Presentation Problems 3

21-355 A

1. Show that $K \subseteq \mathbb{R}$ is compact if and only if K is closed and bounded in \mathbb{R}.

Proof. ($\Longrightarrow)$ Let K be compact.
(Bounded)
AFSOC that K is not bounded. Then we know that there exists $x_{1} \in K$ satisfying $\left|x_{1}\right|>1$. Similarly, there exists $x_{2} \in K$ with $\left|x_{2}\right|>2$. In general, $\forall n \in \mathbb{N}$, there exists $x_{n} \in K$, such that $\left|x_{n}\right|>n$. Define $\left(x_{n}\right)$ to be the sequence obtained via the above procedure. We know $\left(x_{n}\right)$ is a sequence in K. Since K is assumed to be compact, $\left(x_{n}\right)$ should have a convergent subsequence $\left(x_{n_{k}}\right)$. But the elements of the subsequence must satisfy $\left|x_{n_{k}}\right|>n_{k}$, and consequently $\left(x_{n_{k}}\right)$ is unbounded. Since we have shown that every convergent sequence is bounded, the sequence $\left(x_{n_{k}}\right)$ is not convergent, a contradiction.

(Closed)

We will show that K is closed by proving that K contains its limit points.
Let $x=\lim x_{n}$, where $\left(x_{n}\right)$ is a convergent sequence in K. By the definition of a compact set, the sequence $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$, and this subsequence converges to the same limit x by problem 1 of presentation set 1 . Therefore, it follows that $x \in K$, and hence K is closed.
(\Longleftarrow) Let K be closed and bounded in \mathbb{R}. Let $\left(x_{n}\right)$ be a sequence in K. Since this sequence is bounded, we have a converging subsequence $\left(x_{n_{k}}\right)$ in $K \subseteq \mathbb{R}$. Let $x=\lim x_{n_{k}}$, we have $x \in K$ since K is closed. Therefore, we know that $K \subseteq \mathbb{R}$ is compact.
2. Let $\left\{K_{n}\right\}_{n=1}^{\infty}$ be a collection of non-empty compact sets in \mathbb{R} such that for each $n \in \mathbb{N}, K_{n} \supseteq K_{n+1}$. Then

$$
\bigcap_{n=1}^{\infty} K_{n} \neq \emptyset .
$$

Proof. For each $n \in \mathbb{N}$, choose $x_{n} \in K_{n}$. Since $K_{n} \subseteq K_{1}$ for each $n \in \mathbb{N}$, $\left(x_{n}\right)$ is a sequence in K_{1}; since K_{1} is compact, there is a subsequence $\left(x_{n_{k}}\right)$ converging to some $x \in K_{1}$.

Moreover, for each $n \in \mathbb{N}$, the subsequence $\left\{x_{n_{k}}: n_{k} \geq n\right\}$ also converges to x. By the first presentation problem, the compact set K_{n} is also closed; consequently, by the Presentation 2 Problem $2, x \in K_{n}$.

Therefore, $x \in K_{n}$ for all $n \in \mathbb{N}$, so $\bigcap_{n=1}^{\infty} K_{n}=\emptyset$.
3. Show that any non-empty perfect set in \mathbb{R} is uncountable. Conclude that any non-empty perfect set must contain irrationals.

Proof. Assume for the sake of contradiction, some non-empty perfect set P is countable.
so we can write $P=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}$.

Let $I_{1}=\left(p_{1}-\epsilon, p_{1}+\epsilon\right)$.
Since p_{1} is limit point, there must be another element of P in I_{1}. Without loss of generality, call it p_{2}.

We construct $I_{2}=\left(p_{2}-a, p_{2}+a\right)$ such that $\overline{I_{2}} \subseteq I_{1}$
Again, because p_{2} is a limit point, $p_{3} \in I_{2}$.
Construct $\overline{I_{3}} \subseteq I_{2}$, but $p_{1}, p_{2} \notin I_{3}$.

Thus, for each $n, \overline{I_{n+1}} \subseteq I_{n}, p_{1}, \ldots p_{n} \notin I_{n+1}$, but $p_{n+1} \in I_{n+1}$.
Set $P^{\prime}=\bigcap_{p_{i} \in P}\left(\overline{I_{i}} \cap P\right)$, where $\overline{I_{i}}$ is closed and bounded, so it is compact P^{\prime} is non-empty, since $\overline{I_{(i+1)}} \cap P \subseteq \overline{I_{i}} \cap P$ yet $p_{1}, p_{2} \ldots \notin \overline{I_{i}} \cap P$

This contradicts our assumption that P is countable. So P is uncountable. If P only contained rationals, it would be countable. Since it is uncountable, P must contain irrationals.
4. Show that a set $A \subseteq \mathbb{R}$ is connected if and only if $a<c<b$ with $a, b \in A$, then $c \in A$. Use this to show the only connected sets in \mathbb{R} are intervals.

