Presentation Problems 3

21-355 A

1. Show that K C R is compact if and only if K is closed and bounded in R.

Proof. (=) Let K be compact.
(Bounded)

AFSOC that K is not bounded. Then we know that there exists 1 € K
satisfying |z1| > 1. Similarly, there exists o € K with |zs| > 2. In
general, Vn € N, there exists x,, € K, such that |z,| > n. Define (z,)
to be the sequence obtained via the above procedure. We know () is
a sequence in K. Since K is assumed to be compact, (z,) should have a
convergent subsequence (z,, ). But the elements of the subsequence must
satisfy |z,,| > nk, and consequently (z,,) is unbounded. Since we have
shown that every convergent sequence is bounded, the sequence (x, ) is
not convergent, a contradiction.

(Closed)
We will show that K is closed by proving that K contains its limit points.

Let = limx,,, where (x,) is a convergent sequence in K. By the defi-
nition of a compact set, the sequence (x,,) has a convergent subsequence
(zn, ), and this subsequence converges to the same limit « by problem 1
of presentation set 1. Therefore, it follows that z € K, and hence K is
closed.

(<=) Let K be closed and bounded in R. Let (z,) be a sequence in K.
Since this sequence is bounded, we have a converging subsequence (z,,,)
in K CR. Let z = limx,,, we have x € K since K is closed. Therefore,
we know that K C R is compact. O



2. Let {K,}32, be a collection of non-empty compact sets in R such that
for each n € N, K, O K;,+1. Then

ﬂ K, #0.
n=1

Proof. For each n € N, choose z,, € K,,. Since K,, C K; for each n € N,
(2,,) is a sequence in K7; since K is compact, there is a subsequence (z, )
converging to some = € K;.

Moreover, for each n € N, the subsequence {z,, : ny > n} also converges
to x. By the first presentation problem, the compact set K, is also closed;
consequently, by the Presentation 2 Problem 2, z € K,,.

Therefore, x € K, for all n € N, so (1] K, = 0. O

n=1

3. Show that any non-empty perfect set in R is uncountable. Conclude that
any non-empty perfect set must contain irrationals.

Proof. Assume for the sake of contradiction, some non-empty perfect set
P is countable.
so we can write P = {p1,p2,ps, ... }.

Let IT = (p1 — €,p1 +¢€).
Since p; is limit point, there must be another element of P in I;. Without
loss of generality, call it ps.

We construct Iy = (p2 — a,pa2 + a) such that I C I
Again, because ps is a limit point, ps € I5.
Construct I3 C I, but p1,p2 ¢ Is .

Thus, for each n, I;,+1 C I, p1,...Pn ¢ Li1, but pry1 € Iy,
Set P' =(,.cp(L; N P), where I; is closed and bounded, so it is compact

P’ is non-empty, since (i +1) NP C IL;NPyetp,pr. ¢ NP

This contradicts our assumption that P is countable. So P is uncountable.
If P only contained rationals, it would be countable. Since it is uncount-
able, P must contain irrationals.

O

4. Show that a set A C R is connected if and only if a < ¢ < b with a,b € A,
then ¢ € A. Use this to show the only connected sets in R are intervals.



Proof. (=) : Assume that set A € R is connected. We want to show
that if @ < ¢ < b with a,b € A, then ¢ € A. Equivalently, we will show
the contrapositive: if a < ¢ < b with a,b € A and ¢ ¢ A, then A is not
connected.

Suppose that a < ¢ < b with a,b € A and ¢ ¢ A. Let 41 = AN
(—00,¢), A = AN (¢,00). Then A;, Ay are non-empty and disjoint, 4; U
As; = A. Then

AN Ay C(—00,¢)N(c,00) = (—00,c] N (c,00) =
A1 N Ay C (—00,¢) N (c,00) = (—00,¢) N [e,00) = 0)

So A1, Ay C A are separated, and therefore, A is not connected.

(<) : Assume that if a < ¢ < b with a,b € A, then ¢ € A, we want to
show A is connected.

Write A = A; U Ay where A; and A, are non-empty and disjoint. Let
a; € A and by € As.

WLOG, a1 < by. By assumption, for any c satisfies a1 < ¢ < by, ¢ € A.
Then [a1,b1] C A.

Let I; = [a1,b1]. Let ¢ = (“Tm. If ¢; € Al, let ag = C1,b2 = by.
Otherwise, let ag = a1,ba = ¢;. Then let Is = [ag,bs]. We continue the
construction inductively. It is guaranteed that all a,s are in A, and all
bps are in As, and [ag, b1] D [az,ba] 2 ... D [an, by]..... Then by the nested
interval property 3z € (),—[an, by], and z is either in Ay or Ay. Besides,
(an) = x and (by,) — .

o if x € Ay, since (b,) — x and b,, € A, for all n € N, A is connected.

o if v € Ay, since (a,) — z and a, € Ay for all n € N, A is connected.

Therefore, if a < ¢ < b with a,b € A = ¢ € A, A is connected.

Since we have shown that if A is connected, then a < ¢ < b with a,b €
A=ce Aand if a < ¢ < b with a,b € A and ¢ ¢ A, then A is not
connected, the only connected sets in R are intervals.

