
Presentation Problems 2–Answers

21-355 A

1. Show that for any a, b ∈ R with a < b, (a, b) is open in R. Use this to
prove that (−∞, a) and (a,∞) are open for any a ∈ R. Conclude that
[a, b], (−∞, a] and [a,∞) are closed in R.

Proof. Let x ∈ (a, b). Then we know that a < x < b and let

r1 = x− a > 0 with a ≤ x− r1 < x

r2 = b− x > 0 with x < x+ r2 ≤ b

Let r = min(r1, r2) > 0, then we have

a ≤ x− r1 ≤ x− r < x < x+ r ≤ x+ r2 ≤ b

Now we will show that B(x, r) ⊆ (a, b). Select 0 < ε < r. Then we know

a ≤ x− r < x− ε < x < b, and

a < x < x+ ε < x+ r ≤ b

Thus, ∀0 < ε < r, x± ε ∈ (a, b). We have shown that B(x, r) ⊆ (a, b).

Now, we consider (−∞, a). Let x ∈ (−∞, a), we know x is finite and
x < a, and

⋃∞
i=1(a− i, a) = (∞, a). Since ∀(a− i, a), we have proved that

the set is open, and therefore their union is open.

Similarly
⋃∞
i=1(a, a+ i) = (a,∞) and ∀(a, a+ i), we know the set is open,

and thus their union is open.

For [a, b], we know [a, b]c = (−∞, a) ∪ (b,∞). As we have shown (−∞, a)
and (b,∞) are open, and thus their union is open. Therefore [a, b] is closed.

For (−∞, a], we know (−∞, a]c = (a,∞) is open, and therefore (−∞, a]
is closed.

For [a,∞), we know [a,∞)c = (−∞, a) is open, and therefore [a,∞) is
closed.

2. Let F ⊆ R. Then F is closed if and only if every convergent sequence in
F converges in F .

Proof. (⇒) Let F be closed and (an)→ a be a convergent sequence in F .
Let ε > 0; then there exists N such that for each n ≥ N , |an − a| < ε and
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thus an ∈ Vε(a), and since an ∈ F , an ∈ Vε(a)∩F . If an = a, then a ∈ F ;
otherwise, a is a limit point of F , and since F is closed, a ∈ F . Thus, if
F is closed, every convergent sequence in F converges in F .

(⇐) Let F ⊆ R such that every convergent sequence in F converges in F
and let a be a limit point of F . Then there exists a sequence (an) in F
converging to a, implying a ∈ F . Thus, if every convergent sequence in F
converges in F , every limit point of F lies in F and F is closed.

Therefore, F is closed if and only if every convergent sequence in F con-
verges in F .

3. Let A ⊆ R. Then the closure A is closed in R.

Proof. let LPA be the set of limit points of A. So

A = A ∪ LPA.

We wish to show that A is closed, so it suffices to show that A
c

is open.

Let x be an arbitrary and fixed element in A
c

so x /∈ A, x /∈ LPA, thus
∃ε > 0,∀y ∈ A, |x− y| ≥ ε
⇒ B(x, ε) ∩A = ∅
⇒ B(x, ε) ⊆ Ac

If we can also show that B(x, ε) ⊆ (LPA)c, we’ve shown that A
c

is open.
For the sake of contradiction, let’s assume ∃a ∈ LPA ∩B(x, ε)
a ∈ LPA ⇒ ∀ε > 0,∃y ∈ A such that |a− y| < ε
a ∈ B(x, ε)⇒ ∀ε > 0,∀y ∈ A, |a− y| ≥ ε
This is a contradiction.
Thus B(x, ε) ⊆ (LPA)c, we’ve already shown B(x, ε) ⊆ Ac
Therefore B(x, ε) ⊆ Ac, so A

c
is open.

4. (a) Let Fi be closed for i = 1, 2, . . . , N . Then
⋃N
i=1 Fi is closed.

