
Presentation Problems 4

21-355 A

For these problems, assume all sets are subsets of R unless otherwise speci-
fied.

1. Let f : A 7→ R. If f is Lipschitz continuous, then f is uniformly continuous
and if f is uniformly continuous, then f is continuous. Prove also that the
reverse implications are not necessarily true.

Proof. Since f is Lipschitz continuous, there exists M > 0 such that∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤M, ∀x 6= y ∈ A.

Let ε ∈ R+ and define δ = ε
M . Then, whenever |x− y| < δ, we have∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤M =⇒ |f(x)− f(y)| ≤M |x− y| < M
ε

M
= ε.

Then f is uniformly continuous.

Now we will prove f is continuous. Take c ∈ A and ε ∈ R+. Define δ = ε
M .

Then, whenever |x− c| < δ, we have |f(x)− f(c)| < ε as presented above.
Therefore, f is continuous.

Now, we will prove by a counterexample that a continuous function is
not necessarily uniformly continuous. Consider the function f defined on
A = (0,+∞) by

f(x) =
1

x

Let ε > 0 and x0 ∈ A. Then select δ = min{x0/2, (x0/2)2ε}. Then we
know that δ ≤ x0/2, and δ ≤ (x0/2)2ε.

Now let x ∈ A. Then whenever |x− x0| < δ, we have that

x0 − x ≤ |x− x0| < δ ≤ x0
2

=⇒ x0 − x <
x0
2

=⇒ x >
x0
2

Since x0 > x0/2 and x0 > 0, we have that x · x0 > (x0/2)2. Thus

|f(x)− f(x0)| = | 1
x
− 1

x0
| = |x− x0|

x · x0
<

δ

(x0/2)2
≤ (x0/2)2ε

(x0/2)2
= ε
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Therefore, f(x) is continuous on A.

Now we want to show there there exists ε > 0 such that for ∀δ > 0,∃x, y ∈
A, for |x − y| < δ, |f(x) − f(y)| ≥ δ. Let ε = 1 and δ > 0. Pick x =
min{δ, 1} and y = x/2. Therefore, |x− y| = x/2 ≤ δ. Then we have

|f(x)− f(y)| = | 1
x
− 1

x/2
| = 1

x
≥ 1 = ε

Thus, we have shown that f(x) = 1/x is continuous but not uniformly
continuous on (0,+∞)

2. Let K be compact and let f : K 7→ R be continuous on K. Then f is
uniformly continuous on K.

Proof. We show the contrapositive. If f is not uniformly continuous on K,
by definition there exists ε > 0 such that for all δ > 0 there exist x, y ∈ K
such that |x− y| < δ and |f(x)− f(y)| ≥ ε. Thus, for each n ∈ N, choose
xn, yn ∈ K such that |xn−yn| < 1

n and |f(xn)−f(yn)| ≥ ε. For all ε′ > 0
and n > 1

ε′ , |xn − yn| <
1
n < ε′, so |xn − yn| → 0.

Since K is compact, the sequence (xn) in K has a subsequence (xnk
) →

x ∈ K. If (ynk
) is the subsequence whose indices correspond to those in

(xnk
), it has a subsequence (ynkj

)→ y ∈ K. The corresponding sequence

(xnkj
) converges to lim(xnk

) = x. Thus lim(ynkj
) = lim((ynkj

− xnkj
) +

xnkj
) = lim(ynkj

− xnkj
) + lim(xnkj

) = lim(xnkj
) = x.

By Presentation 3 Problem 8, if f is continuous, lim f(xnkj
) = lim f(ynkj

) =

f(x) and lim(f(xnkj
) − f(ynkj

) = 0. Therefore, there exists an n′ = nkj
such that |f(xn′) − f(yn′)| < ε, which contradicts our choice of xns and
yns at the beginning. Thus f is not continuous.

Therefore, if f is not uniformly continuous, f is not continuous and the
original statement follows.

3. Let K be compact and f : K 7→ R be continuous on K. Then f(K) is
compact in R.

Proof. Since Take a sequence (yn) ⊆ f(K) pick some sequence in K, de-
noted xn, xn ∈ K such that f(xn) = yn for each n ∈ N.
Since K is compact, we could find some subsequence (xni) of (xn) con-
verging to some x in K.
limi→∞ xni

= x, where x ∈ K
Since f is continuous, limi→∞ f(xni

) = f(x), f(x) ∈ f(K)
limi→∞ yni

= y, y ∈ f(K)
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4. Let f : E 7→ R be continuous on E and E be connected. Then f(E) is
connected.

Proof. We use the theorem that the only connected sets in R are intervals.
WTS: ∀ a, b ∈ f(E), c ∈ R s.t. a < c < b, c ∈ f(E)
Let A = {e ∈ E : f(e) < c}, B = {e ∈ E : f(e) ≥ c}
Then A and B are disjoint, non-empty, and E = A ∪B
Since E is connected, ∃ sequence (xn) ∈ A s.t. xn 7→ x ∈ B
Since f is continuous on E, f(xn) 7→ f(x)
Then ∀n ∈ N, f(xn) < c. So f(x) ≤ c.
But f(x) ≥ c since x ∈ B. So f(x) = c =⇒ c ∈ f(E)
Therefore, for any a, b ∈ f(E), c ∈ R s.t. a < c < b, we have c ∈ f(E).
Then f(E) ⊆ R is an interval, thus is connected.

