
Presentation Problems 5

21-355 A

For these problems, assume all sets are subsets of R unless otherwise speci-
fied.

1. Let P and Q be partitions of [a, b] such that P ⊆ Q. Then U(f, P ) ≥
U(f,Q) and L(f, P ) ≤ L(f,Q). Use this to show that for any partitions
P1 and P2 of [a, b] that L(f, P1) ≤ U(f, P2).

Proof. First, we will prove that U(f, P ) ≥ U(f,Q) and L(f, P ) ≤ L(f,Q).
Let [xk−1, xk] be an subinterval of P and suppose there exists z ∈ Q such
that xk−1 < z < xk. Denote

Mk = sup{f(x) : x ∈ [xk−1, xk]}
M ′k = sup{f(x) : x ∈ [xk−1, z]}
M ′′k = sup{f(x) : x ∈ [z, xk]}

It follows that Mk ≥M ′k and Mk ≥M ′′k , and we have that

Mk∆k = Mk(xk − xk−1)

= Mk(xk − z + z − xk−1)

= Mk(xk − z) +Mk(z − xk−1)

≥M ′′k (xk − z) +M ′k(z − xk−1)

Further, we can employ induction to prove this fact for any finite number
of points in this interval [xk−1, xk] that are also in Q. As such, we know
that the upper sum cannot get larger when we add more points to a
partition. That is U(f, P ) ≥ U(f,Q).

Similarly, denote
mk = inf{f(x) : x ∈ [xk−1, xk]}
m′k = inf{f(x) : x ∈ [xk−1, z]}
m′′k = inf{f(x) : x ∈ [z, xk]}
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It follows that mk ≤ m′k and mk ≤ m′′k , and we have that

mk∆k = mk(xk − xk−1)

= mk(xk − z + z − xk−1)

= mk(xk − z) +mk(z − xk−1)

≤ m′′k(xk − z) +m′k(z − xk−1)

Then the lower sum cannot get smaller when we add more points to a
partition. That is L(f, P ) ≤ L(f,Q).

Consider partitions P1 and P2 of [a, b]. Define Q = P1 ∪P2. Then P1 ⊆ Q
and P2 ⊆ Q. Then by our previously proved fact

L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2).

2. Let f : [a, b] 7→ R be bounded. Then f is integrable on [a, b] if and only if
for all ε > 0, there exists some partition Pε of [a, b] such that

U(f, Pε)− L(f, Pε) < ε.

Proof. (⇐) Let ε > 0. Then by assumption, there exists some partition
Pε such that

U(f, Pε)− L(f, Pε) < ε.

However, U(f) ≤ U(f, Pε). L(f) ≥ L(f, Pε). Then, U(f) − L(f) ≤
U(f, Pε) − L(f, Pε) < ε. Thus, 0 ≤ U(f) − L(f) < ε for all ε > 0, so
U(f) = L(f), and thus f is integrable.

(⇒) Since U(f) is the infimum of all the upper sums, for ε > 0, we can
find P1 such that U(f, P1) < U(f) + ε

2 . Similarly, we can find P2 such
that L(f, P2) > L(f)− ε

2 . Now, we can define Pε = P1 ∪ P2. Then,

U(f, Pε)− L(f, Pε) ≤U(f, P1)− L(f, P2)

<U(f) +
ε

2
− (L(f)− ε

2
)

=
ε

2
+
ε

2
because f is integrable, U(f) = L(f)

=ε
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3. Let f : [a, b] 7→ R be bounded. Then f is integrable on [a, b] if and only if
there exists some sequence of partitions (Pn) of [a, b] such that

lim
n→∞

U(f, Pn)− L(f, Pn) = 0.

Proof. (⇒) Let ε > 0,∃ some natural number N such that U(f, PN ) −
L(f, PN ) < ε It follows from the result of problem number 2 that f is
integrable

(⇐) Assume f is integrable so Pn is a sequence of p guaranteed that
U(f, Pn) − L(f, Pn) < 1/n then it follows from the result of problem
number 2 that there exists Pn such that
limn→∞ U(f, Pn)− L(f, Pn) = 0

4. Let f : [a, b] 7→ R be increasing. Then f is integrable on [a, b].

Proof. Since f : [a, b] → R is an increasing function, f(a) ≤ f(x) ≤ f(b)
for all x ∈ [a, b]. Therefore, f is bounded on [a, b].