Proof. For any i = 1, 2, ..., N, Fi is closed.
We have proven in lecture that the complement of a closed set must
be open, so F ci is open for all i. We also proved that the intersection

of finite number of open sets is open, thus
⋂N
i=1 F

c
i is also open. Since

the complement of an open set must be closed, we know (
⋂N
i=1 F

c
i )c

is closed.
By De Morgan’s Law: (A ∩B)c = Ac ∪Bc.
So (

⋂N
i=1 F

c
i )c =

⋃N
i=1(F ci )c =

⋃N
i=1 Fi is closed.
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(b) Let Fi be closed for all i in some indexing set I. Then
⋂
i∈I Fi is

closed.

Proof. For any i ∈ I, Fi is closed.
Since the complement of a closed set must be open, F ci is open for
all i ∈ I. We have proven in lecture that the union of any number of
open sets is open, so

⋃
i∈I Fi is open. Its complement, (

⋃
i∈I Fi)

c is
closed.
By De Morgan’s Law: (A ∪B)c = Ac ∩Bc.
So (

⋃
i∈I Fi)

c =
⋂
i∈I(F

c
i )c =

⋂
i∈I Fi is closed.

5. Let (xn) be a real sequence such that limn→∞ xn = x. Show that the set
S = {x} ∪ {xn : n ∈ N} is closed in R.

Proof. Consider the complement of S, we will show that S is closed in R
by showing that Sc is open in R.
Arbitrarily pick t ∈ Sc
Thus, t /∈ {xn : n ∈ N} and t 6= x.
Since t 6= x, so we know ∃r > 0 st. |t− x| = r.
Consider the open ball B(x, r2 ).
Since the sequence converges to x, from previous homework we know that
there are all but infinitely many xn’s in the ball, and there are only finite
number of xn’s outside the ball.
Now consider B(t, r2 ).
It is easy to see that B(t, r2 ) is disjoint from B(x, r2 ) since the distance
between x and s is r and the ball is an open interval.
So B(t, r2 ) is disjoint from the ball B(x, r2 ), which means there are only
finite number of xn’s inside the ball B(t, r2 ).
Now pick the minimum distance δ between t and all those finite number
of xn’s.
Pick the minimum of δ and r

2 , let it be ε.
So we have B(t, ε) does not contain any xn and x.
Therefore B(t, ε) ⊆ Sc
Now we just show that ∀t ∈ Sc, ∃ε > 0 st. B(t, ε) ⊆ Sc.
Hence Sc open, which means S is closed.

6. Let A ⊆ R. Show the following are equivalent.

(a) A is dense in R
(b) For any x ∈ R, there exists some sequence (xn) in A such that xn →

x.

(c) A = R.

Proof. We will show the equivalence by showing (a) =⇒ (b), (b) =⇒ (c),
and (c) =⇒ (a).
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((a)=⇒(b)) We will find such a sequence via a constructive algorithm
(specifically the bisection method). Let A be dense in R and x ∈ R be

arbitrary. Define the endpoint cn = x − 1

2n
for all n ∈ N (notice that it

is real). Since A is dense in R, we know there is some an ∈ A such that
cn ≤ an ≤ x. I claim (xn) = (an) is the sequence we are looking for.

Let ε > 0 be arbitrary and fixed. See that |xn−x| ≤ x−
(
x− 1

2n

)
=

1

2n

since xn = an ≥ cn. Then,

1

2n
< ε =⇒ 1

ε
= 2n =⇒ log2

(
1

ε

)
< n =⇒ n > log2

(
1

ε

)
=⇒ |x− xn| < ε for n > log2

(
1

ε

)
Let N =

⌈
log2

(
1
ε

)⌉
+ 1 and note that N ∈ N. So for all n ≥ N we have

|x− xn| < ε. Since ε was arbitrary, we have shown that (xn) converges to
x. Also, since xn = an ∈ A for all n ∈ N, we have (xn) ∈ A. These are
the two essential properties of the sequence and we are done.

((b) =⇒ (c)) Assume for any x ∈ R, ∃(xn) ⊆ A, s.t. xn → x. Since
we want to show A = R, equivialently, we would like to prove A ⊆ R and
A ⊇ R.

(A ⊆ R)
let x ∈ A, then base on our assumption, x ∈ R, A ⊆ R trivially.

