Presentation Problems 3

21-355 A

Instructions: Your group should prepare a presentation for the problem corresponding to your group number. After presenting the solution and getting feedback from the class, you have until the beginning of the following class to send a T_EX file with a polished form of the solution to the instructor. Make sure all group members' names are in the T_EX file. There are 15 points available: 10 for the presentation and 5 for the written proof.

- 1. Show that $K \subseteq \mathbb{R}$ is compact if and only if K is closed and bounded in \mathbb{R} .
- 2. Let $\{K_n\}_{n=1}^{\infty}$ be a collection of non-empty compact sets in \mathbb{R} such that for each $n \in \mathbb{N}, K_n \supseteq K_{n+1}$. Then

$$\bigcap_{n=1}^{\infty} K_n \neq \emptyset.$$

- 3. Show that any non-empty perfect set in \mathbb{R} is uncountable. Conclude that any non-empty perfect set must contain irrationals.
- 4. Show that a set $A \subseteq \mathbb{R}$ is connected if and only if a < c < b with $a, b \in A$, then $c \in A$. Use this to show the only connected sets in \mathbb{R} are intervals.
- 5. Let $f: A \mapsto \mathbb{R}$ and let c be a limit point of A. Then $\lim_{x\to c} f(x) = L$ if and only if for all sequences (x_n) in A such that $x_n \neq c$ for all $n \in \mathbb{N}$ such that $\lim_{n\to\infty} x_n$, $\lim_{n\to\infty} f(x_n) = L$.
- 6. Let $f, g: A \mapsto \mathbb{R}$ such that $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$ for some limit point c of A. Then
 - (a) $\lim_{x\to c} [\alpha f(x) + \beta f(x)] = \alpha L + \beta M$ for all $\alpha, \beta \in \mathbb{R}$,
 - (b) $\lim_{x\to c} [f(x)g(x)] = LM$, and
 - (c) if $M \neq 0$,

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$$

7. Let $A \subseteq \mathbb{R}$ and let $c \in A$. Then $f : A \mapsto \mathbb{R}$ is continuous at c if and only if for all sequences (x_n) in A such that $x_n \to c$, $f(x_n) \to f(c)$.

8. Let $A \subseteq \mathbb{R}$ and $f : A \mapsto \mathbb{R}$. Then f is continuous on A if and only if for all open sets U in \mathbb{R} , $f^{-1}(U)$ is open in A. (Recall that a set O is open in A if and only if for all $x \in O$, there is some r > 0 such that

$$B_A(x,r) := \{ y \in A : |x - y| < r \}$$

is contained in O.

- 9. Let $A \subseteq \mathbb{R}$ and $f : A \mapsto \mathbb{R}$. Then f is continuous at every isolated point of A.
- 10. Let A, B be subsets of \mathbb{R} such that $f : A \mapsto \mathbb{R}$, $g : B \mapsto \mathbb{R}$ and $f(A) \subseteq B$. If f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c.
- 11. Let p(x) the polynomial

$$p(x) = \sum_{k=1}^{n} a_k x^k.$$

Then p is continuous on \mathbb{R} .