Let d = b−a
n . Let Pn be a finite set of points {x0, x1, x2, ...., xn} such that

xk = a + kd. Then Pn is a partition of [a, b] because a = x0 < a + d =
x1 < a+ 2d = x2 < . . . < a+ nd = xn = b. Since f is increasing, we have

mk = inf
x∈[xk−1,xk]

f(x) = f(xk−1).

Mk = sup
x∈[xk−1,xk]

f(x) = f(xk).

Therefore,

U(f, Pn) =

n∑
k=1

Mk(xk − xk−1) =
b− a
n

n∑
k=1

f(xk)

L(f, Pn) =

n∑
k=1

mk(xk − xk−1) =
b− a
n

n∑
k=1

f(xk−1)
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And

lim
x→∞

U(f, Pn)− L(f, Pn) = lim
x→∞

(b− a
n

n∑
k=1

f(xk)− b− a
n

n∑
k=1

f(xk−1)
)

= lim
x→∞

(b− a
n

( n∑
k=1

f(xk)−
n∑
k=1

f(xk−1)
))

= lim
x→∞

(b− a
n

( n∑
k=1

f(xk)−
n−1∑
k=0

f(xk)
))

= lim
x→∞

(b− a
n

(f(xn)− f(x0))
)

= lim
x→∞

( (b− a)(f(b)− f(a))

n

)
= 0

Therefore, by Presentation 5 Problem 3, we have f is integrable on [a, b].

5. Let f : [a, b] 7→ R be continuous. Then f is integrable on [a, b].

Proof. Let f : [a, b] 7→ R be continuous
Notice that [a, b] is compact, therefore f is uniformly continuous.
Arbitrarily pick ε > 0
∃δ > 0 such that |x− y| < δ =⇒ |f(x)− f(y)| < ε/(b− a)
Now let P be a partition of [a, b] where the distance between any consec-
utive term is smaller than δ
Given a particular subinterval [xk−1, xk] of the P
Based on the extreme value theorem, the function achieves extreme value
somewhere in the bound.
Hence Mk = f(zk) for some zk ∈ [xk−1, xk] and also mk = f(yk) for some
yk ∈ [xk−1, xk]
Since |xk − xk−1| < δ and zk, yk ∈ [xk−1, xk]
|zk − yk| < δ
So Mk −mk = f(zk)− f(yk) < ε/(b− a)
U(f, P )− L(f, P ) =

∑n
k=1(Mk −mk)(xk − xk−1)

<
∑n
k=1 ε/(b− a) ∗ (xk − xk−1)

= ε/(b− a) ∗ (b− a)
= ε
Hence U(f, P )− L(f, P ) < ε
Therefore f is integrable.

6. Let f, g be integrable on [a, b] and let α, β ∈ R. Then αf+βg is integrable
on [a, b] and∫ b

a

αf + βg dx = α

∫ b

a

f dx+ β

∫ b

a

g dx.
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Proof. Since f,g are integrable, by presentation problem 3, we know there
exists sequence of partitions (Pn), (Qn) s.t.

lim
n→∞

[U(f, Pn)− L(f, Pn)] = 0 & lim
n→∞

[U(g,Qn)− L(g,Qn)] = 0

Then, we can create a sequence of partitions (Kn) = (Pn ∪ Qn). Since
Pn ⊆ Kn and Qn ⊆ Kn, we know (by problem 1):

• L(f, Pn) ≤ L(f,Kn) ≤ U(f,Kn) ≤ U(f, Pn)

• L(g,Qn) ≤ L(g,Kn) ≤ U(g,Kn) ≤ U(g,Qn)

which means:

U(f,Kn) − L(f,Kn) ≤ U(f, Pn) − L(f, Pn) and U(g,Kn) − L(g,Kn) ≤
U(g,Qn)− L(g,Qn).

Because U(f,Kn)−L(f,Kn) ≥ 0 while it is less than or equal to U(f, Pn)−
L(f, Pn), the limn→∞[U(f,Kn)−L(f,Kn)] is squeezed to 0; it is the same
case for limn→∞[U(g,Kn)− L(g,Kn)] = 0.

Using Algebratic Limit Thm, we obtain limn→∞ U(f,Kn) = limn→∞ L(f,Kn)
and limn→∞ U(g,Kn) = limn→∞ L(g,Kn).

