Presentation Problems 2-Answers

21-355 A

1. Show that for any $a, b \in \mathbb{R}$ with $a<b,(a, b)$ is open in \mathbb{R}. Use this to prove that $(-\infty, a)$ and (a, ∞) are open for any $a \in \mathbb{R}$. Conclude that $[a, b],(-\infty, a]$ and $[a, \infty)$ are closed in \mathbb{R}.

Proof. Let $x \in(a, b)$. Then we know that $a<x<b$ and let

$$
\begin{aligned}
r_{1} & =x-a>0 \text { with } a \leq x-r_{1}<x \\
r_{2} & =b-x>0 \text { with } x<x+r_{2} \leq b
\end{aligned}
$$

Let $r=\min \left(r_{1}, r_{2}\right)>0$, then we have

$$
a \leq x-r_{1} \leq x-r<x<x+r \leq x+r_{2} \leq b
$$

Now we will show that $B(x, r) \subseteq(a, b)$. Select $0<\epsilon<r$. Then we know

$$
\begin{aligned}
& a \leq x-r<x-\epsilon<x<b, \text { and } \\
& a<x<x+\epsilon<x+r \leq b
\end{aligned}
$$

Thus, $\forall 0<\epsilon<r, x \pm \epsilon \in(a, b)$. We have shown that $B(x, r) \subseteq(a, b)$.
Now, we consider $(-\infty, a)$. Let $x \in(-\infty, a)$, we know x is finite and $x<a$, and $\bigcup_{i=1}^{\infty}(a-i, a)=(\infty, a)$. Since $\forall(a-i, a)$, we have proved that the set is open, and therefore their union is open.
Similarly $\bigcup_{i=1}^{\infty}(a, a+i)=(a, \infty)$ and $\forall(a, a+i)$, we know the set is open, and thus their union is open.
For $[a, b]$, we know $[a, b]^{c}=(-\infty, a) \cup(b, \infty)$. As we have shown $(-\infty, a)$ and (b, ∞) are open, and thus their union is open. Therefore $[a, b]$ is closed. For $(-\infty, a]$, we know $(-\infty, a]^{c}=(a, \infty)$ is open, and therefore $(-\infty, a]$ is closed.
For $[a, \infty)$, we know $[a, \infty)^{c}=(-\infty, a)$ is open, and therefore $[a, \infty)$ is closed.
2. Let $F \subseteq \mathbb{R}$. Then F is closed if and only if every convergent sequence in F converges in F.

Proof. (\Rightarrow) Let F be closed and $\left(a_{n}\right) \rightarrow a$ be a convergent sequence in F. Let $\epsilon>0$; then there exists N such that for each $n \geq N,\left|a_{n}-a\right|<\epsilon$ and
thus $a_{n} \in V_{\epsilon}(a)$, and since $a_{n} \in F, a_{n} \in V_{\epsilon}(a) \cap F$. If $a_{n}=a$, then $a \in F$; otherwise, a is a limit point of F, and since F is closed, $a \in F$. Thus, if F is closed, every convergent sequence in F converges in F.
(\Leftarrow) Let $F \subseteq \mathbb{R}$ such that every convergent sequence in F converges in F and let a be a limit point of F. Then there exists a sequence $\left(a_{n}\right)$ in F converging to a, implying $a \in F$. Thus, if every convergent sequence in F converges in F, every limit point of F lies in F and F is closed.

Therefore, F is closed if and only if every convergent sequence in F converges in F.
3. Let $A \subseteq \mathbb{R}$. Then the closure \bar{A} is closed in \mathbb{R}.