O

. Let f: A— R and let ¢ be a limit point of A. Then lim,_,. f(x) = L if
and only if for all sequences (z,) in A such that x,, # ¢ for all n € N such
that lim, eo z,, = ¢, lim, o0 f(x,) = L.

Proof. (=)Let f : A — R and let ¢ be alimit point of A, and lim,_,. f(z) =
L

We know Ve* > 0,36 > 0s.t. If 0 < |z —c¢| < d,then |f(z) — L] < €*.
Thus, we know for any €¢* > 0, such a ¢ exists.

Let (z,,) be a sequence in A such that z, # c for all n € N and z,, — c.
Now, let ¢ = §. We also know that V 6 > 0, 3 Ny s.t. V n > Ny,
|z, — ¢| < . Thus, combining the two givens, we know that for any z,
s.t. |z, — ¢| < §, which is x,|n > Ny, we know that |f(z,) — L| < €*.



So, we know that given the two conditions, Ve > 0, 3 N s.t. V. n > N,
|f(zn) = L <.

(«<)For the 2nd direction, we are going to prove the contrapositive. As-
sume lim,_,. f(z) # L. Then that means either the limit d.n.e. or the
limit # L. So, there exists some € > 0, such that for all § > 0 such that
Jaz* st 0<|z*—c| <4, but |f(z*) — L| > e

The intuition behind this proof is that no matter how close an x gets to
¢, f(x) could still be infinitely far from L.

Define x,, to be a point in A not equal to ¢ such that 0 < |z, — ¢| < %
and |f(zn) — L| > €. Clearly, x,, — ¢ but (f(z,)) does not converge to L.

O

. Let f,g : A — R such that lim,_,. f(z) = L and lim,_,.g(z) = M for
some limit point ¢ of A. Then

(a) limg_claf(x) + Bg(x)] = aL + BM for all o, 5 € R,

(b) limy,—.[f(z)g(x)] = LM, and

(c) if M #£0,
lim M = £
a—c g(x) M’

Proof. Recall the theorem from class: Let f : A — R and x(y be a limit
point of A. Then lim f(z) = L if and only if f(z,,) — L for all (x,) C A

T—To
such that z,, # x¢ for all n € N and x,, = 9. We can use this with f and

g since f with ¢ and g with ¢ both satisify the conditions.
Since lim f(x) = L, then by the above theorem, we know that f(z,) — L
Tr—c

for all (x,) C A such that x,, # ¢ for all n € N and x,, — ¢. The same
goes for g, so g(y,) — M for all (y,) C A such that y,, # ¢ for all n € N
and y, — c¢. Let (x,) be a fixed sequence that satisfies this property for
f and g (we know this exists exist because ¢ is a limit point in A).

By presentation problem 2 in the first set of presentation problems, we
know if (a,) and (b,,) are sequences such that lim a,, = a and lim b,, = b,
then for any a, 8 € R, lim(aa, + 8b,) = aa + 8b, lim(a,b,) = ab, and

lim ‘g—” =7, given b # 0

Thus we can conclude:

(a) lim[af(z)+ Byg(z)] = oL + M,

Tr—c

(b) lim[f(x)g(x)] = LM,

Tr—cC

i im £&) — L
(¢) and provided M # 0, ign oG =

c9(z



7. Let AC R and let ¢ € A. Then f: A+ R is continuous at ¢ if and only
if for all sequences (z,,) in A such that x,, — ¢, f(x,) — f(c).

Proof. Let ACRandlet c€ A. Let f: A— R.

For the forwards direction, suppose f is continuous at c. Let (z,) be a
sequence in A such that =, — ¢. We will show that f(z,) — f(c). Let
€ > 0. Since f is continuous at ¢, we know there exists d > 0 such that if
|zn, — ¢| < & then |f(z,) — f(c¢)] < e. Since 6 > 0 and =, — ¢, we know
there exists IV € N such that for all n > N, we have

|xn — | <8
It follows that from continuity that for all n > N,

If(xn) —flol<e

Thus f(x,) — f(c).

Will we show the other direction by contrapositive. Suppose f is not
continuous at ¢. This means that there exists some ¢ > 0 such that for
all 0 > 0, if |z — ¢| < 0 then |f(x) — f(¢)| > €. Then we can construct a
sequence (z,,) in A such that |z, —c| < L and |f(z,) — f(c)| > e. We can
see that ,, — ¢. However, for any € > 0, we have that | f(z,,) — f(c)| > &,

so f(xn) 7 f(c).
O

8. Let ACR and f: A+— R. Then f is continuous on A if and only if for
all open sets U in R, f~1(U) is open in A. (Recall that a set O is open in
A if and only if for all € O, there is some r > 0 such that

Ba(z,r):={yeA:|lz—y|<r}
is contained in O.)