(A ⊇ R)
let x ∈ R. Since ∃(xn) ⊆ A, s.t. xn → x, we know

∀ε > 0,∃N ∈ N s.t. ∀n > N, |xn − x| < ε

that means xn ∈ B(x, ε), and because xn ∈ A:

⇒ xn ∈ B(x, ε) ∩A
⇒ x must be a limit point of A,

because we have shown there exists other points in B(x, ε) ∩A that is notx

⇒ x ∈ A
⇒ R ⊆ A

Since A ⊆ R and A ⊇ R, that proves A = R

((c)=⇒(a)) We will prove this using a proof by contradiction. Assume for
sake of contradiction that A is not dense in R. Then there exists a point
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x ∈ R and d > 0 such that (x− d, x+ d)∩A = ∅ (we will denote this with
(*)). Because A = R, this implies that (x− d, x+ d)∩A = (x− d, x+ d).
Thus, all points in (x − d, x + d) are limit points of A. Let us consider
y ∈ (x−d, x+d). For any ε > 0, (y− ε, y+ ε)∩A 6= ∅, because y is a limit
point of A. Because (x−d, x+d) is an open interval and y ∈ (x−d, x+d),
we can find e > 0 such that (y−e, y+e) ⊆ (x−d, x+d). From (*), we know
that (y− e, y+ e)∩A ⊆ (x− d, x+ d)∩A = ∅, thus, (y− e, y+ e)∩A = ∅.
This is a contradiction, as we assumed that (y − e, y + e) ∩ A 6= ∅. Thus,
A is dense in R.

7. Show that A ⊆ R is open in R if and only if A = intA.

Proof. ( ⇒) Assume A is open.
By definition, A ⊆ R is open if and only if ∀x ∈ A, ∃r > 0 such that
B(x, r) ⊆ A, so every point must be an interior point, so A ⊆ intA. The
reverse, intA ⊆ A, is always true since the interior points have to lie in A
together with a neighborhood. Thus, A = intA.

(⇐) Assume A = intA.
Claim: intA is an open set.
Let x ∈ intA. So ∃r > 0, such that B(x, r) ⊆ intA = A. Then ∀x ∈
intA = A, ∃r > 0, such that B(x, r) ⊆ A = intA.
Since intA is an open subset of A and since A = intA, then A must also
be open.

8. Show that bdA = A ∩ R \A for any A ⊆ R and that A = intA ∪ bdA.

Proof. We make a generalization for the proof of this statement. We
assume that x ∈ A and x /∈ AC . Upon proving the statement with this
assumption, we immediately substitute A for AC in the equation we want
to prove in general and immediately realize it holds if x ∈ AC as well.

We will first prove that bd A = Ā∩ ĀC by means of double-containment.

We will first prove that bd A ⊆ Ā ∩ ĀC . Let x ∈ bd A be arbitrary. Then
by the definition of boundary, we know that for all r > 0, B(x, r)∩A 6= ∅.
Since Ā = A ∪ LP (A), we know that x ∈ A gives x ∈ Ā. Note that
there exists a y ∈ B(x, r) such that y 6= x, y ∈ AC , and for all r > 0,
(B(x, r) ∩ AC) \ {x} 6= ∅, also following from x ∈ bd A. By the definition
of limit point, we conclude x ∈ LP (AC), and by the definition of closure,
x ∈ ĀC as well.

Since x ∈ Ā and x ∈ ĀC , we conclude that x ∈ Ā ∩ ĀC , as desired.

We now prove the other direction, that Ā ∩ ĀC ⊆ bd A. Let x ∈ Ā ∩ ĀC
be arbitrary. Note that x ∈ A, so x /∈ AC . Since x ∈ ĀC , by the definition
of closure we conclude that x ∈ LP (AC). By the definition of limit point,
for all r > 0 we see that (AC ∩ B(x, r))/{x} 6= ∅, so AC ∩ B(x, r) 6=
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∅. Moreover, since x ∈ A, it is trivial that A ∩ B(x, r) 6= ∅ (since this
intersection contains the point x). By the definition of boundary, we
conclude that x ∈ bd A.

