Presentation Problems 4

21-355 A

For these problems, assume all sets are subsets of $\mathbb R$ unless otherwise specified.

1. Let $f : A \mapsto \mathbb{R}$. If f is Lipschitz continuous, then f is uniformly continuous and if f is uniformly continuous, then f is continuous. Prove also that the reverse implications are not necessarily true.

Proof. Since f is Lipschitz continuous, there exists M > 0 such that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M, \forall x \neq y \in A.$$

Let $\epsilon \in \mathbb{R}^+$ and define $\delta = \frac{\epsilon}{M}$. Then, whenever $|x - y| < \delta$, we have

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M \implies |f(x) - f(y)| \le M|x - y| < M\frac{\epsilon}{M} = \epsilon.$$

Then f is uniformly continuous.

Now we will prove f is continuous. Take $c \in A$ and $\epsilon \in \mathbb{R}^+$. Define $\delta = \frac{\epsilon}{M}$. Then, whenever $|x - c| < \delta$, we have $|f(x) - f(c)| < \epsilon$ as presented above. Therefore, f is continuous.

Now, we will prove by a counterexample that a continuous function is not necessarily uniformly continuous. Consider the function f defined on $A = (0, +\infty)$ by

$$f(x) = \frac{1}{x}$$

Let $\epsilon > 0$ and $x_0 \in A$. Then select $\delta = \min\{x_0/2, (x_0/2)^2\epsilon\}$. Then we know that $\delta \leq x_0/2$, and $\delta \leq (x_0/2)^2\epsilon$.

Now let $x \in A$. Then whenever $|x - x_0| < \delta$, we have that

$$x_0 - x \le |x - x_0| < \delta \le \frac{x_0}{2} \implies x_0 - x < \frac{x_0}{2} \implies x > \frac{x_0}{2}$$

Since $x_0 > x_0/2$ and $x_0 > 0$, we have that $x \cdot x_0 > (x_0/2)^2$. Thus

$$|f(x) - f(x_0)| = |\frac{1}{x} - \frac{1}{x_0}| = \frac{|x - x_0|}{x \cdot x_0} < \frac{\delta}{(x_0/2)^2} \le \frac{(x_0/2)^2 \epsilon}{(x_0/2)^2} = \epsilon$$

Therefore, f(x) is continuous on A.

Now we want to show there there exists $\epsilon > 0$ such that for $\forall \delta > 0, \exists x, y \in A$, for $|x - y| < \delta, |f(x) - f(y)| \ge \delta$. Let $\epsilon = 1$ and $\delta > 0$. Pick $x = \min\{\delta, 1\}$ and y = x/2. Therefore, $|x - y| = x/2 \le \delta$. Then we have

$$|f(x) - f(y)| = |\frac{1}{x} - \frac{1}{x/2}| = \frac{1}{x} \ge 1 = \epsilon$$

Thus, we have shown that f(x) = 1/x is continuous but not uniformly continuous on $(0, +\infty)$

2. Let K be compact and let $f : K \mapsto \mathbb{R}$ be continuous on K. Then f is uniformly continuous on K.

Proof. We show the contrapositive. If f is not uniformly continuous on K, by definition there exists $\epsilon > 0$ such that for all $\delta > 0$ there exist $x, y \in K$ such that $|x - y| < \delta$ and $|f(x) - f(y)| \ge \epsilon$. Thus, for each $n \in \mathbb{N}$, choose $x_n, y_n \in K$ such that $|x_n - y_n| < \frac{1}{n}$ and $|f(x_n) - f(y_n)| \ge \epsilon$. For all $\epsilon' > 0$ and $n > \frac{1}{\epsilon'}$, $|x_n - y_n| < \frac{1}{n} < \epsilon'$, so $|x_n - y_n| \to 0$.

Since K is compact, the sequence (x_n) in K has a subsequence $(x_{n_k}) \rightarrow x \in K$. If (y_{n_k}) is the subsequence whose indices correspond to those in (x_{n_k}) , it has a subsequence $(y_{n_{k_j}}) \rightarrow y \in K$. The corresponding sequence $(x_{n_{k_j}})$ converges to $\lim(x_{n_k}) = x$. Thus $\lim(y_{n_{k_j}}) = \lim((y_{n_{k_j}} - x_{n_{k_j}}) + x_{n_{k_j}}) = \lim(y_{n_{k_j}} - x_{n_{k_j}}) + \lim(x_{n_{k_j}}) = \lim(x_{n_{k_j}}) = x$.

