Presentation Problems 4

21-355 A

For these problems, assume all sets are subsets of \mathbb{R} unless otherwise specified.

1. Let $f: A \mapsto \mathbb{R}$. If f is Lipschitz continuous, then f is uniformly continuous and if f is uniformly continuous, then f is continuous. Prove also that the reverse implications are not necessarily true.

Proof. Since f is Lipschitz continuous, there exists $M>0$ such that

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq M, \forall x \neq y \in A .
$$

Let $\epsilon \in \mathbb{R}^{+}$and define $\delta=\frac{\epsilon}{M}$. Then, whenever $|x-y|<\delta$, we have

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq M \Longrightarrow|f(x)-f(y)| \leq M|x-y|<M \frac{\epsilon}{M}=\epsilon .
$$

Then f is uniformly continuous.
Now we will prove f is continuous. Take $c \in A$ and $\epsilon \in \mathbb{R}^{+}$. Define $\delta=\frac{\epsilon}{M}$. Then, whenever $|x-c|<\delta$, we have $|f(x)-f(c)|<\epsilon$ as presented above. Therefore, f is continuous.
Now, we will prove by a counterexample that a continuous function is not necessarily uniformly continuous. Consider the function f defined on $A=(0,+\infty)$ by

$$
f(x)=\frac{1}{x}
$$

Let $\epsilon>0$ and $x_{0} \in A$. Then select $\delta=\min \left\{x_{0} / 2,\left(x_{0} / 2\right)^{2} \epsilon\right\}$. Then we know that $\delta \leq x_{0} / 2$, and $\delta \leq\left(x_{0} / 2\right)^{2} \epsilon$.
Now let $x \in A$. Then whenever $\left|x-x_{0}\right|<\delta$, we have that

$$
x_{0}-x \leq\left|x-x_{0}\right|<\delta \leq \frac{x_{0}}{2} \Longrightarrow x_{0}-x<\frac{x_{0}}{2} \Longrightarrow x>\frac{x_{0}}{2}
$$

Since $x_{0}>x_{0} / 2$ and $x_{0}>0$, we have that $x \cdot x_{0}>\left(x_{0} / 2\right)^{2}$. Thus

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|\frac{1}{x}-\frac{1}{x_{0}}\right|=\frac{\left|x-x_{0}\right|}{x \cdot x_{0}}<\frac{\delta}{\left(x_{0} / 2\right)^{2}} \leq \frac{\left(x_{0} / 2\right)^{2} \epsilon}{\left(x_{0} / 2\right)^{2}}=\epsilon
$$

Therefore, $f(x)$ is continuous on A .
Now we want to show there there exists $\epsilon>0$ such that for $\forall \delta>0, \exists x, y \in$ A, for $|x-y|<\delta,|f(x)-f(y)| \geq \delta$. Let $\epsilon=1$ and $\delta>0$. Pick $x=$ $\min \{\delta, 1\}$ and $y=x / 2$. Therefore, $|x-y|=x / 2 \leq \delta$. Then we have

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{x / 2}\right|=\frac{1}{x} \geq 1=\epsilon
$$

Thus, we have shown that $f(x)=1 / x$ is continuous but not uniformly continuous on $(0,+\infty)$
2. Let K be compact and let $f: K \mapsto \mathbb{R}$ be continuous on K. Then f is uniformly continuous on K.

Proof. We show the contrapositive. If f is not uniformly continuous on K, by definition there exists $\epsilon>0$ such that for all $\delta>0$ there exist $x, y \in K$ such that $|x-y|<\delta$ and $|f(x)-f(y)| \geq \epsilon$. Thus, for each $n \in \mathbb{N}$, choose $x_{n}, y_{n} \in K$ such that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$. For all $\epsilon^{\prime}>0$ and $n>\frac{1}{\epsilon^{\prime}},\left|x_{n}-y_{n}\right|<\frac{1}{n}<\epsilon^{\prime}$, so $\left|x_{n}-y_{n}\right| \rightarrow 0$.