Lemma: U(αf + βg, P ) = αX(f, P ) + βY (g, P ), where X = U if
α > 0, X = L otherwise, and Y = U if β > 0, Y = L otherwise. And vice
verse for L(αf + βg, P ).

Proof: We know that if A ⊆ R and cA := {c · a | a ∈ A}, then if c ≥ 0,
sup cA = c supA and inf cA = c inf A, but if c < 0 then sup cA = c inf A
and inf cA = c supA.

So if f(x) = a · g(x) for some a ≥ 0 ∈ R and g : R 7→ R, then

mk = inf{f(x) | x ∈ [xk−1, xk]} = inf{a · g(x) | x ∈ [xk−1, xk]} = a inf{g(x) | x ∈ [xk−1, xk]}
Mk = sup{f(x) | x ∈ [xk−1, xk]} = sup{a · g(x) | x ∈ [xk−1, xk]} = a sup{g(x) | x ∈ [xk−1, xk]}

L(f, P ) =
n∑
k=1

mk(xk − xk−1) =

n∑
k=1

a inf{g(x) | x ∈ [xk−1, xk]}(xk − xk−1) = aL(g, P )

U(f, P ) =

n∑
k=1

Mk(xk − xk−1) =

n∑
k=1

a sup{g(x) | x ∈ [xk−1, xk]}(xk − xk−1) = aU(g, P )

And if f(x) = a · g(x) for some a < 0 ∈ R and g : R 7→ R, then

L(f, P ) =

n∑
k=1

mk(xk − xk−1) =

n∑
k=1

a sup{g(x) | x ∈ [xk−1, xk]}(xk − xk−1) = aU(g, P )

U(f, P ) =

n∑
k=1

Mk(xk − xk−1) =

n∑
k=1

a inf{g(x) | x ∈ [xk−1, xk]}(xk − xk−1) = aL(g, P )

5



So we have scalar multiplication of L and U , with the property we are try-
ing to show. Also on a homework problem, we went over that suprema add,
which can be used to say that infima add as well. Thus, U and L satisfy the
claim. Now we will resume the proof. �.

lim
n→∞

[U(αf + βg,Kn)− L(αf + βg,Kn)]

= lim
n→∞

U(αf + βg,Kn)− lim
n→∞

L(αf + βg,Kn)

= lim
n→∞

U(αf,Kn) + lim
n→∞

U(βg,Kn)− lim
n→∞

L(αf,Kn)− lim
n→∞

L(βg,Kn)

Now we will case on α and β being greater than or equal to zero.

If α ≥ 0 and β < 0 then

lim
n→∞

[U(αf + βg,Kn)− L(αf + βg,Kn)]

= lim
n→∞

U(αf,Kn) + lim
n→∞

U(βg,Kn)− lim
n→∞

L(αf,Kn)− lim
n→∞

L(βg,Kn)

= α lim
n→∞

U(f,Kn) + β lim
n→∞

L(g,Kn)− α lim
n→∞

U(f,Kn)− β lim
n→∞

L(g,Kn) = 0

Similarly, if α < 0 and β ≥ 0, then

lim
n→∞

[U(αf + βg,Kn)− L(αf + βg,Kn)]

= lim
n→∞

U(αf,Kn) + lim
n→∞

U(βg,Kn)− lim
n→∞

L(αf,Kn)− lim
n→∞

L(βg,Kn)

= α lim
n→∞

L(f,Kn) + β lim
n→∞

U(g,Kn)− α lim
n→∞

L(f,Kn)− β lim
n→∞

U(g,Kn) = 0

If both are less than 0, then

lim
n→∞

[U(αf + βg,Kn)− L(αf + βg,Kn)]

= lim
n→∞

U(αf,Kn) + lim
n→∞

U(βg,Kn)− lim
n→∞

L(αf,Kn)− lim
n→∞

L(βg,Kn)

= α lim
n→∞

L(f,Kn) + β lim
n→∞

L(g,Kn)− α lim
n→∞

U(f,Kn)− β lim
n→∞

U(g,Kn) = 0

= −α( lim
n→∞

U(f,Kn)− lim
n→∞

L(f,Kn))− β( lim
n→∞

U(g,Kn)− lim
n→∞

L(g,Kn))

= −α lim
n→∞

[U(f,Kn)− L(f,Kn)]− β lim
n→∞

[U(g,Kn)− L(g,Kn)]

