we know that $\int_{a}^{b} f d x=L\left(f, K_{n}\right)=U\left(f, K_{n}\right)$ and $\int_{a}^{b} g d x=L\left(g, K_{n}\right)=U\left(g, K_{n}\right)$. Thus, we can say

$$
\begin{aligned}
\int_{a}^{b} \alpha f+\beta g d x & =\lim _{n \rightarrow \infty} U\left(\alpha f+\beta g, K_{n}\right) \\
& =\alpha \lim _{n \rightarrow \infty} X\left(f, K_{n}\right)+\beta \lim _{n \rightarrow \infty} Y\left(g, K_{n}\right) \\
& =\alpha \int_{a}^{b} f d x+\beta \int_{a}^{b} g d x \quad \text { since } X, Y \text { are either } U \text { or } L
\end{aligned}
$$

7. Let f, g be integrable on $[a, b]$
(a) If $m \leq f(x) \leq M$ for all $x \in[a, b]$, then

$$
m(b-a) \leq \int_{a}^{b} f \mathrm{~d} x \leq M(b-a)
$$

Proof. Recall that

$$
\begin{aligned}
& L(f)=\sup \{L(f, P): P \in \mathcal{P}([a, b])\} \\
& U(f)=\inf \{U(f, P): P \in \mathcal{P}([a, b])\}
\end{aligned}
$$

Let $P \in \mathcal{P}([a, b])$ where $|P|=n$.
Then by definition of supremum and infimum, we have

$$
L(f, P) \leq L(f) \leq U(f) \leq U(f, P)
$$

By definition, we know that

$$
\begin{aligned}
& L(f, P)=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right) \\
& U(f, P)=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
m_{k} & =\inf \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\} \\
M_{k} & =\sup \left\{f(x): x \in\left[x_{k-1}, x_{k}\right]\right\}
\end{aligned}
$$

Since M, m are upper and lower bounds on f, we have that

$$
\begin{gathered}
m \leq m_{k} \\
M_{k} \leq M
\end{gathered}
$$

Then we can see that

$$
\begin{aligned}
L(f, P) & =\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right) \\
& \geq m \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =m\left(x_{n}-x_{0}\right) \\
& =m(b-a)
\end{aligned}
$$

Similarly, we have that

$$
\begin{aligned}
U(f, P) & =\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right) \\
& \leq M \sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \\
& =M\left(x_{n}-x_{0}\right) \\
& =M(b-a)
\end{aligned}
$$

By definition of integrability, we know that

$$
L(f)=\int_{a}^{b} f d x=U(f)
$$

It follows that

$$
m(b-a) \leq \int_{a}^{b} f d x \leq M(b-a)
$$

(b) If $f(x) \leq g(x)$ on $[a, b]$, then

$$
\int_{a}^{b} f \mathrm{~d} x \leq \int_{a}^{b} g \mathrm{~d} x
$$

Proof. Since $f(x) \leq g(x)$, we know that

$$
h(x)=f(x)-g(x) \leq 0
$$

Then by part (a), we know that

$$
\int_{a}^{b} h=\int_{a}^{b}(f-g) d x \leq 0 \cdot(b-a)=0
$$

By linearity, we know that

$$
\int_{a}^{b}(f-g) d x=\int_{a}^{b} f d x-\int_{a}^{b} g d x
$$

It follows that
so

$$
\begin{gathered}
\int_{a}^{b} f d x-\int_{a}^{b} g d x \leq 0 \\
\int_{a}^{b} f d x \leq \int_{a}^{b} g d x
\end{gathered}
$$

(c) $|f|$ is integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f \mathrm{~d} x\right| \leq \int_{a}^{b}|f| \mathrm{d} x
$$

