
Presentation Problems 3

21-355 A

1. Show that K ⊆ R is compact if and only if K is closed and bounded in R.

Proof. ( =⇒ ) Let K be compact.

(Bounded)

AFSOC that K is not bounded. Then we know that there exists x1 ∈ K
satisfying |x1| > 1. Similarly, there exists x2 ∈ K with |x2| > 2. In
general, ∀n ∈ N, there exists xn ∈ K, such that |xn| > n. Define (xn)
to be the sequence obtained via the above procedure. We know (xn) is
a sequence in K. Since K is assumed to be compact, (xn) should have a
convergent subsequence (xnk

). But the elements of the subsequence must
satisfy |xnk

| > nk, and consequently (xnk
) is unbounded. Since we have

shown that every convergent sequence is bounded, the sequence (xnk
) is

not convergent, a contradiction.

(Closed)

We will show that K is closed by proving that K contains its limit points.

Let x = limxn, where (xn) is a convergent sequence in K. By the defi-
nition of a compact set, the sequence (xn) has a convergent subsequence
(xnk

), and this subsequence converges to the same limit x by problem 1
of presentation set 1. Therefore, it follows that x ∈ K, and hence K is
closed.

(⇐= ) Let K be closed and bounded in R. Let (xn) be a sequence in K.
Since this sequence is bounded, we have a converging subsequence (xnk

)
in K ⊆ R. Let x = limxnk

, we have x ∈ K since K is closed. Therefore,
we know that K ⊆ R is compact.

1



2. Let {Kn}∞n=1 be a collection of non-empty compact sets in R such that
for each n ∈ N, Kn ⊇ Kn+1. Then

∞⋂
n=1

Kn 6= ∅.

Proof. For each n ∈ N, choose xn ∈ Kn. Since Kn ⊆ K1 for each n ∈ N,
(xn) is a sequence in K1; since K1 is compact, there is a subsequence (xnk

)
converging to some x ∈ K1.

Moreover, for each n ∈ N, the subsequence {xnk
: nk ≥ n} also converges

to x. By the first presentation problem, the compact set Kn is also closed;
consequently, by the Presentation 2 Problem 2, x ∈ Kn.

Therefore, x ∈ Kn for all n ∈ N, so

∞⋂
n=1

Kn = ∅.

3. Show that any non-empty perfect set in R is uncountable. Conclude that
any non-empty perfect set must contain irrationals.

Proof. Assume for the sake of contradiction, some non-empty perfect set
P is countable.
so we can write P = {p1, p2, p3, ...}.

Let I1 = (p1 − ε, p1 + ε).
Since p1 is limit point, there must be another element of P in I1. Without
loss of generality, call it p2.

We construct I2 = (p2 − a, p2 + a) such that I2 ⊆ I1
Again, because p2 is a limit point, p3 ∈ I2.
Construct I3 ⊆ I2, but p1, p2 /∈ I3 .

Thus, for each n, In+1 ⊆ In, p1, ...pn /∈ In+1, but pn+1 ∈ In+1.
Set P ′ =

⋂
pi∈P (Ii ∩ P ), where Ii is closed and bounded, so it is compact

P ′ is non-empty, since I(i+ 1) ∩ P ⊆ Ii ∩ P yet p1, p2... /∈ Ii ∩ P

This contradicts our assumption that P is countable. So P is uncountable.
If P only contained rationals, it would be countable. Since it is uncount-
able, P must contain irrationals.

4. Show that a set A ⊆ R is connected if and only if a < c < b with a, b ∈ A,
then c ∈ A. Use this to show the only connected sets in R are intervals.
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Proof. (⇒) : Assume that set A ∈ R is connected. We want to show
that if a < c < b with a, b ∈ A, then c ∈ A. Equivalently, we will show
the contrapositive: if a < c < b with a, b ∈ A and c /∈ A, then A is not
connected.
Suppose that a < c < b with a, b ∈ A and c /∈ A. Let A1 = A ∩
(−∞, c), A2 = A ∩ (c,∞). Then A1, A2 are non-empty and disjoint, A1 ∪
A2 = A. Then