Proof. let $L P_{A}$ be the set of limit points of A. So

$$
\bar{A}=A \cup L P_{A}
$$

We wish to show that \bar{A} is closed, so it suffices to show that \bar{A}^{c} is open.
Let x be an arbitrary and fixed element in \bar{A}^{c}
so $x \notin A, x \notin L P_{A}$, thus
$\exists \epsilon>0, \forall y \in A,|x-y| \geq \epsilon$
$\Rightarrow B(x, \epsilon) \cap A=\varnothing$
$\Rightarrow B(x, \epsilon) \subseteq A^{c}$

If we can also show that $B(x, \epsilon) \subseteq\left(L P_{A}\right)^{c}$, we've shown that \bar{A}^{c} is open. For the sake of contradiction, let's assume $\exists a \in L P_{A} \cap B(x, \epsilon)$
$a \in L P_{A} \Rightarrow \forall \epsilon>0, \exists y \in A$ such that $|a-y|<\epsilon$
$a \in B(x, \epsilon) \Rightarrow \forall \epsilon>0, \forall y \in A,|a-y| \geq \epsilon$
This is a contradiction.
Thus $B(x, \epsilon) \subseteq\left(L P_{A}\right)^{c}$, we've already shown $B(x, \epsilon) \subseteq A^{c}$
Therefore $B(x, \epsilon) \subseteq \bar{A}^{c}$, so \bar{A}^{c} is open.
4. (a) Let F_{i} be closed for $i=1,2, \ldots, N$. Then $\bigcup_{i=1}^{N} F_{i}$ is closed.

Proof. For any $i=1,2, \ldots, N, F_{i}$ is closed.
We have proven in lecture that the complement of a closed set must be open, so F_{i}^{c} is open for all i. We also proved that the intersection of finite number of open sets is open, thus $\bigcap_{i=1}^{N} F_{i}^{c}$ is also open. Since the complement of an open set must be closed, we know $\left(\bigcap_{i=1}^{N} F_{i}^{c}\right)^{c}$ is closed.
By De Morgan's Law: $(A \cap B)^{c}=A^{c} \cup B^{c}$. So $\left(\bigcap_{i=1}^{N} F_{i}^{c}\right)^{c}=\bigcup_{i=1}^{N}\left(F_{i}^{c}\right)^{c}=\bigcup_{i=1}^{N} F_{i}$ is closed.
(b) Let F_{i} be closed for all i in some indexing set I. Then $\bigcap_{i \in I} F_{i}$ is closed.

Proof. For any $i \in I, F_{i}$ is closed.
Since the complement of a closed set must be open, F_{i}^{c} is open for all $i \in I$. We have proven in lecture that the union of any number of open sets is open, so $\bigcup_{i \in I} F_{i}$ is open. Its complement, $\left(\bigcup_{i \in I} F_{i}\right)^{c}$ is closed.
By De Morgan's Law: $(A \cup B)^{c}=A^{c} \cap B^{c}$.
So $\left(\bigcup_{i \in I} F_{i}\right)^{c}=\bigcap_{i \in I}\left(F_{i}^{c}\right)^{c}=\bigcap_{i \in I} F_{i}$ is closed.
5. Let $\left(x_{n}\right)$ be a real sequence such that $\lim _{n \rightarrow \infty} x_{n}=x$. Show that the set $S=\{x\} \cup\left\{x_{n}: n \in \mathbb{N}\right\}$ is closed in \mathbb{R}.

Proof. Consider the complement of S, we will show that S is closed in \mathbb{R} by showing that S^{c} is open in \mathbb{R}.
Arbitrarily pick $t \in S^{c}$
Thus, $t \notin\left\{x_{n}: n \in \mathbb{N}\right\}$ and $t \neq x$.
Since $t \neq x$, so we know $\exists r>0$ st. $|t-x|=r$.
Consider the open ball $B\left(x, \frac{r}{2}\right)$.
Since the sequence converges to x, from previous homework we know that there are all but infinitely many x_{n} 's in the ball, and there are only finite number of x_{n} 's outside the ball.
Now consider $B\left(t, \frac{r}{2}\right)$.
It is easy to see that $B\left(t, \frac{r}{2}\right)$ is disjoint from $B\left(x, \frac{r}{2}\right)$ since the distance between x and s is r and the ball is an open interval.
So $B\left(t, \frac{r}{2}\right)$ is disjoint from the ball $B\left(x, \frac{r}{2}\right)$, which means there are only finite number of x_{n} 's inside the ball $B\left(t, \frac{r}{2}\right)$.
Now pick the minimum distance δ between t and all those finite number of x_{n} 's.
Pick the minimum of δ and $\frac{r}{2}$, let it be ϵ.
So we have $B(t, \epsilon)$ does not contain any x_{n} and x.
Therefore $B(t, \epsilon) \subseteq S^{c}$
Now we just show that $\forall t \in S^{c}, \exists \epsilon>0$ st. $B(t, \epsilon) \subseteq S^{c}$.
Hence S^{c} open, which means S is closed.
6. Let $A \subseteq \mathbb{R}$. Show the following are equivalent.
(a) A is dense in \mathbb{R}
(b) For any $x \in \mathbb{R}$, there exists some sequence $\left(x_{n}\right)$ in A such that $x_{n} \rightarrow$ x.
(c) $\bar{A}=\mathbb{R}$.