5. Let (fn) be a sequence of functions mapping A to R. If (fn) is uniformly
Cauchy, then (fn) converges uniformly.

Proof. WTS: Uniformly Cauchy =⇒ Uniformly Convergent.
Because the sequences of function is uniformly Cauchy,we know that
∀x ∈ R, (fn(x)) is a Cauchy sequence, which subsequently implies con-
verges.
Therefore, ∀x ∈ R, fn(x)→ Lx for some Lx ∈ R.
Now we construct f(x) using Lx.
From Uniformly Cauchy, we know
∀ ε > 0,∃ N s.t. ∀ m,n ≥ N , |fm(x)− fn(x)| < ε ∀ x ∈ R.
=⇒ −ε < fm(x)− fn(x) < ε ∀x
Fixing an x
Taking the limit as n→∞.
We also know that limn→∞ fn(x) = f(x)
=⇒ −ε < fm(x)− f(x) < ε.
=⇒ |fm(x)− f(x)| < ε ∀ x, which is the definition of Uniformly Conver-
gent.

6. Let (fn) be a sequence of real-valued functions continuous on A. If (fn)
converges uniformly, then (fn) converges pointwise to the same uniform
limit function f and f is continuous on A.

Proof. Let (fn) be a sequence of real-valued functions continuous on A,
and (fn) converges uniformly to f .

⇒ Since it converges uniformly, we know ∀ε > 0,∃N ∈ N s.t. if n ≥
N, |fn(x)− f(x)| < ε holds to be true for all x ∈ A.
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⇒ ∀ε > 0, for each x ∈ A, if n ≥ N, |fn(x) − f(x)| < ε, which means
(fn(x)) is pointwise convergent.

Now we’d like to show f(x) is continuous on A.

Let c ∈ A.

In addition, because we know (fn) converges uniformly, we know ∀ε >
0,∀x ∈ A,∃N ∈ N s.t. if n ≥ N, |fn(x)− f(x)| < ε

3 . Let N be fixed.

Moreover, in previous part, we have shown (fn) is also pointwise con-
vergent, thus ∀ε > 0, with the same N we found in above, we know
∀n ≥ N, |fn(c)− f(c)| < ε

3 .

By assumption, we know fn(x) is continuous everywhere on A, which
means ∀ε > 0, ∃δ > 0 s.t. if |x− c| < δ, |fn(x)− fn(c)| < ε

3 .

Put everything together: ∀ε > 0,∃δ > 0 s.t. if |x− c| < δ when n ≥ N :

|f(x)− f(c)| = |f(x)− fn(x) + fn(x)− fn(c) + fn(c)− f(c)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|

by triangle inequality

<
ε

3
+
ε

3
+
ε

3
= ε

We can conclude, f is continuous on A.

7. Let fn : [0, 1] 7→ R where fn(x) = xn for each n ∈ N. Show that (fn) does
not converge uniformly, but does converge pointwise.

Proof. If 0 ≤ x < 1, then xn → 0 and n→∞, since x < 1, then (xn) is a
polynomial in the form of xn, and clearly every sequence will converge to
0. If x = 1, then xn → 1 as n→∞ since every power of 1 is 1. So fn → f
pointwise where

f(x) =

0, if 0 ≤ x < 1

1, if x = 1

AFSOC that (fn) converges uniformly. Then using the results proved in
Presentation 4 Problem 6, its limit must be the same as the pointwise limit.
However, the pointwise limit is not continuous, so (fn) cannot converge
uniformly.

8. Let f be defined on (a, b) for some a < b and let f be differentiable at
c ∈ (a, b). Then f is continuous at c
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Proof. By the definition of differentiability at a point, the derivative of f
at c exists and we call it f ′(c). In particular,

lim
x→c

f(x)− f(c)

x− c
= f ′(c)

We can multiply both sides of the equation by limx→c(x− c):

lim
x→c

f(x)− f(c)

x− c
· lim
x→c

(x− c) = f ′(c) lim
x→c

(x− c)

Both limits on the left-hand side exist, so we can rewrite this equation as

lim
x→c

(
f(x)− f(c)

x− c
· (x− c)

)
= f ′(c) lim

x→c
(x− c)⇒

lim
x→c

(f(x)− f(c)) = f ′(c) lim
x→c

(x− c)

By the algebraic limit theorem for addition (or subtraction), we can split
the subtraction expressions on both sides of the equation to obtain

lim
x→c

f(x)− lim
x→c

f(c) = f ′(c)
(

lim
x→c

x− lim
x→c

c
)

Adding limx→c f(c) to both sides of the equation gives

lim
x→c

f(x) = lim
x→c

f(c) + f ′(c)
(

lim
x→c

x− lim
x→c

c
)
.