A1 ∩A2 ⊆ (−∞, c) ∩ (c,∞) = (−∞, c] ∩ (c,∞) = ∅

A1 ∩A2 ⊆ (−∞, c) ∩ (c,∞) = (−∞, c) ∩ [c,∞) = ∅

So A1, A2 ⊆ A are separated, and therefore, A is not connected.
(⇐) : Assume that if a < c < b with a, b ∈ A, then c ∈ A, we want to
show A is connected.
Write A = A1 ∪ A2 where A1 and A2 are non-empty and disjoint. Let
a1 ∈ A1 and b1 ∈ A2.
WLOG, a1 < b1. By assumption, for any c satisfies a1 < c < b1, c ∈ A.
Then [a1, b1] ⊆ A.
Let I1 = [a1, b1]. Let c1 = a1+b1

2 . If c1 ∈ A1, let a2 = c1, b2 = b1.
Otherwise, let a2 = a1, b2 = c1. Then let I2 = [a2, b2]. We continue the
construction inductively. It is guaranteed that all ans are in A1, and all
bns are in A2, and [a1, b1] ⊇ [a2, b2] ⊇ .... ⊇ [an, bn]..... Then by the nested
interval property ∃x ∈

⋂∞
n=1[an, bn], and x is either in A1 or A2. Besides,

(an)→ x and (bn)→ x.

• if x ∈ A1, since (bn)→ x and bn ∈ A2 for all n ∈ N, A is connected.

• if x ∈ A2, since (an)→ x and an ∈ A1 for all n ∈ N, A is connected.

Therefore, if a < c < b with a, b ∈ A⇒ c ∈ A, A is connected.

Since we have shown that if A is connected, then a < c < b with a, b ∈
A ⇒ c ∈ A and if a < c < b with a, b ∈ A and c /∈ A, then A is not
connected, the only connected sets in R are intervals.

5. Let f : A 7→ R and let c be a limit point of A. Then limx→c f(x) = L if
and only if for all sequences (xn) in A such that xn 6= c for all n ∈ N such
that limn→∞ xn = c, limn→∞ f(xn) = L.

Proof. (⇒)Let f : A→ R and let c be a limit point ofA, and limx→c f(x) =
L
We know ∀ε∗ > 0,∃ δ > 0 s.t. If 0 < |x − c| < δ,then |f(x) − L| < ε∗.
Thus, we know for any ε∗ > 0, such a δ exists.
Let (xn) be a sequence in A such that xn 6= c for all n ∈ N and xn → c.
Now, let ε = δ. We also know that ∀ δ > 0, ∃ N1 s.t. ∀ n ≥ N1,
|xn − c| < δ. Thus, combining the two givens, we know that for any xn
s.t. |xn − c| < δ, which is xn|n ≥ N1, we know that |f(xn)− L| < ε∗.
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So, we know that given the two conditions, ∀ε > 0, ∃ N s.t. ∀ n ≥ N ,
|f(xn)− L| < ε.
(⇐)For the 2nd direction, we are going to prove the contrapositive. As-
sume limx→c f(x) 6= L. Then that means either the limit d.n.e. or the
limit 6= L. So, there exists some ε > 0, such that for all δ > 0 such that
∃ x∗ s.t. 0 < |x∗ − c| < δ, but |f(x∗)− L| ≥ ε.
The intuition behind this proof is that no matter how close an x gets to
c, f(x) could still be infinitely far from L.
Define xn to be a point in A not equal to c such that 0 < |xn − c| < 1

n
and |f(xn)−L| ≥ ε. Clearly, xn → c but (f(xn)) does not converge to L.

6. Let f, g : A 7→ R such that limx→c f(x) = L and limx→c g(x) = M for
some limit point c of A. Then

(a) limx→c[αf(x) + βg(x)] = αL+ βM for all α, β ∈ R,

(b) limx→c[f(x)g(x)] = LM , and

(c) if M 6= 0,

lim
x→c

f(x)

g(x)
=

L

M
.

Proof. Recall the theorem from class: Let f : A → R and x0 be a limit
point of A. Then lim

x→x0

f(x) = L if and only if f(xn)→ L for all (xn) ⊆ A
such that xn 6= x0 for all n ∈ N and xn → x0. We can use this with f and
g since f with c and g with c both satisify the conditions.