By Presentation 3 Problem 8, if f is continuous, $\lim f(x_{n_{k_j}}) = \lim f(y_{n_{k_j}}) = f(x)$ and $\lim(f(x_{n_{k_j}}) - f(y_{n_{k_j}}) = 0$. Therefore, there exists an $n' = n_{k_j}$ such that $|f(x_{n'}) - f(y_{n'})| < \epsilon$, which contradicts our choice of x_n s and y_n s at the beginning. Thus f is not continuous.

Therefore, if f is not uniformly continuous, f is not continuous and the original statement follows.

3. Let K be compact and $f: K \mapsto \mathbb{R}$ be continuous on K. Then f(K) is compact in \mathbb{R} .

Proof. Since Take a sequence $(y_n) \subseteq f(K)$ pick some sequence in K, denoted $x_n, x_n \in K$ such that $f(x_n) = y_n$ for each $n \in \mathbb{N}$. Since K is compact, we could find some subsequence (x_{n_i}) of (x_n) converging to some x in K. $\lim_{i\to\infty} x_{n_i} = x$, where $x \in K$ Since f is continuous, $\lim_{i\to\infty} f(x_{n_i}) = f(x), f(x) \in f(K)$ $\lim_{i\to\infty} y_{n_i} = y, y \in f(K)$

	- 1
	- 1
	_

4. Let $f: E \mapsto \mathbb{R}$ be continuous on E and E be connected. Then f(E) is connected.

Proof. We use the theorem that the only connected sets in \mathbb{R} are intervals. WTS: $\forall a, b \in f(E), c \in \mathbb{R}$ s.t. $a < c < b, c \in f(E)$ Let $A = \{e \in E : f(e) < c\}, B = \{e \in E : f(e) \ge c\}$ Then A and B are disjoint, non-empty, and $E = A \cup B$ Since E is connected, \exists sequence $(x_n) \in A$ s.t. $x_n \mapsto x \in B$ Since f is continuous on E, $f(x_n) \mapsto f(x)$ Then $\forall n \in \mathbb{N}, f(x_n) < c$. So $f(x) \le c$. But $f(x) \ge c$ since $x \in B$. So $f(x) = c \implies c \in f(E)$ Therefore, for any $a, b \in f(E), c \in \mathbb{R}$ s.t. a < c < b, we have $c \in f(E)$. Then $f(E) \subseteq \mathbb{R}$ is an interval, thus is connected. □

5. Let (f_n) be a sequence of functions mapping A to \mathbb{R} . If (f_n) is uniformly Cauchy, then (f_n) converges uniformly.

Proof. WTS: Uniformly Cauchy \implies Uniformly Convergent. Because the sequences of function is uniformly Cauchy,we know that $\forall x \in R, (f_n(x))$ is a Cauchy sequence, which subsequently implies converges. Therefore, $\forall x \in R, f_n(x) \to L_x$ for some $L_x \in \mathbb{R}$. Now we construct f(x) using L_x . From Uniformly Cauchy, we know $\forall \epsilon > 0, \exists N \text{ s.t. } \forall m, n \ge N, |f_m(x) - f_n(x)| < \epsilon \forall x \in \mathbb{R}.$ $\implies -\epsilon < f_m(x) - f_n(x) < \epsilon \forall x$ Fixing an xTaking the limit as $n \to \infty$. We also know that $\lim_{n\to\infty} f_n(x) = f(x)$ $\implies -\epsilon < f_m(x) - f(x) < \epsilon.$ $\implies |f_m(x) - f(x)| < \epsilon \forall x$, which is the definition of Uniformly Convergent.

6. Let (f_n) be a sequence of real-valued functions continuous on A. If (f_n) converges uniformly, then (f_n) converges pointwise to the same uniform limit function f and f is continuous on A.

Proof. Let (f_n) be a sequence of real-valued functions continuous on A, and (f_n) converges uniformly to f.

⇒ Since it converges uniformly, we know $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t. if $n \ge N, |f_n(x) - f(x)| < \epsilon$ holds to be true for all $x \in A$.

 $\Rightarrow \forall \epsilon > 0$, for each $x \in A$, if $n \ge N$, $|f_n(x) - f(x)| < \epsilon$, which means $(f_n(x))$ is pointwise convergent.

Now we'd like to show f(x) is continuous on A.

Let $c \in A$.

In addition, because we know (f_n) converges uniformly, we know $\forall \epsilon > 0, \forall x \in A, \exists N \in \mathbb{N} \text{ s.t. if } n \geq N, |f_n(x) - f(x)| < \frac{\epsilon}{3}$. Let N be fixed.