Proof. First, we prove that $|f|$ is integrable Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be an arbitrary partition of $[a, b]$.
Claim: We show that for any interval $I_{k}=\left[x_{k-1}, x_{k}\right]$,

$$
\sup _{I_{k}}|f|-\inf _{I_{k}}|f| \leq \sup _{I_{k}} f-\inf _{I_{k}} f
$$

Proof: By the triangle inequality, for any $x, y \in I_{k}$,

$$
|f(x)|-|f(y)| \leq|f(x)-f(y)|
$$

Since

$$
|f(x)|-|f(y)| \leq|f(x)-f(y)|=\max \{f(x), f(y)\}-\min \{f(x), f(y)\} \leq \sup _{I_{k}} f-\inf _{I_{k}} f
$$

then $\sup _{I_{k}} f-\inf _{I_{k}} f$ is an upper bound on $|f(x)|-|f(y)|$ and so

$$
\sup \left\{|f(x)|-|f(y)|: x, y \in I_{k}\right\} \leq \sup _{I_{k}} f-\inf _{I_{k}} f
$$

Since

$$
\sup \left\{|f(x)|-|f(y)|: x, y \in I_{k}\right\}=\sup _{I_{k}}|f|-\inf _{I_{k}}|f|
$$

the claim holds.
So we have, for all $k=1, \ldots, n$,

$$
\begin{aligned}
& \sup _{I_{k}}|f|-\inf _{I_{k}}|f| \leq \sup _{I_{k}} f-\inf _{I_{k}} f \\
& \sum_{k=1}^{n}\left(\sup _{I_{k}}|f|-\inf _{I_{k}}|f|\right)\left(x_{k}-x_{k-1}\right) \leq \sum_{k=1}^{n}\left(\sup _{I_{k}} f-\inf _{I_{k}} f\right)\left(x_{k}-x_{k-1}\right) \\
& U(|f|, P)-L(|f|, P) \leq U(f, P)-L(f, P)
\end{aligned}
$$

By the theorem from class, a function g is integrable on $[a, b]$ if and only if for all $\epsilon>0$, there exists $P_{\epsilon} \in \mathcal{P}$ such that $U\left(g, P_{\epsilon}\right)-L\left(g, P_{\epsilon}\right)<$ ϵ.

We are given that it holds for f. For arbitrary $\epsilon>0$, we know that $U\left(|f|, P_{\epsilon}\right)-L\left(|f|, P_{\epsilon}\right) \leq U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right)<\epsilon$, so it also holds for $|f|$. Therefore, $|f|$ is integrable on $[a, b]$.
Next, since $|f|$ is integrable,

$$
-|f(x)| \leq f(x) \leq|f(x)|
$$

Then by part (b), we know that

$$
\int_{a}^{b}-|f| d x \leq \int_{a}^{b} f d x \leq \int_{a}^{b}|f| d x
$$

By linearity, we have

$$
-\int_{a}^{b}|f| d x \leq \int_{a}^{b} f d x \leq \int_{a}^{b}|f| d x
$$

It follows that

$$
\left|\int_{a}^{b} f d x\right| \leq \int_{a}^{b}|f| d x
$$

8. Let $\left(f_{n}\right)$ be a sequence of real-valued functions on $[a, b]$ integrable on $[a, b]$. If $f_{n} \rightarrow f$ uniformly on $[a, b]$, then f is integrable on $[a, b]$ and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} \mathrm{~d} x=\int_{a}^{b} f \mathrm{~d} x
$$

Proof. We will begin by showing that f is bounded on $[a, b]$. Since $f_{n} \rightarrow f$ uniformly, for any $\epsilon>0$ there exists an $N \in \mathbb{N}^{+}$such that for all $n>N$, $x \in[a, b]$, we have $\left|f_{n}(x)-f(x)\right|<\epsilon$. Let $\epsilon=1$ be arbitrary and choose an $M>N$ that is guaranteed by our assertion. f_{n} is integrable for any function in our sequence so we also know it is bounded. Then let us choose
a $B>0$ that is guaranteed by this property, giving us $|f(x)|<B$ for all $x \in[a, b]$. Then by the Triangle Inequality,

$$
\begin{gathered}
|f(x)|=\left|f(x)-f_{M}(x)+f_{M}(x)\right| \leq\left|f(x)-f_{M}(x)\right|+\left|f_{M}(x)\right| \Rightarrow \\
|f(x)|-\left|f_{M}(x)\right| \leq\left|f(x)-f_{M}(x)\right|<1
\end{gathered}
$$