Since K is compact, the sequence $\left(x_{n}\right)$ in K has a subsequence $\left(x_{n_{k}}\right) \rightarrow$ $x \in K$. If $\left(y_{n_{k}}\right)$ is the subsequence whose indices correspond to those in $\left(x_{n_{k}}\right)$, it has a subsequence $\left(y_{n_{k_{j}}}\right) \rightarrow y \in K$. The corresponding sequence $\left(x_{n_{k_{j}}}\right)$ converges to $\lim \left(x_{n_{k}}\right)=x$. Thus $\lim \left(y_{n_{k_{j}}}\right)=\lim \left(\left(y_{n_{k_{j}}}-x_{n_{k_{j}}}\right)+\right.$ $\left.x_{n_{k_{j}}}\right)=\lim \left(y_{n_{k_{j}}}-x_{n_{k_{j}}}\right)+\lim \left(x_{n_{k_{j}}}\right)=\lim \left(x_{n_{k_{j}}}\right)=x$.

By Presentation 3 Problem 8, if f is continuous, $\lim f\left(x_{n_{k_{j}}}\right)=\lim f\left(y_{n_{k_{j}}}\right)=$ $f(x)$ and $\lim \left(f\left(x_{n_{k_{j}}}\right)-f\left(y_{n_{k_{j}}}\right)=0\right.$. Therefore, there exists an $n^{\prime}=n_{k_{j}}$ such that $\left|f\left(x_{n^{\prime}}\right)-f\left(y_{n^{\prime}}\right)\right|<\epsilon$, which contradicts our choice of $x_{n} \mathrm{~s}$ and $y_{n} \mathrm{~s}$ at the beginning. Thus f is not continuous.

Therefore, if f is not uniformly continuous, f is not continuous and the original statement follows.
3. Let K be compact and $f: K \mapsto \mathbb{R}$ be continuous on K. Then $f(K)$ is compact in \mathbb{R}.

Proof. Since Take a sequence $\left(y_{n}\right) \subseteq f(K)$ pick some sequence in K, denoted $x_{n}, x_{n} \in K$ such that $f\left(x_{n}\right)=y_{n}$ for each $n \in \mathbb{N}$.
Since K is compact, we could find some subsequence $\left(x_{n_{i}}\right)$ of $\left(x_{n}\right)$ converging to some x in K.
$\lim _{i \rightarrow \infty} x_{n_{i}}=x$, where $x \in K$
Since f is continuous, $\lim _{i \rightarrow \infty} f\left(x_{n_{i}}\right)=f(x), f(x) \in f(K)$
$\lim _{i \rightarrow \infty} y_{n_{i}}=y, y \in f(K)$
4. Let $f: E \mapsto \mathbb{R}$ be continuous on E and E be connected. Then $f(E)$ is connected.

Proof. We use the theorem that the only connected sets in \mathbb{R} are intervals.
WTS: $\forall a, b \in f(E), c \in \mathbb{R}$ s.t. $a<c<b, c \in f(E)$
Let $A=\{e \in E: f(e)<c\}, B=\{e \in E: f(e) \geq c\}$
Then A and B are disjoint, non-empty, and $E=A \cup B$
Since E is connected, \exists sequence $\left(x_{n}\right) \in A$ s.t. $x_{n} \mapsto x \in B$
Since f is continuous on $E, f\left(x_{n}\right) \mapsto f(x)$
Then $\forall n \in \mathbb{N}, f\left(x_{n}\right)<c$. So $f(x) \leq c$.
But $f(x) \geq c$ since $x \in B$. So $f(x)=c \quad \Longrightarrow \quad c \in f(E)$
Therefore, for any $a, b \in f(E), c \in \mathbb{R}$ s.t. $a<c<b$, we have $c \in f(E)$.
Then $f(E) \subseteq \mathbb{R}$ is an interval, thus is connected.
5. Let $\left(f_{n}\right)$ be a sequence of functions mapping A to \mathbb{R}. If $\left(f_{n}\right)$ is uniformly Cauchy, then $\left(f_{n}\right)$ converges uniformly.