Proof. (\Rightarrow) : Assume that set $A \in \mathbb{R}$ is connected. We want to show that if $a<c<b$ with $a, b \in A$, then $c \in A$. Equivalently, we will show the contrapositive: if $a<c<b$ with $a, b \in A$ and $c \notin A$, then A is not connected.
Suppose that $a<c<b$ with $a, b \in A$ and $c \notin A$. Let $A_{1}=A \cap$ $(-\infty, c), A_{2}=A \cap(c, \infty)$. Then A_{1}, A_{2} are non-empty and disjoint, $A_{1} \cup$ $A_{2}=A$. Then

$$
\begin{aligned}
& \overline{A_{1}} \cap A_{2} \subseteq \overline{(-\infty, c)} \cap(c, \infty)=(-\infty, c] \cap(c, \infty)=\emptyset \\
& A_{1} \cap \overline{A_{2}} \subseteq(-\infty, c) \cap \overline{(c, \infty)}=(-\infty, c) \cap[c, \infty)=\emptyset
\end{aligned}
$$

So $A_{1}, A_{2} \subseteq A$ are separated, and therefore, A is not connected.
(\Leftarrow) : Assume that if $a<c<b$ with $a, b \in A$, then $c \in A$, we want to show A is connected.
Write $A=A_{1} \cup A_{2}$ where A_{1} and A_{2} are non-empty and disjoint. Let $a_{1} \in A_{1}$ and $b_{1} \in A_{2}$.
WLOG, $a_{1}<b_{1}$. By assumption, for any c satisfies $a_{1}<c<b_{1}, c \in A$. Then $\left[a_{1}, b_{1}\right] \subseteq A$.
Let $I_{1}=\left[a_{1}, b_{1}\right]$. Let $c_{1}=\frac{a_{1}+b_{1}}{2}$. If $c_{1} \in A_{1}$, let $a_{2}=c_{1}, b_{2}=b_{1}$. Otherwise, let $a_{2}=a_{1}, b_{2}=c_{1}$. Then let $I_{2}=\left[a_{2}, b_{2}\right]$. We continue the construction inductively. It is guaranteed that all $a_{n} \mathrm{~s}$ are in A_{1}, and all b_{n} s are in A_{2}, and $\left[a_{1}, b_{1}\right] \supseteq\left[a_{2}, b_{2}\right] \supseteq \ldots \supseteq\left[a_{n}, b_{n}\right] \ldots$. . Then by the nested interval property $\exists x \in \bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$, and x is either in A_{1} or A_{2}. Besides, $\left(a_{n}\right) \rightarrow x$ and $\left(b_{n}\right) \rightarrow x$.

- if $x \in A_{1}$, since $\left(b_{n}\right) \rightarrow x$ and $b_{n} \in A_{2}$ for all $n \in \mathbb{N}, A$ is connected.
- if $x \in A_{2}$, since $\left(a_{n}\right) \rightarrow x$ and $a_{n} \in A_{1}$ for all $n \in \mathbb{N}, A$ is connected.

Therefore, if $a<c<b$ with $a, b \in A \Rightarrow c \in A, A$ is connected.
Since we have shown that if A is connected, then $a<c<b$ with $a, b \in$ $A \Rightarrow c \in A$ and if $a<c<b$ with $a, b \in A$ and $c \notin A$, then A is not connected, the only connected sets in \mathbb{R} are intervals.
5. Let $f: A \mapsto \mathbb{R}$ and let c be a limit point of A. Then $\lim _{x \rightarrow c} f(x)=L$ if and only if for all sequences $\left(x_{n}\right)$ in A such that $x_{n} \neq c$ for all $n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} x_{n}=c, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Proof. (\Rightarrow) Let $f: A \rightarrow \mathbb{R}$ and let c be a limit point of A, and $\lim _{x \rightarrow c} f(x)=$ L
We know $\forall \epsilon^{*}>0, \exists \delta>0$ s.t. If $0<|x-c|<\delta$, then $|f(x)-L|<\epsilon^{*}$. Thus, we know for any $\epsilon^{*}>0$, such a δ exists.
Let $\left(x_{n}\right)$ be a sequence in A such that $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow c$. Now, let $\epsilon=\delta$. We also know that $\forall \delta>0, \exists N_{1}$ s.t. $\forall n \geq N_{1}$, $\left|x_{n}-c\right|<\delta$. Thus, combining the two givens, we know that for any x_{n} s.t. $\left|x_{n}-c\right|<\delta$, which is $x_{n} \mid n \geq N_{1}$, we know that $\left|f\left(x_{n}\right)-L\right|<\epsilon^{*}$.