Since lim
x→c

f(x) = L, then by the above theorem, we know that f(xn)→ L

for all (xn) ⊆ A such that xn 6= c for all n ∈ N and xn → c. The same
goes for g, so g(yn) → M for all (yn) ⊆ A such that yn 6= c for all n ∈ N
and yn → c. Let (xn) be a fixed sequence that satisfies this property for
f and g (we know this exists exist because c is a limit point in A).

By presentation problem 2 in the first set of presentation problems, we
know if (an) and (bn) are sequences such that lim an = a and lim bn = b,
then for any α, β ∈ R, lim(αan + βbn) = αa+ βb, lim(anbn) = ab, and
lim an

bn
= a

b , given b 6= 0

Thus we can conclude:

(a) lim
x→c

[αf(x) + βg(x)] = αL+ βM ,

(b) lim
x→c

[f(x)g(x)] = LM ,

(c) and provided M 6= 0, lim
x→c

f(x)
g(x) = L

M .
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7. Let A ⊆ R and let c ∈ A. Then f : A 7→ R is continuous at c if and only
if for all sequences (xn) in A such that xn → c, f(xn)→ f(c).

Proof. Let A ⊆ R and let c ∈ A. Let f : A→ R.

For the forwards direction, suppose f is continuous at c. Let (xn) be a
sequence in A such that xn → c. We will show that f(xn) → f(c). Let
ε > 0. Since f is continuous at c, we know there exists δ > 0 such that if
|xn − c| < δ then |f(xn) − f(c)| < ε. Since δ > 0 and xn → c, we know
there exists N ∈ N such that for all n ≥ N , we have

|xn − c| < δ

It follows that from continuity that for all n ≥ N ,

|f(xn)− f(c)| < ε

Thus f(xn)→ f(c).

Will we show the other direction by contrapositive. Suppose f is not
continuous at c. This means that there exists some ε > 0 such that for
all δ > 0, if |x − c| < δ then |f(x) − f(c)| ≥ ε. Then we can construct a
sequence (xn) in A such that |xn− c| < 1

n and |f(xn)− f(c)| ≥ ε. We can
see that xn → c. However, for any ε > 0, we have that |f(xn)− f(c)| ≥ ε,
so f(xn) 6→ f(c).

8. Let A ⊆ R and f : A 7→ R. Then f is continuous on A if and only if for
all open sets U in R, f−1(U) is open in A. (Recall that a set O is open in
A if and only if for all x ∈ O, there is some r > 0 such that

BA(x, r) := {y ∈ A : |x− y| < r}

is contained in O.)

Proof. We will first prove the forward direction; that is, we assume f is
continuous at A and want to show that for all open sets U in R, f−1(U)
is open in A. Let U be an arbitrary open set in R. Since f is continuous
on A, it is continuous at any x ∈ A. By the definition of continuity, for
all ε > 0, there exists a δ > 0 such that for all x ∈ A, if |x− x0| < δ then
|f(x)− f(x0)| < ε.

Let y ∈ f−1(U) be arbitrary. Then obviously f(y) ∈ U . Since U is open,
there exists an r > 0 such that B(f(y), r) ⊆ U . Set ε = r. Choose δ such
that |y−x0| < δ ⇒ |f(y)−f(x0)| < ε (which exists due to f ’s continuity).
As a result, for all x ∈ B(y, ε), we see f(x) ∈ B(f(y), ε) = B(f(y), r) ⊆ U .
By the definition of preimage, x ∈ f−1(U). Then B(y, δ) ⊆ f−1(U),
so f−1(U) is open in A. Since U was arbitrary, we are done with this
direction.
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Now we prove the reverse direction; that is, we assume for all open sets
U ⊆ R that f−1(U) is open in A. We want to show that f is continuous
on A. It suffices to show f is continuous at x for all x ∈ A, and we let
this x be arbitrary to prove it for all such x at once. We want to show
for all ε > 0, there exists δ > 0 such that for all x0 ∈ A, if |x − x0| < δ
then |f(x) − f(x0)| < ε. Let ε > 0 be arbitrary. Then B(f(x), ε) is open
in R (it was proven in lecture that open balls are open). An equivalent
statement is that {x0 ∈ A : f(x0) ∈ B(f(x), ε)} is open in A (by the
definition of a preimage). By the definition of an open ball, this set is
equal to S := {x0 ∈ A : |f(x)− f(x0)| < ε}, which is open in A.