Proof. We will first prove the forward direction; that is, we assume f is
continuous at A and want to show that for all open sets U in R, f~1(U)
is open in A. Let U be an arbitrary open set in R. Since f is continuous
on A, it is continuous at any x € A. By the definition of continuity, for
all € > 0, there exists a § > 0 such that for all z € A, if |x — x| < § then
|f(@) = flzo)| <e

Let y € f~1(U) be arbitrary. Then obviously f(y) € U. Since U is open,
there exists an r > 0 such that B(f(y),r) C U. Set ¢ = r. Choose § such
that |y —xo| < d = |f(y) — f(z0)] < € (which exists due to f’s continuity).
As aresult, for all x € B(y, €), we see f(z) € B(f(y),e) = B(f(y),r) CU.
By the definition of preimage, x € f~1(U). Then B(y,d) C f~1(U),
so f71(U) is open in A. Since U was arbitrary, we are done with this
direction.



10.

Now we prove the reverse direction; that is, we assume for all open sets
U C R that f~1(U) is open in A. We want to show that f is continuous
on A. It suffices to show f is continuous at z for all x € A, and we let
this x be arbitrary to prove it for all such x at once. We want to show
for all € > 0, there exists § > 0 such that for all g € A, if |z — x| < ¢
then |f(z) — f(x0)] < €. Let € > 0 be arbitrary. Then B(f(x),€) is open
in R (it was proven in lecture that open balls are open). An equivalent
statement is that {zg € A : f(xo) € B(f(z),e)} is open in A (by the
definition of a preimage). By the definition of an open ball, this set is
equal to S :={zxg € A:|f(x) — f(zo)| < €}, which is open in A.

This means, by the definition of open, that for all y € S, there exists a
d > 0 such that Ba(y,0) € S. Then there exists a § > 0 such that {a €
A:ly—al <} CS. This means that if |y —a| < d, then |f(y) — f(a)] < e.
Since € was arbitrary, f is continuous at x € A. Since x € A, was arbitrary,
f is continuous on A, as desired.

O

Let ACRand f: A— R. Then f is continuous at every isolated point
of A.

Proof. Take an arbitrary isolated point x in A. By definition of isolatated
point, there exist a r > 0 such that B(z,r) Nz = x.

For all € > 0, pick positive 6 = r/2.

For any y in A such that |z — y| < 4, y has to equal to x since it’s in
B(z,0), and B(x,0) C B(x,r).

That implies, |f(x) — f(y)| = |f(x) — f(x)| = 0, which is less than any
€ > 0. This proves that f is continuous at x, and since x is arbitrary, this
applies to any isolated points in A. O

Let A, B be subsets of R such that f: A— R, g: B— R and f(4) C B.
If f is continuous at ¢ € A and ¢ is continuous at f(c) € B, then go f is
continuous at c.

Proof. Let ¢ € A. Since f is continuous at ¢, by the sequential definition of
continuity, for any arbitrary sequence (z,,) C A such that z,, — ¢, we have
f(xn) = f(c) since f(z,) C f(A) C B. Also, since g is continuous at f(c),
by the sequential definition of continuity we have that if f(z,) — f(c),
then g(f(xn)) — g(f(¢)). Thus, since g(f(c)) = (g o f)(c), and we have
for any x,, — c that (go f)(z,) = (g0 f)(c), then go f is continuous at
c. O



11. Let p(x) the polynomial

n
p(z) = Z apx®.
k=0

Then p is continuous on R.

Proof. To prove this we will build up p(z) from continuous parts. An inte-
gral part to completing this proof will require us to recall that a function
f is continuous at c if

lim £(z) = f(c)
. First fix ¢ an arbitrary element of R.

First we will prove that if f(z) = z then f(z) is continuous at c¢. Fix
€>0. Let 6 =e. If |z — ¢| < 0 Then it follows that:

lf(x) = fle)| =]z —¢c|<d=¢
So |f(x)—f(c)| < e, therefore f(z) = x is continuous at ¢, and lim, . f(z) =

f(e).

From presentation problem 6, we have the limit product rule. So we can
use induction to show that f(z) = z¥ is continuous at c. We already
showed the base case f(x) = x! is continuous at ¢, so for the induction
step we assume that g(z) = x* is continuous at c. We want to show that
h(z) = f(x)g(x) = z**! is continuous at c.

lim h(x) = lim f(2)g(x) = f()glc) = e’ = 1 = h(e)

So it follows that x* is continuous at ¢ for all k € N

From presentation problem 6 we also have the limit addition rule. So we
can once again use induction to show that f(z) = Y} _, ayz® is continuous
at c. For the base case, let f(z) = 2* and continuous at ¢, and h(z) =
ar f(x) = apx®, then it follows that

lim h(z) = lim ax f(z) = arf(c) = anc® = h(c)

So it follows that f(z) = ax* is continuous at c. For the induction step,

we assume that g(z) = Y _, axz® is continuous at ¢, and f(z) = 2!
is continuous at ¢. And we want to show that h(x) = EZI% apz® is
continuous at c.
n+1
. . k
lim h(x) = lim g(2) + ans1f (@) = 9(c) + ans1 f(c) = kZ apz® = h(c)
=1

So it follows that Y ,_, aix® is continuous at c for all n € N. We then
observe that it follows that p(z) is continuous at ¢. Since ¢ was arbitrary
in R, p(x) is continuous at all R

O