Proof. WTS: Uniformly Cauchy \Longrightarrow Uniformly Convergent.
Because the sequences of function is uniformly Cauchy, we know that $\forall x \in R,\left(f_{n}(x)\right)$ is a Cauchy sequence, which subsequently implies converges.
Therefore, $\forall x \in R, f_{n}(x) \rightarrow L_{x}$ for some $L_{x} \in \mathbb{R}$.
Now we construct $f(x)$ using L_{x}.
From Uniformly Cauchy, we know
$\forall \epsilon>0, \exists N$ s.t. $\forall m, n \geq N,\left|f_{m}(x)-f_{n}(x)\right|<\epsilon \forall x \in \mathbb{R}$.
$\Longrightarrow-\epsilon<f_{m}(x)-f_{n}(x)<\epsilon \forall x$
Fixing an x
Taking the limit as $n \rightarrow \infty$.
We also know that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$
$\Longrightarrow-\epsilon<f_{m}(x)-f(x)<\epsilon$.
$\Longrightarrow\left|f_{m}(x)-f(x)\right|<\epsilon \forall x$, which is the definition of Uniformly Convergent.
6. Let $\left(f_{n}\right)$ be a sequence of real-valued functions continuous on A. If $\left(f_{n}\right)$ converges uniformly, then $\left(f_{n}\right)$ converges pointwise to the same uniform limit function f and f is continuous on A.

Proof. Let $\left(f_{n}\right)$ be a sequence of real-valued functions continuous on A , and $\left(f_{n}\right)$ converges uniformly to f.
\Rightarrow Since it converges uniformly, we know $\forall \epsilon>0, \exists N \in \mathbb{N}$ s.t. if $n \geq$ $N,\left|f_{n}(x)-f(x)\right|<\epsilon$ holds to be true for all $x \in A$.
$\Rightarrow \forall \epsilon>0$, for each $x \in A$, if $n \geq N,\left|f_{n}(x)-f(x)\right|<\epsilon$, which means $\left(f_{n}(x)\right)$ is pointwise convergent.

Now we'd like to show $f(x)$ is continuous on A.

Let $c \in A$.
In addition, because we know $\left(f_{n}\right)$ converges uniformly, we know $\forall \epsilon>$ $0, \forall x \in A, \exists N \in \mathbb{N}$ s.t. if $n \geq N,\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{3}$. Let N be fixed.
Moreover, in previous part, we have shown $\left(f_{n}\right)$ is also pointwise convergent, thus $\forall \epsilon>0$, with the same N we found in above, we know $\forall n \geq N,\left|f_{n}(c)-f(c)\right|<\frac{\epsilon}{3}$.

By assumption, we know $f_{n}(x)$ is continuous everywhere on A , which means $\forall \epsilon>0, \exists \delta>0$ s.t. if $|x-c|<\delta,\left|f_{n}(x)-f_{n}(c)\right|<\frac{\epsilon}{3}$.
Put everything together: $\forall \epsilon>0, \exists \delta>0$ s.t. if $|x-c|<\delta$ when $n \geq N$:

$$
\begin{aligned}
|f(x)-f(c)| & =\left|f(x)-f_{n}(x)+f_{n}(x)-f_{n}(c)+f_{n}(c)-f(c)\right| \\
& \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(c)\right|+\left|f_{n}(c)-f(c)\right|
\end{aligned}
$$

by triangle inequality

$$
<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
$$

We can conclude, f is continuous on A .
7. Let $f_{n}:[0,1] \mapsto \mathbb{R}$ where $f_{n}(x)=x^{n}$ for each $n \in \mathbb{N}$. Show that $\left(f_{n}\right)$ does not converge uniformly, but does converge pointwise.