We now proceed to the second part of the problem, which says to prove
that Ā = int A ∪ bd A. This will also be done by double-containment.
First we will prove that Ā ⊆ int A∪bd A. There are two cases to consider:

Case 1: x ∈ A. Choose an r > 0. If B(x, r) ⊆ A, then x ∈ int A. If not,
then we have the following:

(a) x ∈ A and x ∈ B(x, r), so B(x, r) ∩A 6= ∅.
(b) There exists a y ∈ B(x, r) such that y is not in A, so y ∈ B(x, r)∩AC

by the definition of set complement. Hence B(x, r) ∩AC 6= ∅.

These two claims combined let us conclude that x ∈ bd A by definition of
boundary.

Case 2: x ∈ LP (A). Then by the definition of limit point, for all r > 0,
B(x, r) ∩A 6= ∅ (at least x must be contained in it). If B(x, r) ∩AC 6= ∅,
then x ∈ bd A by definition of boundary. However, if this intersection is
empty, then all elements of B(x, r) must instead be in A, so x ∈ int A
instead.

Next we will prove that int A ∪ bd A ⊆ Ā. Let x ∈ int A ∪ bd A be
arbitrary. Again we will need two cases.

Case 1: If there exists an r > 0 such that B(x, r) ⊆ A, then by the earlier
part of the proof, we know that x ∈ A by the definition of interior. Since
A ⊆ Ā, we know that x ∈ Ā.

Case 2: If for all r > 0 we have that B(x, r) is not a subset of A, then there
must be some element of B(x, r) that is in AC , so B(x, r)∩AC 6= ∅. Also,
x ∈ A implies A∩B(x, r) 6= ∅ since trivially x ∈ B(x, r). By the definition
of boundary point, the existence of these nonempty set intersections lets
us conclude that x ∈ bd A, as desired.

By the process of double containment, the proof is complete.

9. For any A ⊆ R, R is partitioned into the interior A, the exterior of A, and
the boundary of A.

Proof. Show that R = intA ∪ extA ∪ bdA by double containment.
It is trivial to see that intA∪extA∪bdA ⊆ R by the definition of interior,
exterior and boundary.

Show that R ⊆ intA ∪ extA ∪ bdA.
let x ∈ R,
Case 1: x ∈ bdA, trivial
Case 2: x /∈ bdA,
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∃r > 0 such that B(x, r) ∩A = ∅ or B(x, r) ∩Ac = ∅
If B(x, r) ∩A = ∅ then x ∈ extA
If B(x, r) ∩Ac = ∅ then B(x, r) ⊆ A and x ∈ intA
Therefore R = intA ∪ extA ∪ bdA

Prove that x is in only one of intA, extA, and bdA by contradiction:
Suppose x ∈ intA ∩ extA, then ∃r1 > 0 such that B(x, r1) ⊆ A and
∃r2 > 0 such that B(x, r2) ∩A = ∅.
Case 1: r1 < r2
B(x, r1) ⊆ B(x, r2)
B(x, r1) ∩A = ∅
Contradiction achieved
Case 2: r2 < r1
B(x, r2) ⊆ B(x, r1) ⊆ A
Contradiction achieved
Thus, x /∈ intA ∩ extA

Suppose x ∈ intA ∩ bdA, then ∃r > 0 such that B(x, r) ⊆ A and
B(x, r) ∩Ac 6= ∅
Which means ∃y ∈ B(x, r) ∩Ac, which implies that y /∈ A
Contradiction achieved.

Suppose x ∈ extA ∩ bdA, then ∃r > 0 such that B(x, r) ∩ A = ∅, and
B(x, r) ∩A 6= ∅.
Contradiction achieved

Since x /∈ intA ∩ extA, x /∈ intA ∩ bdA, and x /∈ extA ∩ bdA, for
all A ∈ R, R is partitioned into the interior of A, the exterior of A, and
the boundary of A.

10. Let A ⊆ R. Then

intA =
⋃
{U : U ⊆ A and U open in R}

and

A =
⋂
{F : F ⊇ A and F closed in R}.

Proof. We prove the first statement using proof by double containment.