= −α · 0− β · 0 = 0

If both are greater than 0, then

lim
n→∞

[U(αf + βg,Kn)− L(αf + βg,Kn)]

= lim
n→∞

U(αf,Kn) + lim
n→∞

U(βg,Kn)− lim
n→∞

L(αf,Kn)− lim
n→∞

L(βg,Kn)

= α lim
n→∞

U(f,Kn) + β lim
n→∞

U(g,Kn)− α lim
n→∞

L(f,Kn)− β lim
n→∞

L(g,Kn) = 0

= α( lim
n→∞

U(f,Kn)− lim
n→∞

L(f,Kn)) + β( lim
n→∞

U(g,Kn)− lim
n→∞

L(g,Kn))

= α lim
n→∞

[U(f,Kn)− L(f,Kn)] + β lim
n→∞

[U(g,Kn)− L(g,Kn)]

= α · 0 + β · 0 = 0
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Since in all cases the limit is zero, we have that αf + βg is integrable.

Since ∫ b

a

f dx = lim
n→∞

U(f,Kn)

and ∫ b

a

g dx = lim
n→∞

U(g,Kn)

Given αf +βg is integrable, we know that
∫ b
a
fdx = L(f,Kn) = U(f,Kn)

and
∫ b
a
gdx = L(g,Kn) = U(g,Kn). Thus, we can say∫ b

a

αf + βg dx = lim
n→∞

U(αf + βg,Kn)

= α lim
n→∞

X(f,Kn) + β lim
n→∞

Y (g,Kn)

= α

∫ b

a

f dx+ β

∫ b

a

g dx since X, Y are either U or L

7. Let f, g be integrable on [a, b]

(a) If m ≤ f(x) ≤M for all x ∈ [a, b], then

m(b− a) ≤
∫ b

a

f dx ≤M(b− a).

Proof. Recall that

L(f) = sup {L(f, P ) : P ∈ P([a, b])}

U(f) = inf {U(f, P ) : P ∈ P([a, b])}

Let P ∈ P([a, b]) where |P | = n.

Then by definition of supremum and infimum, we have

L(f, P ) ≤ L(f) ≤ U(f) ≤ U(f, P )

By definition, we know that

L(f, P ) =

n∑
k=1

mk(xk − xk−1)

U(f, P ) =

n∑
k=1

Mk(xk − xk−1)
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where
mk = inf {f(x) : x ∈ [xk−1, xk]}

Mk = sup {f(x) : x ∈ [xk−1, xk]}

Since M,m are upper and lower bounds on f , we have that

m ≤ mk

Mk ≤M

Then we can see that

L(f, P ) =

n∑
k=1

mk(xk − xk−1)

≥ m
n∑
k=1

(xk − xk−1)

= m(xn − x0)

= m(b− a)

Similarly, we have that

U(f, P ) =

n∑
k=1

Mk(xk − xk−1)

≤M
n∑
k=1

(xk − xk−1)

= M(xn − x0)

= M(b− a)

By definition of integrability, we know that

L(f) =

∫ b

a

f dx = U(f)

It follows that

m(b− a) ≤
∫ b

a

f dx ≤M(b− a)

(b) If f(x) ≤ g(x) on [a, b], then∫ b

a

f dx ≤
∫ b

a

g dx.
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Proof. Since f(x) ≤ g(x), we know that

h(x) = f(x)− g(x) ≤ 0

Then by part (a), we know that∫ b

a

h =

∫ b

a

(f − g) dx ≤ 0 · (b− a) = 0

By linearity, we know that∫ b

a

(f − g) dx =

∫ b

a

f dx−
∫ b

a

g dx

It follows that ∫ b

a

f dx−
∫ b

a

g dx ≤ 0

so ∫ b

a

f dx ≤
∫ b

a

g dx

(c) |f | is integrable on [a, b] and∣∣∣∣∣
∫ b

a

f dx

∣∣∣∣∣ ≤
∫ b

a

|f | dx.

Proof. First, we prove that |f | is integrable Let P = {x0, x1, . . . , xn}
be an arbitrary partition of [a, b].