Proof. We will show the equivalence by showing $(\mathrm{a}) \Longrightarrow(\mathrm{b}),(\mathrm{b}) \Longrightarrow(\mathrm{c})$, and $(\mathrm{c}) \Longrightarrow(\mathrm{a})$.
$((\mathbf{a}) \Longrightarrow(\mathbf{b}))$ We will find such a sequence via a constructive algorithm (specifically the bisection method). Let A be dense in \mathbb{R} and $x \in \mathbb{R}$ be arbitrary. Define the endpoint $c_{n}=x-\frac{1}{2^{n}}$ for all $n \in \mathbb{N}$ (notice that it is real). Since A is dense in \mathbb{R}, we know there is some $a_{n} \in A$ such that $c_{n} \leq a_{n} \leq x$. I claim $\left(x_{n}\right)=\left(a_{n}\right)$ is the sequence we are looking for.
Let $\varepsilon>0$ be arbitrary and fixed. See that $\left|x_{n}-x\right| \leq x-\left(x-\frac{1}{2^{n}}\right)=\frac{1}{2^{n}}$ since $x_{n}=a_{n} \geq c_{n}$. Then,

$$
\begin{aligned}
\frac{1}{2^{n}}<\varepsilon \Longrightarrow \frac{1}{\varepsilon} & =2^{n} \Longrightarrow \log _{2}\left(\frac{1}{\varepsilon}\right)<n \Longrightarrow n>\log _{2}\left(\frac{1}{\varepsilon}\right) \\
& \Longrightarrow\left|x-x_{n}\right|<\varepsilon \text { for } n>\log _{2}\left(\frac{1}{\varepsilon}\right)
\end{aligned}
$$

Let $N=\left\lceil\log _{2}\left(\frac{1}{\varepsilon}\right)\right\rceil+1$ and note that $N \in \mathbb{N}$. So for all $n \geq N$ we have $\left|x-x_{n}\right|<\varepsilon$. Since ε was arbitrary, we have shown that $\left(x_{n}\right)$ converges to x. Also, since $x_{n}=a_{n} \in A$ for all $n \in \mathbb{N}$, we have $\left(x_{n}\right) \in A$. These are the two essential properties of the sequence and we are done.
$((\mathbf{b}) \Longrightarrow(\mathbf{c}))$ Assume for any $x \in \mathbb{R}, \exists\left(x_{n}\right) \subseteq A$, s.t. $x_{n} \rightarrow x$. Since we want to show $\bar{A}=\mathbb{R}$, equivialently, we would like to prove $\bar{A} \subseteq \mathbb{R}$ and $\bar{A} \supseteq \mathbb{R}$.
$(\bar{A} \subseteq \mathbb{R})$
let $x \in \bar{A}$, then base on our assumption, $x \in \mathbb{R}, \bar{A} \subseteq \mathbb{R}$ trivially.
$(\bar{A} \supseteq \mathbb{R})$
let $\bar{x} \in \mathbb{R}$. Since $\exists\left(x_{n}\right) \subseteq A$, s.t. $x_{n} \rightarrow x$, we know

$$
\forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. } \forall n>N,\left|x_{n}-x\right|<\epsilon
$$

that means $x_{n} \in B(x, \epsilon)$, and because $x_{n} \in A$:

$$
\begin{array}{ll}
\Rightarrow & x_{n} \in B(x, \epsilon) \cap A \\
\Rightarrow & x \text { must be a limit point of } A, \\
& \text { because we have shown there exists other points in } B(x, \epsilon) \cap A \text { that is } \operatorname{not} x \\
\Rightarrow & x \in \bar{A} \\
\Rightarrow & \mathbb{R} \subseteq \bar{A}
\end{array}
$$

