Presentation Problems 4

21-355 A

For these problems, assume all sets are subsets of R unless otherwise speci-
fied.

1. Let f: A~ R. If f is Lipschitz continuous, then f is uniformly continuous
and if f is uniformly continuous, then f is continuous. Prove also that the
reverse implications are not necessarily true.

Proof. Since f is Lipschitz continuous, there exists M > 0 such that

f(@) — fy)
-y

< M\Vz#yeA

Let € € Rt and define 6 = . Then, whenever |z — y| < §, we have

M
f(z) = fy)

=y | <M= F@) = f)l < Mlz—y| < M— =c.

Then f is uniformly continuous.

Now we will prove f is continuous. Take ¢ € A and € € RT. Define § =
Then, whenever |z — ¢| < d, we have |f(z) — f(c¢)| < € as presented abo
Therefore, f is continuous.

< i‘m

€.

Now, we will prove by a counterexample that a continuous function is
not necessarily uniformly continuous. Consider the function f defined on

A = (0,400) by
f@) =+

Let € > 0 and 7op € A. Then select 6 = min{wzg/2, (r¢/2)?¢}. Then we
know that § < x¢/2, and 6 < (1(/2)2e.

Now let z € A. Then whenever |z — xg| < §, we have that

i) Zo i)
mo—x§|x—x0|<5§? — xo—x<? — x>3

Since xo > z0/2 and z > 0, we have that x - 2o > (z0/2)%. Thus
1 1 r—x ) z0/2)%€
F@) = flag) =15 -~ = ol < oD

T X T X (20/2)% = (x0/2)?




Therefore, f(x) is continuous on A.
Now we want to show there there exists € > 0 such that for V§ > 0,dz,y €

A, for |z —y| < §,|f(x) — f(y)] = 9. Let e =1 and 6 > 0. Pick « =
min{d, 1} and y = x/2. Therefore, |x — y| = /2 < §. Then we have

Thus, we have shown that f(z) = 1/x is continuous but not uniformly
continuous on (0, +00) O

. Let K be compact and let f : K +— R be continuous on K. Then f is
uniformly continuous on K.

Proof. We show the contrapositive. If f is not uniformly continuous on K,
by definition there exists € > 0 such that for all § > 0 there exist z,y € K
such that |z —y| < and |f(z) — f(y)| > e. Thus, for each n € N, choose
T, Yn € K such that |z, —y,| < L and |f(2,) — f(yn)| > €. Forall€ >0
and n > L |z, —yp| < 2 <€, 50 |z —yu| = 0.

Since K is compact, the sequence (z,,) in K has a subsequence (x,, ) —
x € K. If (yn,) is the subsequence whose indices correspond to those in
(n, ), it has a subsequence (ynkj) — y € K. The corresponding sequence
(n,,) converges to lim(zy,) = 2. Thus lim(yn, ) = Mm((yn,, — 2n,,) +

mnkj) = lim(ynkj — xnkj) + lim(mnkj) = lim(mnkj) = .

By Presentation 3 Problem 8, if f is continuous, lim f(mnkj) = lim f(ynkj) =
f(z) and lim(f(xnkj) - f(ynk_j) = 0. Therefore, there exists an n' = ny;
such that |f(2n) — f(yn)| < €, which contradicts our choice of x,s and
yns at the beginning. Thus f is not continuous.

Therefore, if f is not uniformly continuous, f is not continuous and the
original statement follows. O

. Let K be compact and f : K — R be continuous on K. Then f(K) is
compact in R.

Proof. Since Take a sequence (y,,) C f(K) pick some sequence in K, de-
noted x,,, x, € K such that f(z,) =y, for each n € N.

Since K is compact, we could find some subsequence (z,,) of (z,) con-
verging to some z in K.

lim; yoo T, = =, where z € K

Since f is continuous, lim;_,~ f(zn,) = f(z), f(z) € f(K)

lim; 0 Yn, =Y, Y € f(K)



4. Let f : E +— R be continuous on E and E be connected. Then f(F) is
connected.

Proof. We use the theorem that the only connected sets in R are intervals.
WTS: Va,be f(E),ce Rs.t. a<c<b, ce f(E)

Let A={e€ E: f(e)<c}, B={ec E: fle)>c}

Then A and B are disjoint, non-empty, and £ = AU B

Since E is connected, 3 sequence (z,,) € A4 s.t. 2, — x € B

Since f is continuous on E, f(z,) — f(zx)

Then Vn € N, f(z,) < c. So f(x) <ec.