Moreover, in previous part, we have shown (f_n) is also pointwise convergent, thus $\forall \epsilon > 0$, with the same N we found in above, we know $\forall n \ge N, |f_n(c) - f(c)| < \frac{\epsilon}{3}$.

By assumption, we know $f_n(x)$ is continuous everywhere on A, which means $\forall \epsilon > 0, \exists \delta > 0$ s.t. if $|x - c| < \delta, |f_n(x) - f_n(c)| < \frac{\epsilon}{3}$.

Put everything together: $\forall \epsilon > 0, \exists \delta > 0$ s.t. if $|x - c| < \delta$ when $n \ge N$:

$$\begin{aligned} |f(x) - f(c)| &= |f(x) - f_n(x) + f_n(x) - f_n(c) + f_n(c) - f(c)| \\ &\leq |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)| \\ & \text{by triangle inequality} \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon \end{aligned}$$

We can conclude, f is continuous on A.

7. Let $f_n : [0,1] \mapsto \mathbb{R}$ where $f_n(x) = x^n$ for each $n \in \mathbb{N}$. Show that (f_n) does not converge uniformly, but does converge pointwise.

Proof. If $0 \le x < 1$, then $x^n \to 0$ and $n \to \infty$, since x < 1, then (x_n) is a polynomial in the form of x^n , and clearly every sequence will converge to 0. If x = 1, then $x^n \to 1$ as $n \to \infty$ since every power of 1 is 1. So $f_n \to f$ pointwise where

$$f(x) = \begin{cases} 0, & \text{if } 0 \le x < 1\\ 1, & \text{if } x = 1 \end{cases}$$

AFSOC that (f_n) converges uniformly. Then using the results proved in Presentation 4 Problem 6, its limit must be the same as the pointwise limit. However, the pointwise limit is not continuous, so (f_n) cannot converge uniformly.

8. Let f be defined on (a, b) for some a < b and let f be differentiable at $c \in (a, b)$. Then f is continuous at c

Proof. By the definition of differentiability at a point, the derivative of f at c exists and we call it f'(c). In particular,

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$$

We can multiply both sides of the equation by $\lim_{x\to c} (x-c)$:

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot \lim_{x \to c} (x - c) = f'(c) \lim_{x \to c} (x - c)$$

Both limits on the left-hand side exist, so we can rewrite this equation as

$$\lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} \cdot (x - c) \right) = f'(c) \lim_{x \to c} (x - c) \Rightarrow$$
$$\lim_{x \to c} (f(x) - f(c)) = f'(c) \lim_{x \to c} (x - c)$$

By the algebraic limit theorem for addition (or subtraction), we can split the subtraction expressions on both sides of the equation to obtain

$$\lim_{x \to c} f(x) - \lim_{x \to c} f(c) = f'(c) \left(\lim_{x \to c} x - \lim_{x \to c} c \right)$$

Adding $\lim_{x\to c} f(c)$ to both sides of the equation gives

$$\lim_{x \to c} f(x) = \lim_{x \to c} f(c) + f'(c) \left(\lim_{x \to c} x - \lim_{x \to c} c \right).$$

Then by direct substitution,

$$\lim_{x \to c} f(x) = f(c) + f'(c)(c-c) \Rightarrow$$
$$\lim_{x \to c} f(x) = f(c)$$

The result of Problem 7 from Presentation Set 3 tells us that because the above is true, f is continuous at c, as desired.

9. Let $f : (a, b) \mapsto \mathbb{R}$ for some a < b. f is differentiable at $c \in (a, b)$ if and only if there exists some function L on (a, b) continuous at c such that for all $x \in (a, b)$,

$$f(x) - f(c) = L(x)(x - c).$$

Proof. Forward direction: Assume that $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists. Define $L(x) = \frac{f(x)-f(c)}{x-c}$ for $x \neq c$, and $L(x) = \lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ for x = c. Let $x_0 \in (a, b)$, and there are two cases. Case 1: $x_0 \neq c$ Then $L(x_0) = \frac{f(x_0)-f(c)}{x_0-c}$ and $\lim_{x\to x_0} f(x) - f(c) = f(x_0) - f(c)$ Then $\lim_{x\to x_0} x_0 - c$ and $x_0 - c \neq 0$ because $x_0 \neq c$ Therefore, $\lim_{x\to x_0} L(x) = \lim_{x\to x_0} \frac{f(x)-f(c)}{x-c} = \frac{f(x_0)-f(c)}{x_0-c} = L(x_0)$ Case 2: $x_0 = c$ $\lim_{x\to c} L(x) = \lim_{x\to c} \frac{f(x)-f(c)}{x-c} = L(c)$ by definition of L.