This means, by the definition of open, that for all y ∈ S, there exists a
δ > 0 such that BA(y, δ) ⊆ S. Then there exists a δ > 0 such that {a ∈
A : |y−a| < δ} ⊆ S. This means that if |y−a| < δ, then |f(y)−f(a)| < ε.
Since ε was arbitrary, f is continuous at x ∈ A. Since x ∈ A, was arbitrary,
f is continuous on A, as desired.

9. Let A ⊆ R and f : A 7→ R. Then f is continuous at every isolated point
of A.

Proof. Take an arbitrary isolated point x in A. By definition of isolatated
point, there exist a r > 0 such that B(x, r) ∩ x = x.
For all ε > 0, pick positive δ = r/2.
For any y in A such that |x − y| < δ, y has to equal to x since it’s in
B(x, δ), and B(x, δ) ⊂ B(x, r).
That implies, |f(x) − f(y)| = |f(x) − f(x)| = 0, which is less than any
ε > 0. This proves that f is continuous at x, and since x is arbitrary, this
applies to any isolated points in A.

10. Let A, B be subsets of R such that f : A 7→ R, g : B 7→ R and f(A) ⊆ B.
If f is continuous at c ∈ A and g is continuous at f(c) ∈ B, then g ◦ f is
continuous at c.

Proof. Let c ∈ A. Since f is continuous at c, by the sequential definition of
continuity, for any arbitrary sequence (xn) ⊆ A such that xn → c, we have
f(xn)→ f(c) since f(xn) ⊆ f(A) ⊆ B. Also, since g is continuous at f(c),
by the sequential definition of continuity we have that if f(xn) → f(c),
then g(f(xn)) → g(f(c)). Thus, since g(f(c)) = (g ◦ f)(c), and we have
for any xn → c that (g ◦ f)(xn) → (g ◦ f)(c), then g ◦ f is continuous at
c.
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11. Let p(x) the polynomial

p(x) =

n∑
k=0

akx
k.

Then p is continuous on R.

Proof. To prove this we will build up p(x) from continuous parts. An inte-
gral part to completing this proof will require us to recall that a function
f is continuous at c if

lim
x→c

f(x) = f(c)

. First fix c an arbitrary element of R.

First we will prove that if f(x) = x then f(x) is continuous at c. Fix
ε > 0. Let δ = ε. If |x− c| < δ Then it follows that:

|f(x)− f(c)| = |x− c| < δ = ε

So |f(x)−f(c)| < ε, therefore f(x) = x is continuous at c, and limx→c f(x) =
f(c).

From presentation problem 6, we have the limit product rule. So we can
use induction to show that f(x) = xk is continuous at c. We already
showed the base case f(x) = x1 is continuous at c, so for the induction
step we assume that g(x) = xk is continuous at c. We want to show that
h(x) = f(x)g(x) = xk+1 is continuous at c.

lim
x→c

h(x) = lim
x→c

f(x)g(x) = f(c)g(c) = ckc1 = ck+1 = h(c)

So it follows that xk is continuous at c for all k ∈ N
From presentation problem 6 we also have the limit addition rule. So we
can once again use induction to show that f(x) =

∑n
k=1 akx

k is continuous
at c. For the base case, let f(x) = xk and continuous at c, and h(x) =
akf(x) = akx

k, then it follows that

lim
x→c

h(x) = lim
x→c

akf(x) = akf(c) = akc
k = h(c)

So it follows that f(x) = akx
k is continuous at c. For the induction step,

we assume that g(x) =
∑n

k=1 akx
k is continuous at c, and f(x) = xn+1

is continuous at c. And we want to show that h(x) =
∑n+1

k=1 akx
k is

continuous at c.

lim
x→c

h(x) = lim
x→c

g(x) + an+1f(x) = g(c) + an+1f(c) =

n+1∑
k=1

akx
k = h(c)

So it follows that
∑n

k=1 akx
k is continuous at c for all n ∈ N. We then

observe that it follows that p(x) is continuous at c. Since c was arbitrary
in R, p(x) is continuous at all R
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