Then by direct substitution,

lim
x→c

f(x) = f(c) + f ′(c)(c− c)⇒

lim
x→c

f(x) = f(c)

The result of Problem 7 from Presentation Set 3 tells us that because the
above is true, f is continuous at c, as desired.

9. Let f : (a, b) 7→ R for some a < b. f is differentiable at c ∈ (a, b) if and
only if there exists some function L on (a, b) continuous at c such that for
all x ∈ (a, b),

f(x)− f(c) = L(x)(x− c).
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Proof. Forward direction:

Assume that limx→c
f(x)−f(c)

x−c exists.

Define L(x) = f(x)−f(c)
x−c for x 6= c, and L(x) = limx→c

f(x)−f(c)
x−c for x = c.

Let x0 ∈ (a, b), and there are two cases.
Case 1: x0 6= c

Then L(x0) = f(x0)−f(c)
x0−c and limx→x0 f(x)− f(c) = f(x0)− f(c)

Then limx→x0 = x0 − c and x0 − c 6= 0 because x0 6= c

Therefore, limx→x0
L(x) = limx→x0

f(x)−f(c)
x−c = f(x0)−f(c)

x0−c = L(x0)
Case 2: x0 = c
limx→c L(x) = limx→c

f(x)−f(c)
x−c = L(c) by definition of L.

Backward direction:
For x 6= c, L(x) = f(x)−f(c)

x−c .
So limx→c L(x) = L(c) because L is continuous

Which means limx→c
f(x)−f(c)

x−c exists.

10. Let f and g be defined on (a, b) for a < b and differentiable at c ∈ (a, b).
Show that

(a) f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c)

Proof. By definition of differentiability, (f+g)′(c) = limx→c
(f+g)(x)−(f+g)(c)

x−c
provided the limit exists. We will show the limit exists and is equal
to f ′(c) + g′(c).

(f + g)′(c) = lim
x→c

(f + g)(x)− (f + g)(c)

x− c
Def of differentiability

= lim
x→c

f(x) + g(x)− f(c)− g(c)

x− c
Def of (f + g)(x)

= lim
x→c

f(x)− f(c) + g(x)− g(c)

x− c

= lim
x→c

f(x)− f(c)

x− c
+ lim
x→c

g(x)− g(c)

x− c
Algebraic Limit Theorem

= f ′(c) + g′(c) f , g differentiable at c

(b) for any k ∈ R, kf is differentable at c and (kf)′(c) = kf ′(c).

Proof. By definition of differentiability, (kf)′(c) = limx→c
(kf)(x)−(kf)(c)

x−c
provided the limit exists. We will show the limit exists and is equal
to kf ′(c).
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(kf)′(c) = lim
x→c

(kf)(x)− (kf)(c)

x− c
Def of differentiability

= lim
x→c

kf(x)− kf(c)

x− c
Def of (kf)(x)

= lim
x→c

k
f(x)− f(c)

x− c

= k lim
x→c

f(x)− f(c)

x− c
Algebraic Limit Theorem

= kf ′(c) f differentiable at c

11. Let f and g be defined on (a, b) for a < b and differentiable at c ∈ (a, b).
Show that

(a) (fg) is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c)

(b) if g(c) 6= 0, then
(
f
g

)
is differentiable at c and(

f

g

)
(c) =

f ′(c)g(c)− f(c)g′(c)

[g(c)]2
.

Proof. Let f and g be defined on (a, b) for a < b and differentiable at
c ∈ (a, b).
Show that

(a) (fg) is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

(fg)′(c) = limx→c
f(x)g(x)−f(c)g(c)

x−c = limx→c
f(x)(g(x)−g(c))+g(c)(f(x)−f(c)

x−c

= limx→c
f(x)(g(x)−g(c))

x−c + limx→c
g(c)(f(x)−f(c))

x−c

= limx→c f(x) limx→c
g(x)−g(c)
x−c + g(c) limx→c

f(x)−f(c)
x−c

= f(c)g′(c) + g(c)f ′(c)

(b) if g(c) 6= 0, then ( fg ) is differentiable at c and

(
f

g
)′(c) =

f ′(c)g(c)− f(c)g′(c)

[g(c)]2

( fg )′(c) = limx→c
f(x)
g(x)
− f(c)

g(c)

x−c = limx→c
f(x)g(c)−g(x)f(c)
g(x)g(c)(x−c)

= limx→c
1

g(x)g(c) limx→c
f(x)g(c)−g(x)f(c)

x−c

= 1
[g(c)]2 [limx→c g(c) limx→c

f(x)−f(c)
x−c − limx→c f(x) limx→c

g(x)−g(c)
x−c ]

= 1
g(c)2 [g(c)f ′(c)− f(c)g′(c)]

Note: limx→c f(x) = f(c) and limx→c g(x) = g(c). Since f, g are both
differentiable at c, they must both be continuous at c.
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