So, we know that given the two conditions, $\forall \epsilon>0, \exists N$ s.t. $\forall n \geq N$, $\left|f\left(x_{n}\right)-L\right|<\epsilon$.
(\Leftarrow) For the 2 nd direction, we are going to prove the contrapositive. Assume $\lim _{x \rightarrow c} f(x) \neq L$. Then that means either the limit d.n.e. or the limit $\neq L$. So, there exists some $\epsilon>0$, such that for all $\delta>0$ such that $\exists x^{*}$ s.t. $0<\left|x^{*}-c\right|<\delta$, but $\left|f\left(x^{*}\right)-L\right| \geq \epsilon$.
The intuition behind this proof is that no matter how close an x gets to $\mathrm{c}, \mathrm{f}(\mathrm{x})$ could still be infinitely far from L.
Define x_{n} to be a point in A not equal to c such that $0<\left|x_{n}-c\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-L\right| \geq \epsilon$. Clearly, $x_{n} \rightarrow c$ but $\left(f\left(x_{n}\right)\right)$ does not converge to L.
6. Let $f, g: A \mapsto \mathbb{R}$ such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$ for some limit point c of A. Then
(a) $\lim _{x \rightarrow c}[\alpha f(x)+\beta g(x)]=\alpha L+\beta M$ for all $\alpha, \beta \in \mathbb{R}$,
(b) $\lim _{x \rightarrow c}[f(x) g(x)]=L M$, and
(c) if $M \neq 0$,

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}
$$

Proof. Recall the theorem from class: Let $f: A \rightarrow \mathbb{R}$ and x_{0} be a limit point of A. Then $\lim _{x \rightarrow x_{0}} f(x)=L$ if and only if $f\left(x_{n}\right) \rightarrow L$ for all $\left(x_{n}\right) \subseteq A$ such that $x_{n} \neq x_{0}$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x_{0}$. We can use this with f and g since f with c and g with c both satisify the conditions.
Since $\lim _{x \rightarrow c} f(x)=L$, then by the above theorem, we know that $f\left(x_{n}\right) \rightarrow L$ for all $\left(x_{n}\right) \subseteq A$ such that $x_{n} \neq c$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow c$. The same goes for g, so $g\left(y_{n}\right) \rightarrow M$ for all $\left(y_{n}\right) \subseteq A$ such that $y_{n} \neq c$ for all $n \in \mathbb{N}$ and $y_{n} \rightarrow c$. Let $\left(x_{n}\right)$ be a fixed sequence that satisfies this property for f and g (we know this exists exist because c is a limit point in A).

By presentation problem 2 in the first set of presentation problems, we know if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are sequences such that $\lim a_{n}=a$ and $\lim b_{n}=b$, then for any $\alpha, \beta \in \mathbb{R}, \lim \left(\alpha a_{n}+\beta b_{n}\right)=\alpha a+\beta b, \lim \left(a_{n} b_{n}\right)=a b$, and $\lim \frac{a_{n}}{b_{n}}=\frac{a}{b}$, given $b \neq 0$
Thus we can conclude:
(a) $\lim _{x \rightarrow c}[\alpha f(x)+\beta g(x)]=\alpha L+\beta M$,
(b) $\lim _{x \rightarrow c}[f(x) g(x)]=L M$,
(c) and provided $M \neq 0, \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M}$.
7. Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then $f: A \mapsto \mathbb{R}$ is continuous at c if and only if for all sequences $\left(x_{n}\right)$ in A such that $x_{n} \rightarrow c, f\left(x_{n}\right) \rightarrow f(c)$.