Adding $\left|f_{M}(x)\right|$ to both sides of the outermost inequality gives us

$$
|f(x)|<1+\left|f_{M}(x)\right|
$$

This holds for any $x \in[a, b]$, so we have proven that f is bounded as well.
Let $\epsilon>0$ be arbitrary. Again, since $f_{n} \rightarrow f$ uniformly, there exists an $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{4(b-a)}$ (for all $n>N$, and all $x \in[a, b]$. Choose an $M>N$. Then f_{M} is integrable by assumption. By our integrability criterion, we know there is a partition $P_{\epsilon} \in \mathcal{P}[a, b]$ (let the number of components in the partition be $\left.P:=\left|P_{\epsilon}\right|\right)$ such that
$U\left(f_{M}, P_{\epsilon}\right)-L\left(f_{M}, P_{\epsilon}\right)=\sum_{k=1}^{p} M_{f_{M}, k}\left(x_{k}-x_{k-1}\right)-\sum_{k=1}^{p} M_{f_{M}, k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{p}\left(M_{f_{M}, K}-M_{f_{M}, K}\right)\left(x_{k}-x_{k-1}\right)$
Now, since $M>N$, we have that $\left|f_{M}(x)-f(x)\right|<\frac{\epsilon}{4(a-b)}$ for all $x \in[a, b]$.
For such x, by properties of absolute values,

$$
f_{M}(x)-\frac{\epsilon}{4(b-a)}<f(x)<f_{M}(x)+\frac{\epsilon}{4(b-a)}
$$

By the fact that every upper integral over a function is at least equal to the lower integral,

$$
m_{f_{M}, k}-\frac{\epsilon}{4(b-a)}<m_{f, k} \leq M_{f, k}<M_{f_{M}, k}+\frac{\epsilon}{4(b-a)}
$$

By using the definitions of upper and lower integrals,

$$
U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right)=\sum_{k=1}^{p} M_{f, k}\left(x_{k}-x_{k-1}\right)-\sum_{k=1}^{p} m_{f, k}\left(x_{k}-x_{k-1}\right)
$$

Combine the sums: the above is equivalent to

$$
\sum_{k=1}^{p}\left(M_{f, k}-m_{f, k}\right)\left(x_{k}-x_{k-1}\right)
$$

By our above chain of inequalities,

$$
\begin{gathered}
\sum_{k=1}^{p}\left(M_{f, k}-m_{f, k}\right)\left(x_{k}-x_{k-1}\right) \leq \sum_{k=1}^{p}\left(\left(M_{f_{M}, k}+\frac{\epsilon}{4(b-a)}\right)-\left(m_{f_{M}, k}-\frac{\epsilon}{4(b-a)}\right)\left(x_{k}-x_{k-1}\right)\right)= \\
\sum_{k=1}^{p}\left(M_{f_{M}, k}-m_{f_{M}, k}\right)\left(x_{k}-x_{k-1}+\sum_{k=1}^{p} \frac{2 \epsilon}{4(b-a)}\left(x_{k}-x_{k-1}\right)<\right. \\
\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{gathered}
$$

As a result, $U\left(f, P_{\epsilon}\right)-L\left(f, P_{\epsilon}\right)<\epsilon$ for an arbitrary ϵ. By our integrability criteria (Problem 2, Presentation Set 5), f is integrable on $[a, b]$. It remains to show that $\int_{a}^{b} f d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d x$. Let $\epsilon>0$ be arbitrary. Since $f_{n} \rightarrow f$ uniformly, there exists an $N \in \mathbb{N}$ such that $\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{b-a}$ for all $n \in \mathbb{N}$ such that $n>N$ and $x \in[a, b]$. As a result of linearity of integration (Problem 6, Presentation Set 5):

$$
\left|\int_{a}^{b} f_{n} d x-\int_{a}^{b} f d x\right|=\left|\int_{a}^{b}\left(f_{n}-f\right) d x\right|
$$

for all such n. Then by Problem 7, Presentation Set 5, we obtain the absolute value bounds

$$
\left|\int_{a}^{b}\left(f_{n}-f\right) d x\right| \leq \int_{a}^{b}\left|f_{n}-f\right| d x<\int_{a}^{b} \frac{\epsilon}{b-a} d x=(b-a) \frac{\epsilon}{b-a}=\epsilon
$$