Claim: We show that for any interval Ik = [xk−1, xk],

sup
Ik

|f | − inf
Ik
|f | ≤ sup

Ik

f − inf
Ik
f

Proof: By the triangle inequality, for any x, y ∈ Ik,

|f(x)| − |f(y)| ≤ |f(x)− f(y)|

Since

|f(x)|−|f(y)| ≤ |f(x)−f(y)| = max{f(x), f(y)}−min{f(x), f(y)} ≤ sup
Ik

f−inf
Ik
f

then supIk f − infIk f is an upper bound on |f(x)| − |f(y)| and so

sup{|f(x)| − |f(y)| : x, y ∈ Ik} ≤ sup
Ik

f − inf
Ik
f

Since

sup{|f(x)| − |f(y)| : x, y ∈ Ik} = sup
Ik

|f | − inf
Ik
|f |
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the claim holds.

So we have, for all k = 1, . . . , n,

sup
Ik

|f | − inf
Ik
|f | ≤ sup

Ik

f − inf
Ik
f

n∑
k=1

(sup
Ik

|f | − inf
Ik
|f |)(xk − xk−1) ≤

n∑
k=1

(sup
Ik

f − inf
Ik
f)(xk − xk−1)

U(|f |, P )− L(|f |, P ) ≤ U(f, P )− L(f, P )

By the theorem from class, a function g is integrable on [a, b] if and
only if for all ε > 0, there exists Pε ∈ P such that U(g, Pε)−L(g, Pε) <
ε.

We are given that it holds for f . For arbitrary ε > 0, we know that
U(|f |, Pε) − L(|f |, Pε) ≤ U(f, Pε) − L(f, Pε) < ε, so it also holds for
|f |. Therefore, |f | is integrable on [a, b].

Next, since |f | is integrable,

−|f(x)| ≤ f(x) ≤ |f(x)|

Then by part (b), we know that∫ b

a

−|f | dx ≤
∫ b

a

f dx ≤
∫ b

a

|f | dx

By linearity, we have

−
∫ b

a

|f | dx ≤
∫ b

a

f dx ≤
∫ b

a

|f | dx

It follows that ∣∣∣∣ ∫ b

a

f dx

∣∣∣∣ ≤ ∫ b

a

|f | dx

8. Let (fn) be a sequence of real-valued functions on [a, b] integrable on [a, b].
If fn → f uniformly on [a, b], then f is integrable on [a, b] and

lim
n→∞

∫ b

a

fn dx =

∫ b

a

f dx.

Proof. We will begin by showing that f is bounded on [a, b]. Since fn → f
uniformly, for any ε > 0 there exists an N ∈ N+ such that for all n > N ,
x ∈ [a, b], we have |fn(x) − f(x)| < ε. Let ε = 1 be arbitrary and choose
an M > N that is guaranteed by our assertion. fn is integrable for any
function in our sequence so we also know it is bounded. Then let us choose
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a B > 0 that is guaranteed by this property, giving us |f(x)| < B for all
x ∈ [a, b]. Then by the Triangle Inequality,

|f(x)| = |f(x)− fM (x) + fM (x)| ≤ |f(x)− fM (x)|+ |fM (x)| ⇒

|f(x)| − |fM (x)| ≤ |f(x)− fM (x)| < 1

Adding |fM (x)| to both sides of the outermost inequality gives us

|f(x)| < 1 + |fM (x)|

This holds for any x ∈ [a, b], so we have proven that f is bounded as well.

Let ε > 0 be arbitrary. Again, since fn → f uniformly, there exists
an N ∈ N such that |fn(x) − f(x)| < ε

4(b−a) (for all n > N , and all

x ∈ [a, b]. Choose an M > N . Then fM is integrable by assumption. By
our integrability criterion, we know there is a partition Pε ∈ P[a, b] (let
the number of components in the partition be P := |Pε|) such that

U(fM , Pε)−L(fM , Pε) =

p∑
k=1

MfM ,k(xk−xk−1)−
p∑
k=1

MfM ,k(xk−xk−1) =

p∑
k=1

(MfM ,K−MfM ,K)(xk−xk−1) <
ε

2

Now, since M > N , we have that |fM (x)−f(x)| < ε
4(a−b) for all x ∈ [a, b].

For such x, by properties of absolute values,

fM (x)− ε

4(b− a)
< f(x) < fM (x) +

ε

4(b− a)

By the fact that every upper integral over a function is at least equal to
the lower integral,

mfM ,k −
ε

4(b− a)
< mf,k ≤Mf,k < MfM ,k +

ε

4(b− a)
.