Since $\bar{A} \subseteq \mathbb{R}$ and $\bar{A} \supseteq \mathbb{R}$, that proves $\bar{A}=\mathbb{R}$
$((\mathbf{c}) \Longrightarrow(\mathbf{a}))$ We will prove this using a proof by contradiction. Assume for sake of contradiction that A is not dense in R. Then there exists a point
$x \in \mathbb{R}$ and $d>0$ such that $(x-d, x+d) \cap A=\emptyset$ (we will denote this with $\left(^{*}\right)$. Because $\bar{A}=\mathbb{R}$, this implies that $(x-d, x+d) \cap \bar{A}=(x-d, x+d)$. Thus, all points in $(x-d, x+d)$ are limit points of A. Let us consider $y \in(x-d, x+d)$. For any $\epsilon>0,(y-\epsilon, y+\epsilon) \cap A \neq \emptyset$, because y is a limit point of A. Because $(x-d, x+d)$ is an open interval and $y \in(x-d, x+d)$, we can find $e>0$ such that $(y-e, y+e) \subseteq(x-d, x+d)$. From (*), we know that $(y-e, y+e) \cap A \subseteq(x-d, x+d) \cap A=\emptyset$, thus, $(y-e, y+e) \cap A=\emptyset$. This is a contradiction, as we assumed that $(y-e, y+e) \cap A \neq \emptyset$. Thus, A is dense in \mathbb{R}.
7. Show that $A \subseteq \mathbb{R}$ is open in \mathbb{R} if and only if $A=\operatorname{int} A$.

Proof. (\Rightarrow) Assume A is open.
By definition, $A \subseteq \mathbb{R}$ is open if and only if $\forall x \in A, \exists r>0$ such that $B(x, r) \subseteq A$, so every point must be an interior point, so $A \subseteq \operatorname{int} A$. The reverse, $\operatorname{int} A \subseteq A$, is always true since the interior points have to lie in A together with a neighborhood. Thus, $A=\operatorname{int} A$.
(\Leftarrow) Assume $A=\operatorname{int} A$.
Claim: int A is an open set.
Let $x \in \operatorname{int} A$. So $\exists r>0$, such that $B(x, r) \subseteq \operatorname{int} A=A$. Then $\forall x \in$ $\operatorname{int} A=A, \exists r>0$, such that $B(x, r) \subseteq A=\operatorname{int} A$.
Since $\operatorname{int} A$ is an open subset of A and since $A=\operatorname{int} A$, then A must also be open.
8. Show that $\operatorname{bd} A=\bar{A} \cap \overline{\mathbb{R} \backslash A}$ for any $A \subseteq \mathbb{R}$ and that $\bar{A}=\operatorname{int} A \cup \operatorname{bd} A$.