Since ϵ was arbitrary, we conclude that $\lim _{n \rightarrow \infty}\left|\int_{a}^{b}\left(f_{n}-f\right) d x\right|=0$, and by properties of absolute values we acquire $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d x=\int_{a}^{b} f d x$., as desired.
9. Let $A \subset \mathbb{R}$ be countable. Then A has measure zero. (Note: the converse is not true.)

Proof. Suppose $A=\left\{x_{n}\right\}$ where $n=1,2,3, \ldots, \infty$
Let $\epsilon>0$, define open intervals
$I_{n}=\left(x_{n}-\frac{\epsilon}{2^{n+2}}, x_{n}+\frac{\epsilon}{2^{n+2}}\right)$ where $n=1,2,3, \ldots, \infty$
Then the length of each interval $\ell\left(I_{n}\right)=\frac{\epsilon}{2^{n+1}}$
And $A \subset \bigcup_{n=1}^{\infty} I_{n}$

We get $\sum_{n=1}^{\infty} \ell\left(I_{n}\right)=\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}}<\epsilon$
Therefore if $A \subset \mathbb{R}$ is countable, then A has measure zero.
10. Let $\left\{A_{k}\right\}_{k=1}^{n}$ be a finite collection of sets of measure zero. Show that

$$
\bigcup_{k=1}^{n} A_{k}
$$

also has measure zero.
Proof. Let $\epsilon>0$. Since each A_{k} is of measure zero, then for $\frac{\epsilon}{n}$, there exists a collection of open intervals $\left\{O_{k_{m}}\right\}$ for each A_{k} such that

$$
A_{k} \subseteq \bigcup_{m=1}^{\infty} O_{k_{m}}
$$

and

$$
\sum_{m=1}^{\infty}\left|O_{k_{m}}\right|<\frac{\epsilon}{n}
$$

Then

$$
\bigcup_{k=1}^{n} A_{k} \subseteq \bigcup_{k=1}^{n} \bigcup_{m=1}^{\infty} O_{k_{m}}
$$

and

$$
\sum_{k=1}^{n} \sum_{m=1}^{\infty}\left|O_{k_{m}}\right|<n\left(\frac{\epsilon}{n}\right)=\epsilon
$$

because each collection of open intervals is countable, so the unions and summations are all well defined. Thus $\bigcup_{k=1}^{n} A_{k}$ has measure zero.
11. Let $f:[a, b] \mapsto \mathbb{R}$ be continuous. Then there exists $c \in(a, b)$ such that

$$
\int_{a}^{b} f \mathrm{~d} x=f(c)(b-a)
$$

Proof. Let $f:[a, b] \mapsto \mathbb{R}$ be continuous.
Define

$$
F(x):=\int_{a}^{x} f(t) \mathrm{d} t
$$

Thus, F is continuous on $[a, b]$.

If f is continuous at c, then F is differentiable at c and $F^{\prime}(c)=f(c)$. Thus for all $c \in(a, b), F^{\prime}(c)=f(c)$.
Since F is continuous on $[a, b]$ and differentiable on (a, b), we can invoke the Mean Value Theorem. Thus there exists $c \in(a, b)$ such that

$$
\begin{aligned}
& F^{\prime}(c)=\frac{F(b)-F(a)}{b-a} \\
& =\frac{1}{b-a}\left(\int_{a}^{b} f(t) \mathrm{d} t-\int_{a}^{a} f(t) \mathrm{d} t\right)=\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t
\end{aligned}
$$

So we have

$$
f(c)=F^{\prime}(c)=\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t
$$

or

$$
f(c)(b-a)=\int_{a}^{b} f(t) \mathrm{d} t .
$$