But f(z) > csincex € B. So f(x) =¢ = ce€ f(E)

Therefore, for any a,b € f(E),c € Rs.t. a < ¢ <b, we have ¢c € f(E).
Then f(E) C R is an interval, thus is connected. O

5. Let (f5) be a sequence of functions mapping A to R. If (f,,) is uniformly
Cauchy, then (f,) converges uniformly.

Proof. WTS: Uniformly Cauchy = Uniformly Convergent.

Because the sequences of function is uniformly Cauchy,we know that

Va € R,(fn(x)) is a Cauchy sequence, which subsequently implies con-
verges.

Therefore, Vo € R, f,(z) — L, for some L, € R.

Now we construct f(x) using L.

From Uniformly Cauchy, we know

Ve>0,3Nst. Vmn>N, |fm(z)— fulz) <eVaxeR.

= —€< fm(x) = fa(z) <eVzx

Fixing an x

Taking the limit as n — oo.

We also know that lim,, e frn(z) = f(2)

= —e< fm(z) — f(z) <e

= |fm(z) — f(z)] < € V x, which is the definition of Uniformly Conver-
gent.

O

6. Let (f,) be a sequence of real-valued functions continuous on A. If (f,)
converges uniformly, then (f,) converges pointwise to the same uniform
limit function f and f is continuous on A.

Proof. Let (f,) be a sequence of real-valued functions continuous on A,
and (f,,) converges uniformly to f.

= Since it converges uniformly, we know Ve > 0,IN € N s.t. if n >
N, |fa(z) — f(z)] < € holds to be true for all x € A.



= Ve > 0, for each z € A, if n > N,|f,(z) — f(z)| < ¢, which means
(fn(z)) is pointwise convergent.

Now we’d like to show f(z) is continuous on A.

Let c € A.

In addition, because we know (f,) converges uniformly, we know Ve >
0,Vz € A, 3N € Ns.t. if n > N, |f,(x) — f(z)] < §. Let N be fixed.

Moreover, in previous part, we have shown (f,) is also pointwise con-
vergent, thus Ve > 0, with the same N we found in above, we know
Vn > N, |fn(c) = flo)] < 3

By assumption, we know f,(x) is continuous everywhere on A, which
means Ve > 0, 36 > 0 s.t. if [z —c| <0, |fn(z) — fulc)] < 5.

Put everything together: Ve > 0,36 > 0 s.t. if |z — ¢| < § when n > N:

[f(@) = fl = [f(@) = fulz) + ful®) = fulc) + fule) = f(c)]
< @) = fa(@)] + [fn(@) = frl)] + [fulc) = F(c)|
by triangle inequality

< €+€+€_
373737 °¢

We can conclude, f is continuous on A. O

. Let f,, : [0,1] = R where f,(x) = 2™ for each n € N. Show that (f,,) does
not converge uniformly, but does converge pointwise.

Proof. If 0 <z < 1, then 2™ — 0 and n — oo, since & < 1, then (z,) is a
polynomial in the form of x™, and clearly every sequence will converge to
0. If z = 1, then ™ — 1 as n — oo since every power of 1is 1. So f, — f
pointwise where

0, if0<z<1

flx) =
1, ifz=1

AFSOC that (f,) converges uniformly. Then using the results proved in
Presentation 4 Problem 6, its limit must be the same as the pointwise limit.
However, the pointwise limit is not continuous, so (f,) cannot converge
uniformly. O

. Let f be defined on (a,b) for some a < b and let f be differentiable at
¢ € (a,b). Then f is continuous at ¢



Proof. By the definition of differentiability at a point, the derivative of f
at ¢ exists and we call it f'(c). In particular,

i 1@ = £

T—c xr—c

= f'(c)

We can multiply both sides of the equation by lim,_,.(x — ¢):
lim fla) = fo). lim(x — ¢) = f/(c) lim (z — ¢)
T—C Tr—C T—C T—C

Both limits on the left-hand side exist, so we can rewrite this equation as

T—cC xr—cC T—cC

lim <f(:r)—f(c) Nz — c)> = f'(c¢) lim(z — ¢) =
lim (f(z) — f(c)) = f'(¢) lim (2 — ¢)

T—cC r—c

By the algebraic limit theorem for addition (or subtraction), we can split
the subtraction expressions on both sides of the equation to obtain

. . gl . RT
lim #(@) = Jim #(0) = /() (Jim.= ~ I
Adding lim,_,. f(c) to both sides of the equation gives

. T / . BT

lim #(@) = Jim £(€) + 1) (Jim o — Jim ).

