Presentation Problems 2

21-355 A

Instructions: Your group should prepare a presentation for the problem corresponding to your group number. After presenting the solution and getting feedback from the class, you have until the beginning of the following class to send a Tex file with a polished form of the solution to the instructor. Make sure all group members' names are in the Tex file. There are 15 points available: 10 for the presentation and 5 for the written proof.

- 1. Show that for any $a, b \in \mathbb{R}$ with a < b, (a, b) is open in \mathbb{R} . Use this to prove that $(-\infty, a)$ and (a, ∞) are open for any $a \in \mathbb{R}$. Conclude that $[a, b], (-\infty, a]$ and $[a, \infty)$ are closed in \mathbb{R} .
- 2. Let $F \subseteq \mathbb{R}$. Then F is closed if and only if every convergent sequence in F converges in F.
- 3. Let $A \subseteq \mathbb{R}$. Then the closure \overline{A} is closed in \mathbb{R} .
- 4. (a) Let F_i be closed for i = 1, 2, ..., N. Then $\bigcup_{i=1}^N F_i$ is closed.
 - (b) Let F_i be closed for all *i* in some indexing set *I*. Then $\bigcap_{i \in I} F_i$ is closed.
- 5. Let (x_n) be a real sequence such that $\lim_{n\to\infty} x_n = x$. Show that the set $S = \{x\} \cup \{x_n : n \in \mathbb{N}\}$ is closed in \mathbb{R} .
- 6. Let $A \subseteq \mathbb{R}$. Show the following are equivalent.
 - (a) A is dense in \mathbb{R}
 - (b) For any $x \in \mathbb{R}$, there exists some sequence (x_n) in A such that $x_n \to x$.
 - (c) $\overline{A} = \mathbb{R}$.
- 7. Show that $A \subseteq \mathbb{R}$ is open in \mathbb{R} if and only if A = int A.
- 8. Show that $\operatorname{bd} A = \overline{A} \cap \overline{\mathbb{R} \setminus A}$ for any $A \subseteq \mathbb{R}$ and that $\overline{A} = \operatorname{int} A \cup \operatorname{bd} A$.
- 9. For any $A \subseteq \mathbb{R}$, \mathbb{R} is partitioned into the interior A, the exterior of A, and the boundary of A.

10. Let $A \subseteq \mathbb{R}$. Then

int
$$A = \bigcup \{ U : U \subseteq A \text{ and } U \text{ open in } \mathbb{R} \}$$

 $\quad \text{and} \quad$

$$\overline{A} = \bigcap \{F : F \supseteq A \text{ and } F \text{ closed in } \mathbb{R}\}.$$

11. Show that the only sets both open and closed in \mathbb{R} are \emptyset and \mathbb{R} .

Hint: Let $a_1 \in A$ and $b_1 \in A^c$, assuming without loss of generality that $a_1 < b_1$ (why is this possible?). Let c_1 be the midpoint of a_1 and b_1 . If $c_1 \in A$, let $a_2 = c_1$ and $b_2 = b_1$; otherwise, let $a_2 = a_1$ and $b_2 = c_1$. Show this construction can be continued inductively. Find $x \in \bigcap_{n=1}^{\infty} [a_n, b_n]$ and show that $a_n \to x$ and $b_n \to x$.