Backward direction: For $x \neq c$, $L(x) = \frac{f(x) - f(c)}{x - c}$. So $\lim_{x \to c} L(x) = L(c)$ because L is continuous Which means $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists.

- 10. Let f and g be defined on (a, b) for a < b and differentiable at $c \in (a, b)$. Show that
 - (a) f + g is differentiable at c and (f + g)'(c) = f'(c) + g'(c)

Proof. By definition of differentiability, $(f+g)'(c) = \lim_{x\to c} \frac{(f+g)(x) - (f+g)(c)}{x-c}$ provided the limit exists. We will show the limit exists and is equal to f'(c) + g'(c).

$$(f+g)'(c) = \lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x-c}$$
 Def of differentiability

$$= \lim_{x \to c} \frac{f(x) + g(x) - f(c) - g(c)}{x-c}$$
 Def of $(f+g)(x)$

$$= \lim_{x \to c} \frac{f(x) - f(c) + g(x) - g(c)}{x-c}$$

$$= \lim_{x \to c} \frac{f(x) - f(c)}{x-c} + \lim_{x \to c} \frac{g(x) - g(c)}{x-c}$$
 Algebraic Limit Theorem

$$= f'(c) + g'(c)$$

$$\Box$$

(b) for any $k \in \mathbb{R}$, kf is differentiable at c and (kf)'(c) = kf'(c).

Proof. By definition of differentiability, $(kf)'(c) = \lim_{x \to c} \frac{(kf)(x) - (kf)(c)}{x - c}$ provided the limit exists. We will show the limit exists and is equal to kf'(c).

$$(kf)'(c) = \lim_{x \to c} \frac{(kf)(x) - (kf)(c)}{x - c} \qquad \text{Def of differentiability}$$
$$= \lim_{x \to c} \frac{kf(x) - kf(c)}{x - c} \qquad \text{Def of } (kf)(x)$$
$$= \lim_{x \to c} k \frac{f(x) - f(c)}{x - c}$$
$$= k \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \qquad \text{Algebraic Limit Theorem}$$
$$= kf'(c) \qquad f \text{ differentiable at } c$$

- 11. Let f and g be defined on (a, b) for a < b and differentiable at $c \in (a, b)$. Show that
 - (a) (fg) is differentiable at c and (fg)'(c) = f'(c)g(c) + f(c)g'(c)
 - (b) if $g(c) \neq 0$, then $\left(\frac{f}{g}\right)$ is differentiable at c and

$$\left(\frac{f}{g}\right)(c) = \frac{f'(c)g(c) - f(c)g'(c)}{[g(c)]^2}.$$

Proof. Let f and g be defined on (a, b) for a < b and differentiable at $c \in (a, b)$. Show that

(a)
$$(fg)$$
 is differentiable at c and $(fg)'(c) = f'(c)g(c) + f(c)g'(c)$.
 $(fg)'(c) = \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c} = \lim_{x \to c} \frac{f(x)(g(x) - g(c)) + g(c)(f(x) - f(c))}{x - c}$
 $= \lim_{x \to c} \frac{f(x)(g(x) - g(c))}{x - c} + \lim_{x \to c} \frac{g(c)(f(x) - f(c))}{x - c}$
 $= \lim_{x \to c} f(x) \lim_{x \to c} \frac{g(x) - g(c)}{x - c} + g(c) \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$
 $= f(c)g'(c) + g(c)f'(c)$

(b) if $g(c) \neq 0$, then $(\frac{f}{g})$ is differentiable at c and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{[g(c)]^2}$$
$$\left(\frac{f}{g}\right)'(c) = \lim_{x \to c} \frac{\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)}}{x - c} = \lim_{x \to c} \frac{f(x)g(c) - g(x)f(c)}{g(x)g(c)(x - c)}$$
$$= \lim_{x \to c} \frac{1}{g(x)g(c)} \lim_{x \to c} \frac{f(x)g(c) - g(x)f(c)}{x - c}$$
$$= \frac{1}{[g(c)]^2} [\lim_{x \to c} g(c) \lim_{x \to c} \frac{f(x) - f(c)}{x - c} - \lim_{x \to c} f(x) \lim_{x \to c} \frac{g(x) - g(c)}{x - c}]$$
$$= \frac{1}{g(c)^2} [g(c)f'(c) - f(c)g'(c)]$$

Note: $\lim_{x\to c} f(x) = f(c)$ and $\lim_{x\to c} g(x) = g(c)$. Since f, g are both differentiable at c, they must both be continuous at c.