Proof. Let $A \subseteq \mathbb{R}$ and let $c \in A$. Let $f: A \rightarrow \mathbb{R}$.
For the forwards direction, suppose f is continuous at c. Let $\left(x_{n}\right)$ be a sequence in A such that $x_{n} \rightarrow c$. We will show that $f\left(x_{n}\right) \rightarrow f(c)$. Let $\varepsilon>0$. Since f is continuous at c, we know there exists $\delta>0$ such that if $\left|x_{n}-c\right|<\delta$ then $\left|f\left(x_{n}\right)-f(c)\right|<\varepsilon$. Since $\delta>0$ and $x_{n} \rightarrow c$, we know there exists $N \in \mathbb{N}$ such that for all $n \geq N$, we have

$$
\left|x_{n}-c\right|<\delta
$$

It follows that from continuity that for all $n \geq N$,

$$
\left|f\left(x_{n}\right)-f(c)\right|<\varepsilon
$$

Thus $f\left(x_{n}\right) \rightarrow f(c)$.
Will we show the other direction by contrapositive. Suppose f is not continuous at c. This means that there exists some $\varepsilon>0$ such that for all $\delta>0$, if $|x-c|<\delta$ then $|f(x)-f(c)| \geq \varepsilon$. Then we can construct a sequence $\left(x_{n}\right)$ in A such that $\left|x_{n}-c\right|<\frac{1}{n}$ and $\left|f\left(x_{n}\right)-f(c)\right| \geq \varepsilon$. We can see that $x_{n} \rightarrow c$. However, for any $\varepsilon>0$, we have that $\left|f\left(x_{n}\right)-f(c)\right| \geq \varepsilon$, so $f\left(x_{n}\right) \nrightarrow f(c)$.
8. Let $A \subseteq \mathbb{R}$ and $f: A \mapsto \mathbb{R}$. Then f is continuous on A if and only if for all open sets U in $\mathbb{R}, f^{-1}(U)$ is open in A. (Recall that a set O is open in A if and only if for all $x \in O$, there is some $r>0$ such that

$$
B_{A}(x, r):=\{y \in A:|x-y|<r\}
$$

is contained in O.)
Proof. We will first prove the forward direction; that is, we assume f is continuous at A and want to show that for all open sets U in $\mathbb{R}, f^{-1}(U)$ is open in A. Let U be an arbitrary open set in \mathbb{R}. Since f is continuous on A, it is continuous at any $x \in A$. By the definition of continuity, for all $\epsilon>0$, there exists a $\delta>0$ such that for all $x \in A$, if $\left|x-x_{0}\right|<\delta$ then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.
Let $y \in f^{-1}(U)$ be arbitrary. Then obviously $f(y) \in U$. Since U is open, there exists an $r>0$ such that $B(f(y), r) \subseteq U$. Set $\epsilon=r$. Choose δ such that $\left|y-x_{0}\right|<\delta \Rightarrow\left|f(y)-f\left(x_{0}\right)\right|<\epsilon$ (which exists due to f 's continuity). As a result, for all $x \in B(y, \epsilon)$, we see $f(x) \in B(f(y), \epsilon)=B(f(y), r) \subseteq U$. By the definition of preimage, $x \in f^{-1}(U)$. Then $B(y, \delta) \subseteq f^{-1}(U)$, so $f^{-1}(U)$ is open in A. Since U was arbitrary, we are done with this direction.

Now we prove the reverse direction; that is, we assume for all open sets $U \subseteq \mathbb{R}$ that $f^{-1}(U)$ is open in A. We want to show that f is continuous on A. It suffices to show f is continuous at x for all $x \in A$, and we let this x be arbitrary to prove it for all such x at once. We want to show for all $\epsilon>0$, there exists $\delta>0$ such that for all $x_{0} \in A$, if $\left|x-x_{0}\right|<\delta$ then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. Let $\epsilon>0$ be arbitrary. Then $B(f(x), \epsilon)$ is open in \mathbb{R} (it was proven in lecture that open balls are open). An equivalent statement is that $\left\{x_{0} \in A: f\left(x_{0}\right) \in B(f(x), \epsilon)\right\}$ is open in A (by the definition of a preimage). By the definition of an open ball, this set is equal to $S:=\left\{x_{0} \in A:\left|f(x)-f\left(x_{0}\right)\right|<\epsilon\right\}$, which is open in A.
This means, by the definition of open, that for all $y \in S$, there exists a $\delta>0$ such that $B_{A}(y, \delta) \subseteq S$. Then there exists a $\delta>0$ such that $\{a \in$ $A:|y-a|<\delta\} \subseteq S$. This means that if $|y-a|<\delta$, then $|f(y)-f(a)|<\epsilon$. Since ϵ was arbitrary, f is continuous at $x \in A$. Since $x \in A$, was arbitrary, f is continuous on A, as desired.
9. Let $A \subseteq \mathbb{R}$ and $f: A \mapsto \mathbb{R}$. Then f is continuous at every isolated point of A.