(⊆) Let x ∈ intA. Note that since intA is open and intA ⊆ A, then
intA = Ui for some i ∈ I for an indexing set I of RHS. Then, x ∈ Ui ⊆
RHS.

(⊇) Let x ∈ RHS. Then x ∈ Ui for some i ∈ I. Since Ui is open, we can
form an open ball around x such that for an r > 0, we have B(x, r) ⊆ Ui.
Since Ui ⊆ A, then B(x, r) ⊆ A so x ∈ intA.

We now prove the second statement by double containment.
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(a) ( =⇒ )

Let x ∈ A. Then x is either ∈ A or is a limit point of A.

Case x ∈ A.

Then since A is a subset of every set Fi in the RHS’ intersection,
we know that x is a member of each Fi. Thus x is a member of the
intersection, so x ∈ RHS.

Case x is a limit point of A and x /∈ A.

Then there exists a sequence (an) in A that converges to x. Since A
is a subset of every set Fi in the RHS’ intersection, (an) is in each
Fi. Since each Fi is closed, by presentation problem 2 we know that
(an) converges in Fi, so x ∈ each Fi. Thus x is a member of the
intersection, so x ∈ RHS.

Thus A ⊆ RHS.

(b) (⇐= )

Let x ∈ RHS. Then we know that x is a member of every Fi in the
RHS’ intersection.

Now A ⊇ A (since every element of A is in the closure), and by pre-
sentation problem 3 we know A is closed in R. Thus A is actually
one of the Fi’s in the RHS’ intersection. Since x is a member of every
Fi, it is a member of A.

Thus RHS ⊆ A.

Thus by double containment, A =
⋂
{F : F ⊇ A and F closed in R}.

11. Show that the only sets both open and closed in R are ∅ and R.

Hint: Let a1 ∈ A and b1 ∈ Ac, assuming without loss of generality that
a1 < b1 (why is this possible?). Let c1 be the midpoint of a1 and b1. If
c1 ∈ A, let a2 = c1 and b2 = b1; otherwise, let a2 = a1 and b2 = c1. Show
this construction can be continued inductively. Find x ∈

⋂∞
n=1[an, bn] and

show that an → x and bn → x.

Proof. To prove that there the only sets that are both open and closed in
R are the ∅ and R we will do a proof by contradiction.

Assume that there is a set A that is both open and closed that is not ∅ or
R. Notice that A open⇒ Ac closed, and A closed⇒ Ac open. Let a1 ∈ A
and b1 ∈ Ac, assuming without loss of generality that a1 < b1 which is
possible because if a1 > b1 we can just relabel A to be Ac. Define a point
c1 to be the midpoint of a1 and b1 (a1+b12 ). If c1 ∈ A then let a2 = c1
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and b2 = b1, otherwise let a2 = a1 and b2 = c1. This construction can
be continued inductively. Assume that we have ak and bk in A and Ac

respectively. We can find ck via ak+bk
2 , and since A and Ac partition R

that means ck ∈ A or ck ∈ Ac. If ck ∈ A then ak+1 = ck and bk+1 = bk,
else ak+1 = ak and bk+1 = ck.

Since [a1, b1] ⊇ [a2, b2] ⊇, ...,⊇ [ak, bk], then by the nested interval prop-
erty ∃x ∈

⋂∞
n=1[an, bn].

(an) → x and (bn) → x. Let d be the length of the interval which is
|b1−a1|. From the nested interval property we know that x ∈

⋂∞
n=1[an, bn].

Fix ε > 0, and let N ∈ N s.t N > (d/ε) + 1. Assume n ≥ N . Then:

|an − x| ≤
d

2n−1
≤ d

n− 1
< ε

and:

|bn − x| ≤
d

2n−1
≤ d

n− 1
< ε

Since A is closed ⇒ A includes all of its limit points, so x ∈ A, however
since Ac is closed ⇒ Ac includes all of its limit points so x ∈ Ac. This is
a contradiction however because A and Ac partition R which means that
x ∈ A ⇒ x /∈ Ac. Since we have reached a contradiction this means that
our original assumption is false and there is no sets other than ∅ and R
that are both open and closed in R.
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