Proof. We make a generalization for the proof of this statement. We assume that $x \in A$ and $x \notin A^{C}$. Upon proving the statement with this assumption, we immediately substitute A for A^{C} in the equation we want to prove in general and immediately realize it holds if $x \in A^{C}$ as well.
We will first prove that bd $A=\bar{A} \cap \overline{A^{C}}$ by means of double-containment.
We will first prove that $b d A \subseteq \bar{A} \cap \overline{A^{C}}$. Let $x \in b d A$ be arbitrary. Then by the definition of boundary, we know that for all $r>0, B(x, r) \cap A \neq \emptyset$. Since $\bar{A}=A \cup L P(A)$, we know that $x \in A$ gives $x \in \bar{A}$. Note that there exists a $y \in B(x, r)$ such that $y \neq x, y \in A^{C}$, and for all $r>0$, $\left(B(x, r) \cap A^{C}\right) \backslash\{x\} \neq \emptyset$, also following from $x \in b d A$. By the definition of limit point, we conclude $x \in L P\left(A^{C}\right)$, and by the definition of closure, $x \in \overline{A^{C}}$ as well.
Since $x \in \bar{A}$ and $x \in \overline{A^{C}}$, we conclude that $x \in \bar{A} \cap \overline{A^{C}}$, as desired.
We now prove the other direction, that $\bar{A} \cap \overline{A^{C}} \subseteq b d \underline{A}$. Let $x \in \bar{A} \cap \overline{A^{C}}$ be arbitrary. Note that $x \in A$, so $x \notin A^{C}$. Since $\bar{x} \in \overline{A^{C}}$, by the definition of closure we conclude that $x \in L P\left(A^{C}\right)$. By the definition of limit point, for all $r>0$ we see that $\left(A^{C} \cap B(x, r)\right) /\{x\} \neq \emptyset$, so $A^{C} \cap B(x, r) \neq$
\emptyset. Moreover, since $x \in A$, it is trivial that $A \cap B(x, r) \neq \emptyset$ (since this intersection contains the point x). By the definition of boundary, we conclude that $x \in \mathrm{bd} A$.

We now proceed to the second part of the problem, which says to prove that $\bar{A}=\operatorname{int} A \cup \mathrm{bd} A$. This will also be done by double-containment. First we will prove that $\bar{A} \subseteq$ int $A \cup b d A$. There are two cases to consider:
Case 1: $x \in A$. Choose an $r>0$. If $B(x, r) \subseteq A$, then $x \in$ int A. If not, then we have the following:
(a) $x \in A$ and $x \in B(x, r)$, so $B(x, r) \cap A \neq \emptyset$.
(b) There exists a $y \in B(x, r)$ such that y is not in A, so $y \in B(x, r) \cap A^{C}$ by the definition of set complement. Hence $B(x, r) \cap A^{C} \neq \emptyset$.

These two claims combined let us conclude that $x \in b d A$ by definition of boundary.

Case 2: $x \in L P(A)$. Then by the definition of limit point, for all $r>0$, $B(x, r) \cap A \neq \emptyset$ (at least x must be contained in it). If $B(x, r) \cap A^{C} \neq \emptyset$, then $x \in b d A$ by definition of boundary. However, if this intersection is empty, then all elements of $B(x, r)$ must instead be in A, so $x \in \operatorname{int} A$ instead.

Next we will prove that int $A \cup b d A \subseteq \bar{A}$. Let $x \in \operatorname{int} A \cup b d A$ be arbitrary. Again we will need two cases.
Case 1: If there exists an $r>0$ such that $B(x, r) \subseteq A$, then by the earlier part of the proof, we know that $x \in A$ by the definition of interior. Since $A \subseteq \bar{A}$, we know that $x \in \bar{A}$.

Case 2: If for all $r>0$ we have that $B(x, r)$ is not a subset of A, then there must be some element of $B(x, r)$ that is in A^{C}, so $B(x, r) \cap A^{C} \neq \emptyset$. Also, $x \in A$ implies $A \cap B(x, r) \neq \emptyset$ since trivially $x \in B(x, r)$. By the definition of boundary point, the existence of these nonempty set intersections lets us conclude that $x \in b d A$, as desired.
By the process of double containment, the proof is complete.
9. For any $A \subseteq \mathbb{R}, \mathbb{R}$ is partitioned into the interior A, the exterior of A, and the boundary of A.

Proof. Show that $\mathbb{R}=\operatorname{int} A \cup \operatorname{ext} A \cup \operatorname{bd} A$ by double containment.
It is trivial to see that int $A \cup \operatorname{ext} A \cup b d A \subseteq \mathbb{R}$ by the definition of interior, exterior and boundary.