Then by direct substitution,

lim f(z) = f(c) + [ (e)(c — ) =
lim f(z) = /()

xr—rcC
The result of Problem 7 from Presentation Set 3 tells us that because the
above is true, f is continuous at ¢, as desired. O

. Let f: (a,b) — R for some a < b. f is differentiable at ¢ € (a,b) if and
only if there exists some function L on (a,b) continuous at ¢ such that for
all z € (a,b),



10.

Proof. Forward direction:
Assume that lim,_,. w
Define L(x) = W for x # ¢, and L(z) = lim, . w for x = c.
Let xo € (a,b), and there are two cases.

Case 1: xg # ¢

Then L(wo) = {2=H and lim, 0, f(2) — f(c) = f(z0) — f()

Then lim,_,,, = a:o —c and xg — ¢ # 0 because zg # ¢
fl@)=f(c) _ flza)=f(e) _ L(zo)

r— To—C

exists.

Therefore, lim,_,,, L(z) = limg_,,,
Case 2: xg=c¢
limg . L(z) = limg . w = L(c) by definition of L.

Backward direction:
For = # ¢, L(z) = 7]0(2:5(0).
So lim, . L(z) = L( ) because L is continuous

(w) f( )

Which means lim,,_, exists. O

Let f and g be defined on (a,b) for a < b and differentiable at ¢ € (a, b).
Show that

(a) f+ g is differentiable at ¢ and (f + g)'(¢) = f'(¢) + ¢'(¢)

Proof. By definition of differentiability, (f+g¢)'(¢) = lim,_, M
provided the limit exists. We will show the limit exists and is equal

to f'(c) +g'(c).

(f+9)(x)—(f+9)(c) Def of differentiability

(/ +9)'(c) = lim

T—C T —cC
i 10 00) = 16) k) Def of (/ + g)(x)
o @)~ () + @) ~ (o)
= lim M + lim 79(30) —9(¢) Algebraic Limit Theorem

r—c Tr—cC r—c Tr—cC
= f'(e)+ 4 (c) f, g differentiable at ¢

0
(b) for any k € R, kf is differentable at ¢ and (kf)'(c) = kf’(c).

Proof. By definition of differentiability, (kf)’'(c) = lim,_¢ (ef) (@) =(kf)(c)

r—c
provided the limit exists. We will show the limit exists and is equal

to kf'(c).



(kf)(z) = (kf)(e)

(kf)'(c) = lim Def of differentiability

T—c T —cC
= lim kf(@) = kfle) Def of (kf)(x)
T—cC Tr—c
— lim kM
Tr—C Tr — C
=k lim M Algebraic Limit Theorem
T—c Tr—c
=kf'(c) f differentiable at c

O

11. Let f and g be defined on (a,b) for a < b and differentiable at ¢ € (a, b).
Show that

(a) (fg) is differentiable at ¢ and (fg)’(c) = f'(¢)g(c) + f(c)g'(c)
(b) if g(c) # 0, then (i) is differentiable at ¢ and

g
(f) (c) = fi(e)gle) = fle)g'(c)
g [9(c)]?
Proof. Let f and g be defined on (a,b) for a < b and differentiable at
¢ € (a,b).
Show that

(a) (fg) is differentiable at ¢ and (fg)'(c) = f'(c)g(c) + f(c)iy’(c).

() (€) = limy . L2@=10O) _ | [@)a)=g() o (2)= 1)
_H@)(g@)=g(e) 9(e)(f (@)= f(c))

z—c + limg x—c
f@)—F(c)
r—c

= lim,_,
= lim, . f(x) lim,_. % + g(c) limg ..
= f(e)g'(e) + g(e)f'(c)

(b) if g(c) # 0, then (5) is differentiable at ¢ and

f'(c)g(e) = f(e)g'(e)
[9(c)]?

Frey
(;) (c) =

(£Y(c) = limy ., 2212  fim, _,, [Doldglo)f(0
_ 1y f(@)g(e)=g(z)f(c)
g Me—re =
= 7[9(5]2 [limg ¢ g(c) limg . f(zi:f(C)
= szl9(©)f'(e) = f(e)g'(c)]
Note: lim,_,. f(z) = f(c¢) and lim,_,.g(x) = g(c). Since f,g are both
differentiable at ¢, they must both be continuous at c. O

= limg, ¢

g(w)*g(C)]

xr—c

- hmx—)c f(ZC) hmx—)c