Proof. Take an arbitrary isolated point x in A. By definition of isolatated point, there exist a $r>0$ such that $B(x, r) \cap x=x$.
For all $\epsilon>0$, pick positive $\delta=r / 2$.
For any y in A such that $|x-y|<\delta$, y has to equal to x since it's in $B(x, \delta)$, and $B(x, \delta) \subset B(x, r)$.
That implies, $|f(x)-f(y)|=|f(x)-f(x)|=0$, which is less than any $\epsilon>0$. This proves that f is continuous at x , and since x is arbitrary, this applies to any isolated points in A.
10. Let A, B be subsets of \mathbb{R} such that $f: A \mapsto \mathbb{R}, g: B \mapsto \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.

Proof. Let $c \in A$. Since f is continuous at c, by the sequential definition of continuity, for any arbitrary sequence $\left(x_{n}\right) \subseteq A$ such that $x_{n} \rightarrow c$, we have $f\left(x_{n}\right) \rightarrow f(c)$ since $f\left(x_{n}\right) \subseteq f(A) \subseteq B$. Also, since g is continuous at $f(c)$, by the sequential definition of continuity we have that if $f\left(x_{n}\right) \rightarrow f(c)$, then $g\left(f\left(x_{n}\right)\right) \rightarrow g(f(c))$. Thus, since $g(f(c))=(g \circ f)(c)$, and we have for any $x_{n} \rightarrow c$ that $(g \circ f)\left(x_{n}\right) \rightarrow(g \circ f)(c)$, then $g \circ f$ is continuous at c.
11. Let $p(x)$ the polynomial

$$
p(x)=\sum_{k=0}^{n} a_{k} x^{k} .
$$

Then p is continuous on \mathbb{R}.
Proof. To prove this we will build up $p(x)$ from continuous parts. An integral part to completing this proof will require us to recall that a function f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

. First fix c an arbitrary element of \mathbb{R}.
First we will prove that if $f(x)=x$ then $f(x)$ is continuous at c. Fix $\epsilon>0$. Let $\delta=\epsilon$. If $|x-c|<\delta$ Then it follows that:

$$
|f(x)-f(c)|=|x-c|<\delta=\epsilon
$$

So $|f(x)-f(c)|<\epsilon$, therefore $f(x)=x$ is continuous at c, and $\lim _{x \rightarrow c} f(x)=$ $f(c)$.
From presentation problem 6, we have the limit product rule. So we can use induction to show that $f(x)=x^{k}$ is continuous at c. We already showed the base case $f(x)=x^{1}$ is continuous at c, so for the induction step we assume that $g(x)=x^{k}$ is continuous at c. We want to show that $h(x)=f(x) g(x)=x^{k+1}$ is continuous at c.

$$
\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} f(x) g(x)=f(c) g(c)=c^{k} c^{1}=c^{k+1}=h(c)
$$

So it follows that x^{k} is continuous at c for all $k \in \mathbb{N}$
From presentation problem 6 we also have the limit addition rule. So we can once again use induction to show that $f(x)=\sum_{k=1}^{n} a_{k} x^{k}$ is continuous at c. For the base case, let $f(x)=x^{k}$ and continuous at c, and $h(x)=$ $a_{k} f(x)=a_{k} x^{k}$, then it follows that

$$
\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} a_{k} f(x)=a_{k} f(c)=a_{k} c^{k}=h(c)
$$

So it follows that $f(x)=a_{k} x^{k}$ is continuous at c. For the induction step, we assume that $g(x)=\sum_{k=1}^{n} a_{k} x^{k}$ is continuous at c, and $f(x)=x^{n+1}$ is continuous at c. And we want to show that $h(x)=\sum_{k=1}^{n+1} a_{k} x^{k}$ is continuous at c.

$$
\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} g(x)+a_{n+1} f(x)=g(c)+a_{n+1} f(c)=\sum_{k=1}^{n+1} a_{k} x^{k}=h(c)
$$

So it follows that $\sum_{k=1}^{n} a_{k} x^{k}$ is continuous at c for all $n \in \mathbb{N}$. We then observe that it follows that $p(x)$ is continuous at c. Since c was arbitrary in $\mathbb{R}, p(x)$ is continuous at all \mathbb{R}