Show that $\mathbb{R} \subseteq \operatorname{int} A \cup \operatorname{ext} A \cup \operatorname{bd} A$.
let $x \in \mathbb{R}$,
Case 1: $x \in \operatorname{bd} A$, trivial
Case 2: $x \notin \mathrm{bd} A$,
$\exists r>0$ such that $B(x, r) \cap A=\emptyset$ or $B(x, r) \cap A^{c}=\emptyset$
If $B(x, r) \cap A=\emptyset$ then $x \in \operatorname{ext} A$
If $B(x, r) \cap A^{c}=\emptyset$ then $B(x, r) \subseteq A$ and $x \in \operatorname{int} A$
Therefore $\mathbb{R}=\operatorname{int} A \cup \operatorname{ext} A \cup \operatorname{bd} A$
Prove that x is in only one of $\operatorname{int} A$, ext A, and $\operatorname{bd} A$ by contradiction:
Suppose $x \in \operatorname{int} A \cap \operatorname{ext} A$, then $\exists r_{1}>0$ such that $B\left(x, r_{1}\right) \subseteq A$ and
$\exists r_{2}>0$ such that $B\left(x, r_{2}\right) \cap A=\emptyset$.
Case 1: $r_{1}<r_{2}$
$B\left(x, r_{1}\right) \subseteq B\left(x, r_{2}\right)$
$B\left(x, r_{1}\right) \cap A=\emptyset$
Contradiction achieved
Case 2: $r_{2}<r_{1}$
$B\left(x, r_{2}\right) \subseteq B\left(x, r_{1}\right) \subseteq A$
Contradiction achieved
Thus, $x \notin \operatorname{int} A \cap \operatorname{ext} A$
Suppose $x \in \operatorname{int} A \cap \operatorname{bd} A$, then $\exists r>0$ such that $B(x, r) \subseteq A$ and $B(x, r) \cap A^{c} \neq \emptyset$
Which means $\exists y \in B(x, r) \cap A^{c}$, which implies that $y \notin A$
Contradiction achieved.
Suppose $x \in \operatorname{ext} A \cap \operatorname{bd} A$, then $\exists r>0$ such that $B(x, r) \cap A=\emptyset$, and $B(x, r) \cap A \neq \emptyset$.
Contradiction achieved
Since $x \notin \operatorname{int} A \cap \operatorname{ext} A, x \notin \operatorname{int} A \cap \operatorname{bd} A$, and $x \notin \operatorname{ext} A \cap \operatorname{bd} A$, for all $A \in \mathbb{R}, \mathbb{R}$ is partitioned into the interior of A , the exterior of A , and the boundary of A .
10. Let $A \subseteq \mathbb{R}$. Then

$$
\operatorname{int} A=\bigcup\{U: U \subseteq A \text { and } U \text { open in } \mathbb{R}\}
$$

and

$$
\bar{A}=\bigcap\{F: F \supseteq A \text { and } F \text { closed in } \mathbb{R}\} .
$$

Proof. We prove the first statement using proof by double containment.
(\subseteq) Let $x \in \operatorname{int} A$. Note that since $\operatorname{int} A$ is open and int $A \subseteq A$, then $\operatorname{int} A=U_{i}$ for some $i \in I$ for an indexing set I of RHS. Then, $x \in U_{i} \subseteq$ RHS.
(\supseteq) Let $x \in$ RHS. Then $x \in U_{i}$ for some $i \in I$. Since U_{i} is open, we can form an open ball around x such that for an $r>0$, we have $B(x, r) \subseteq U_{i}$. Since $U_{i} \subseteq A$, then $B(x, r) \subseteq A$ so $x \in \operatorname{int} A$.
We now prove the second statement by double containment.
(a) (\Longrightarrow)

Let $x \in \bar{A}$. Then x is either $\in A$ or is a limit point of A.
Case $x \in A$.
Then since A is a subset of every set F_{i} in the RHS' intersection, we know that x is a member of each F_{i}. Thus x is a member of the intersection, so $x \in$ RHS.

Case x is a limit point of A and $x \notin A$.
Then there exists a sequence $\left(a_{n}\right)$ in A that converges to x. Since A is a subset of every set F_{i} in the RHS' intersection, $\left(a_{n}\right)$ is in each F_{i}. Since each F_{i} is closed, by presentation problem 2 we know that $\left(a_{n}\right)$ converges in F_{i}, so $x \in$ each F_{i}. Thus x is a member of the intersection, so $x \in$ RHS.

