Presentation Problems 4

21-355 A

Instructions: Your group should prepare a presentation for the problem corresponding to your group number. After presenting the solution and getting feedback from the class, you have until the beginning of the following class to send a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file with a polished form of the solution to the instructor. Make sure all group members' names are in the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file. There are 15 points available: 10 for the presentation and 5 for the written proof.

For these problems, assume all sets are subsets of \mathbb{R} unless otherwise specified.

1. Let $f: A \mapsto \mathbb{R}$. If f is Lipschitz continuous, then f is uniformly continuous and if f is uniformly continuous, then f is continuous. Prove also that the reverse implications are not necessarily true.
2. Let K be compact and let $f: K \mapsto \mathbb{R}$ be continuous on K. Then f is uniformly continuous on K.
3. Let K be compact and $f: K \mapsto \mathbb{R}$ be continuous on K. Then $f(K)$ is compact in \mathbb{R}.
4. Let $f: E \mapsto \mathbb{R}$ be continuous on E and E be connected. Then $f(E)$ is connected.
5. Let $\left(f_{n}\right)$ be a sequence of functions mapping A to \mathbb{R}. If $\left(f_{n}\right)$ is uniformly Cauchy, then $\left(f_{n}\right)$ converges uniformly.
6. Let $\left(f_{n}\right)$ be a sequence of real-valued functions continuous on A. If $\left(f_{n}\right)$ converges uniformly, then $\left(f_{n}\right)$ converges pointwise to the same uniform limit function f and f is continuous on A.
7. Let $f_{n}:[0,1] \mapsto \mathbb{R}$ where $f_{n}(x)=x^{n}$ for each $n \in \mathbb{N}$. Show that $\left(f_{n}\right)$ does not converge uniformly, but does converge pointwise.
8. Let f be defined on (a, b) for some $a<b$ and let f be differentiable at $c \in(a, b)$. Then f is continuous at c
9. Let $f:(a, b) \mapsto \mathbb{R}$ for some $a<b . f$ is differentiable at $c \in(a, b)$ if and only if there exists some continuous function L on (a, b) such that for all $x \in(a, b)$,

$$
f(x)-f(a)=L(x)(x-a) .
$$

10. Let f and g be defined on (a, b) for $a<b$ and differentiable at $c \in(a, b)$. Show that
(a) $f+g$ is differentiable at c and $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$
(b) for any $k \in \mathbb{R}, k f$ is differentable at c and $(k f)^{\prime}(c)=k f^{\prime}(c)$.
11. Let f and g be defined on (a, b) for $a<b$ and differentiable at $c \in(a, b)$. Show that
(a) $(f g)$ is differentiable at c and $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$
(b) if $g(c) \neq 0$, then $\left(\frac{f}{g}\right)$ is differentiable at c and

$$
\left(\frac{f}{g}\right)(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{[g(c)]^{2}}
$$

