Presentation Problems 3

21-355 A

Instructions: Your group should prepare a presentation for the problem corresponding to your group number. After presenting the solution and getting feedback from the class, you have until the beginning of the following class to send a $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file with a polished form of the solution to the instructor. Make sure all group members' names are in the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ file. There are 15 points available: 10 for the presentation and 5 for the written proof.

1. Show that $K \subseteq \mathbb{R}$ is compact if and only if K is closed and bounded in \mathbb{R}.
2. Let $\left\{K_{n}\right\}_{n=1}^{\infty}$ be a collection of non-empty compact sets in \mathbb{R} such that for each $n \in \mathbb{N}, K_{n} \supseteq K_{n+1}$. Then

$$
\bigcap_{n=1}^{\infty} K_{n} \neq \emptyset .
$$

3. Show that any non-empty perfect set in \mathbb{R} is uncountable. Conclude that any non-empty perfect set must contain irrationals.
4. Show that a set $A \subseteq \mathbb{R}$ is connected if and only if $a<c<b$ with $a, b \in A$, then $c \in A$. Use this to show the only connected sets in \mathbb{R} are intervals.
5. Let $f: A \mapsto \mathbb{R}$ and let c be a limit point of A. Then $\lim _{x \rightarrow c} f(x)=L$ if and only if for all sequences $\left(x_{n}\right)$ in A such that $x_{n} \neq c$ for all $n \in \mathbb{N}$ such that $\lim _{n \rightarrow \infty} x_{n}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
6. Let $f, g: A \mapsto \mathbb{R}$ such that $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$ for some limit point c of A. Then
(a) $\lim _{x \rightarrow c}[\alpha f(x)+\beta f(x)]=\alpha L+\beta M$ for all $\alpha, \beta \in \mathbb{R}$,
(b) $\lim _{x \rightarrow c}[f(x) g(x)]=L M$, and
(c) if $M \neq 0$,

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{L}{M} .
$$

7. Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then $f: A \mapsto \mathbb{R}$ is continuous at c if and only if for all sequences $\left(x_{n}\right)$ in A such that $x_{n} \rightarrow c, f\left(x_{n}\right) \rightarrow f(c)$.
8. Let $A \subseteq \mathbb{R}$ and $f: A \mapsto \mathbb{R}$. Then f is continuous on A if and only if for all open sets U in $\mathbb{R}, f^{-1}(U)$ is open in A. (Recall that a set O is open in A if and only if for all $x \in O$, there is some $r>0$ such that

$$
B_{A}(x, r):=\{y \in A:|x-y|<r\}
$$

is contained in O.
9. Let $A \subseteq \mathbb{R}$ and $f: A \mapsto \mathbb{R}$. Then f is continuous at every isolated point of A.
10. Let A, B be subsets of \mathbb{R} such that $f: A \mapsto \mathbb{R}, g: B \mapsto \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.
11. Let $p(x)$ the polynomial

$$
p(x)=\sum_{k=1}^{n} a_{k} x^{k} .
$$

Then p is continuous on \mathbb{R}.