Thus $\bar{A} \subseteq$ RHS.
(b) (\Longleftarrow)

Let $x \in$ RHS. Then we know that x is a member of every F_{i} in the RHS' intersection.

Now $\bar{A} \supseteq A$ (since every element of A is in the closure), and by presentation problem 3 we know \bar{A} is closed in \mathbb{R}. Thus \bar{A} is actually one of the F_{i} 's in the RHS' intersection. Since x is a member of every F_{i}, it is a member of \bar{A}.

Thus RHS $\subseteq \bar{A}$.
Thus by double containment, $\bar{A}=\bigcap\{F: F \supseteq A$ and F closed in $\mathbb{R}\}$.
11. Show that the only sets both open and closed in \mathbb{R} are \emptyset and \mathbb{R}.

Hint: Let $a_{1} \in A$ and $b_{1} \in A^{c}$, assuming without loss of generality that $a_{1}<b_{1}$ (why is this possible?). Let c_{1} be the midpoint of a_{1} and b_{1}. If $c_{1} \in A$, let $a_{2}=c_{1}$ and $b_{2}=b_{1}$; otherwise, let $a_{2}=a_{1}$ and $b_{2}=c_{1}$. Show this construction can be continued inductively. Find $x \in \bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$ and show that $a_{n} \rightarrow x$ and $b_{n} \rightarrow x$.

Proof. To prove that there the only sets that are both open and closed in \mathbb{R} are the \emptyset and \mathbb{R} we will do a proof by contradiction.
Assume that there is a set A that is both open and closed that is not \emptyset or \mathbb{R}. Notice that A open $\Rightarrow A^{c}$ closed, and A closed $\Rightarrow A^{c}$ open. Let $a_{1} \in A$ and $b_{1} \in A^{c}$, assuming without loss of generality that $a_{1}<b_{1}$ which is possible because if $a_{1}>b_{1}$ we can just relabel A to be A^{c}. Define a point c_{1} to be the midpoint of a_{1} and $b_{1}\left(\frac{a_{1}+b_{1}}{2}\right)$. If $c_{1} \in A$ then let $a_{2}=c_{1}$
and $b_{2}=b_{1}$, otherwise let $a_{2}=a_{1}$ and $b_{2}=c_{1}$. This construction can be continued inductively. Assume that we have a_{k} and b_{k} in A and A^{c} respectively. We can find c_{k} via $\frac{a_{k}+b_{k}}{2}$, and since A and A^{c} partition \mathbb{R} that means $c_{k} \in A$ or $c_{k} \in A^{c}$. If $c_{k} \in A$ then $a_{k+1}=c_{k}$ and $b_{k+1}=b_{k}$, else $a_{k+1}=a_{k}$ and $b_{k+1}=c_{k}$.
Since $\left[a_{1}, b_{1}\right] \supseteq\left[a_{2}, b_{2}\right] \supseteq, \ldots, \supseteq\left[a_{k}, b_{k}\right]$, then by the nested interval property $\exists x \in \bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$.
$\left(a_{n}\right) \rightarrow x$ and $\left(b_{n}\right) \rightarrow x$. Let d be the length of the interval which is $\left|b_{1}-a_{1}\right|$. From the nested interval property we know that $x \in \bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right]$. Fix $\epsilon>0$, and let $N \in \mathbb{N}$ s.t $N>(d / \epsilon)+1$. Assume $n \geq N$. Then:

$$
\left|a_{n}-x\right| \leq \frac{d}{2^{n-1}} \leq \frac{d}{n-1}<\epsilon
$$

and:

$$
\left|b_{n}-x\right| \leq \frac{d}{2^{n-1}} \leq \frac{d}{n-1}<\epsilon
$$

Since A is closed $\Rightarrow A$ includes all of its limit points, so $x \in A$, however since A^{c} is closed $\Rightarrow A^{c}$ includes all of its limit points so $x \in A^{c}$. This is a contradiction however because A and A^{c} partition \mathbb{R} which means that $x \in A \Rightarrow x \notin A^{c}$. Since we have reached a contradiction this means that our original assumption is false and there is no sets other than \emptyset and \mathbb{R} that are both open and closed in \mathbb{R}.