By using the definitions of upper and lower integrals,

U(f, Pε)− L(f, Pε) =

p∑
k=1

Mf,k(xk − xk−1)−
p∑
k=1

mf,k(xk − xk−1)

Combine the sums: the above is equivalent to

p∑
k=1

(Mf,k −mf,k)(xk − xk−1)
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By our above chain of inequalities,

p∑
k=1

(Mf,k−mf,k)(xk−xk−1) ≤
p∑
k=1

((
MfM ,k +

ε

4(b− a)

)
−
(
mfM ,k −

ε

4(b− a)

)
(xk − xk−1)

)
=

p∑
k=1

(MfM ,k −mfM ,k)(xk − xk−1 +

p∑
k=1

2ε

4(b− a)
(xk − xk−1) <

ε

2
+
ε

2
= ε

As a result, U(f, Pε)−L(f, Pε) < ε for an arbitrary ε. By our integrability
criteria (Problem 2, Presentation Set 5), f is integrable on [a, b]. It remains

to show that
∫ b
a
fdx = limn→∞

∫ b
a
fndx. Let ε > 0 be arbitrary. Since

fn → f uniformly, there exists an N ∈ N such that |fn(x)− f(x)| < ε
b−a

for all n ∈ N such that n > N and x ∈ [a, b]. As a result of linearity of
integration (Problem 6, Presentation Set 5):∣∣∣∣∣

∫ b

a

fndx−
∫ b

a

fdx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(fn − f)dx

∣∣∣∣∣
for all such n. Then by Problem 7, Presentation Set 5, we obtain the
absolute value bounds

∣∣∣∣∣
∫ b

a

(fn − f)dx

∣∣∣∣∣ ≤
∫ b

a

|fn − f |dx <
∫ b

a

ε

b− a
dx = (b− a)

ε

b− a
= ε

Since ε was arbitrary, we conclude that limn→∞

∣∣∣∫ ba (fn − f)dx
∣∣∣ = 0, and

by properties of absolute values we acquire limn→∞
∫ b
a
fndx =

∫ b
a
fdx., as

desired.

9. Let A ⊂ R be countable. Then A has measure zero. (Note: the converse
is not true.)

Proof. Suppose A = {xn} where n = 1, 2, 3, ...,∞
Let ε > 0, define open intervals

In = (xn − ε
2n+2 , xn + ε

2n+2 ) where n = 1, 2, 3, ...,∞

Then the length of each interval `(In) = ε
2n+1

And A ⊂
∞⋃
n=1

In

12



We get
∑∞
n=1 `(In) =

∑∞
n=1

ε
2n+1 < ε

Therefore if A ⊂ R is countable, then A has measure zero.

10. Let {Ak}nk=1 be a finite collection of sets of measure zero. Show that

n⋃
k=1

Ak

also has measure zero.

Proof. Let ε > 0. Since each Ak is of measure zero, then for ε
n , there

exists a collection of open intervals {Okm} for each Ak such that

Ak ⊆
∞⋃
m=1

Okm

and

∞∑
m=1

|Okm | <
ε

n
.

Then

n⋃
k=1

Ak ⊆
n⋃
k=1

∞⋃
m=1

Okm

and

n∑
k=1

∞∑
m=1

|Okm | < n(
ε

n
) = ε

because each collection of open intervals is countable, so the unions and
summations are all well defined. Thus

⋃n
k=1Ak has measure zero.

11. Let f : [a, b] 7→ R be continuous. Then there exists c ∈ (a, b) such that∫ b

a

f dx = f(c)(b− a).

Proof. Let f : [a, b] 7→ R be continuous.

Define

F (x) :=

∫ x

a

f(t) dt.

Thus, F is continuous on [a, b].

13



If f is continuous at c, then F is differentiable at c and F ′(c) = f(c). Thus
for all c ∈ (a, b), F ′(c) = f(c).

Since F is continuous on [a, b] and differentiable on (a, b), we can invoke
the Mean Value Theorem. Thus there exists c ∈ (a, b) such that

F ′(c) =
F (b)− F (a)

b− a

=
1

b− a

(∫ b

a

f(t) dt−
∫ a

a

f(t) dt

)
=

1

b− a

∫ b

a

f(t) dt.

So we have

f(c) = F ′(c) =
1

b− a

∫ b

a

f(t) dt,

or

f(c)(b− a) =

∫ b

a

f(t) dt.
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