Proof. If $0 \leq x<1$, then $x^{n} \rightarrow 0$ and $n \rightarrow \infty$, since $x<1$, then $\left(x_{n}\right)$ is a polynomial in the form of x^{n}, and clearly every sequence will converge to 0 . If $x=1$, then $x^{n} \rightarrow 1$ as $n \rightarrow \infty$ since every power of 1 is 1 . So $f_{n} \rightarrow f$ pointwise where

$$
f(x)= \begin{cases}0, & \text { if } 0 \leq x<1 \\ 1, & \text { if } x=1\end{cases}
$$

AFSOC that $\left(f_{n}\right)$ converges uniformly. Then using the results proved in Presentation 4 Problem 6, its limit must be the same as the pointwise limit. However, the pointwise limit is not continuous, so $\left(f_{n}\right)$ cannot converge uniformly.
8. Let f be defined on (a, b) for some $a<b$ and let f be differentiable at $c \in(a, b)$. Then f is continuous at c

Proof. By the definition of differentiability at a point, the derivative of f at c exists and we call it $f^{\prime}(c)$. In particular,

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)
$$

We can multiply both sides of the equation by $\lim _{x \rightarrow c}(x-c)$:

$$
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \cdot \lim _{x \rightarrow c}(x-c)=f^{\prime}(c) \lim _{x \rightarrow c}(x-c)
$$

Both limits on the left-hand side exist, so we can rewrite this equation as

$$
\begin{gathered}
\lim _{x \rightarrow c}\left(\frac{f(x)-f(c)}{x-c} \cdot(x-c)\right)=f^{\prime}(c) \lim _{x \rightarrow c}(x-c) \Rightarrow \\
\lim _{x \rightarrow c}(f(x)-f(c))=f^{\prime}(c) \lim _{x \rightarrow c}(x-c)
\end{gathered}
$$

By the algebraic limit theorem for addition (or subtraction), we can split the subtraction expressions on both sides of the equation to obtain

$$
\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} f(c)=f^{\prime}(c)\left(\lim _{x \rightarrow c} x-\lim _{x \rightarrow c} c\right)
$$

Adding $\lim _{x \rightarrow c} f(c)$ to both sides of the equation gives

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} f(c)+f^{\prime}(c)\left(\lim _{x \rightarrow c} x-\lim _{x \rightarrow c} c\right) .
$$

Then by direct substitution,

$$
\begin{gathered}
\lim _{x \rightarrow c} f(x)=f(c)+f^{\prime}(c)(c-c) \Rightarrow \\
\lim _{x \rightarrow c} f(x)=f(c)
\end{gathered}
$$

The result of Problem 7 from Presentation Set 3 tells us that because the above is true, f is continuous at c, as desired.
9. Let $f:(a, b) \mapsto \mathbb{R}$ for some $a<b . f$ is differentiable at $c \in(a, b)$ if and only if there exists some function L on (a, b) continuous at c such that for all $x \in(a, b)$,

$$
f(x)-f(c)=L(x)(x-c)
$$

Proof. Forward direction:
Assume that $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists.
Define $L(x)=\frac{f(x)-f(c)}{x-c}$ for $x \neq c$, and $L(x)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ for $\mathrm{x}=\mathrm{c}$.
Let $x_{0} \in(a, b)$, and there are two cases.
Case 1: $x_{0} \neq c$
Then $L\left(x_{0}\right)=\frac{f\left(x_{0}\right)-f(c)}{x_{0}-c}$ and $\lim _{x \rightarrow x_{0}} f(x)-f(c)=f\left(x_{0}\right)-f(c)$
Then $\lim _{x \rightarrow x_{0}}=x_{0}-c$ and $x_{0}-c \neq 0$ because $x_{0} \neq c$
Therefore, $\lim _{x \rightarrow x_{0}} L(x)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f(c)}{x-c}=\frac{f\left(x_{0}\right)-f(c)}{x_{0}-c}=L\left(x_{0}\right)$
Case 2: $x_{0}=c$
$\lim _{x \rightarrow c} L(x)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=L(c)$ by definition of L.
Backward direction:
For $x \neq c, L(x)=\frac{f(x)-f(c)}{x-c}$.
So $\lim _{x \rightarrow c} L(x)=L(c)$ because L is continuous
Which means $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists.
10. Let f and g be defined on (a, b) for $a<b$ and differentiable at $c \in(a, b)$. Show that
(a) $f+g$ is differentiable at c and $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$

Proof. By definition of differentiability, $(f+g)^{\prime}(c)=\lim _{x \rightarrow c} \frac{(f+g)(x)-(f+g)(c)}{x-c}$ provided the limit exists. We will show the limit exists and is equal to $f^{\prime}(c)+g^{\prime}(c)$.

$$
\begin{array}{rlr}
(f+g)^{\prime}(c) & =\lim _{x \rightarrow c} \frac{(f+g)(x)-(f+g)(c)}{x-c} & \text { Def of differentiability } \\
& =\lim _{x \rightarrow c} \frac{f(x)+g(x)-f(c)-g(c)}{x-c} & \text { Def of }(f+g)(x) \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)+g(x)-g(c)}{x-c} & \\
& =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}+\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c} & \text { Algebraic Limit Theorem } \\
& =f^{\prime}(c)+g^{\prime}(c) & f, g \text { differentiable at } c
\end{array}
$$

(b) for any $k \in \mathbb{R}, k f$ is differentable at c and $(k f)^{\prime}(c)=k f^{\prime}(c)$.

Proof. By definition of differentiability, $(k f)^{\prime}(c)=\lim _{x \rightarrow c} \frac{(k f)(x)-(k f)(c)}{x-c}$ provided the limit exists. We will show the limit exists and is equal to $k f^{\prime}(c)$.

$$
\begin{array}{rlr}
(k f)^{\prime}(c) & =\lim _{x \rightarrow c} \frac{(k f)(x)-(k f)(c)}{x-c} & \text { Def of differentiability } \\
& =\lim _{x \rightarrow c} \frac{k f(x)-k f(c)}{x-c} & \text { Def of }(k f)(x) \\
& =\lim _{x \rightarrow c} k \frac{f(x)-f(c)}{x-c} & \\
& =k \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} & \text { Algebraic Limit Theorem } \\
& =k f^{\prime}(c) & f \text { differentiable at } c
\end{array}
$$

11. Let f and g be defined on (a, b) for $a<b$ and differentiable at $c \in(a, b)$. Show that
(a) $(f g)$ is differentiable at c and $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$
(b) if $g(c) \neq 0$, then $\left(\frac{f}{g}\right)$ is differentiable at c and

$$
\left(\frac{f}{g}\right)(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}} .
$$

Proof. Let f and g be defined on (a, b) for $a<b$ and differentiable at $c \in(a, b)$.
Show that
(a) $(f g)$ is differentiable at c and $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.
$(f g)^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x) g(x)-f(c) g(c)}{x-c}=\lim _{x \rightarrow c} \frac{f(x)(g(x)-g(c))+g(c)(f(x)-f(c)}{x-c}$
$=\lim _{x \rightarrow c} \frac{f(x)(g(x)-g(c))}{x-c}+\lim _{x \rightarrow c} \frac{g(c)(f(x)-f(c))}{x-c}$
$=\lim _{x \rightarrow c} f(x) \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}+g(c) \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ $=f(c) g^{\prime}(c)+g(c) f^{\prime}(c)$
(b) if $g(c) \neq 0$, then $\left(\frac{f}{g}\right)$ is differentiable at c and

$$
\begin{aligned}
& \qquad\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}} \\
& \left(\frac{f}{g}\right)^{\prime}(c)=\lim _{x \rightarrow c} \frac{\frac{f(x)}{g(x)}-\frac{f(c)}{g(c)}}{x-c}=\lim _{x \rightarrow c} \frac{f(x) g(c)-g(x) f(c)}{g(x) g(c)(x-c)} \\
& =\lim _{x \rightarrow c} \frac{1}{g(x) g(c)} \lim _{x \rightarrow c} \frac{f(x) g(c)-g(x) f(c)}{x-c} \\
& =\frac{1}{[g(c)]^{2}}\left[\lim _{x \rightarrow c} g(c) \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}-\lim _{x \rightarrow c} f(x) \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}\right] \\
& =\frac{1}{g(c)^{2}}\left[g(c) f^{\prime}(c)-f(c) g^{\prime}(c)\right]
\end{aligned}
$$

Note: $\lim _{x \rightarrow c} f(x)=f(c)$ and $\lim _{x \rightarrow c} g(x)=g(c)$. Since f, g are both differentiable at c, they must both be continuous at c.

