
Presentation Problems 1–Proofs

21-355 A

1. Let (an) be a convergent sequence. Then (an) is bounded. In addition,
let (ank

) be a subsequence of (an). Then the subsequence (ank
) converges

to lim an.

Theorem 1. Let (an) be a convergent sequence. Then (an) is bounded.

Proof. From the definition of a convergent sequence we know:

(an) is convergent⇒ ∀ε > 0,∃N ∈ N s.t. ∀n ≥ N it follows that |an−l| < ε

In order for (an) to be bounded we must show:

∃M > 0 s.t. |an| ≤M,∀n ∈ N

We know from the convergence of (an) that |an−l| < ε, so by the definition
of absolute value it follows that −ε < an− l < ε. From this it follows that
−ε+ l < an < ε+ l. While this is correct we don’t know that l is positive
so we will use −ε − |l| < an < ε + |l| so we can be certain that our lower
bound is the opposite of our upper bound, which would mean we could
rewrite the statement as |an| < ε+ |l|.
We now have a value, ε + |l|, that we can use for M that we know
bounds the sequence when n ≥ N . However we cannot be certain that
this value of M will bound the sequence when n < N , so we should let
M = max(|a1|, |a2|, ..., |an−2|, ε+ |l|).
Note that because every term in the sequence up to an−1 is less than or
equal to the greatest term of that part of the sequence, and every term
from an onward it follows that |an| ≤M ∀n ∈ N.

Theorem 2. Let (ank
) be a sub-sequence of (an). The the sub-sequence

(ank
) converges to the same limit as (an).

Proof. Aside: Observe that n1 ≥ 1 because as part of the definition of a
sub-sequence the first term of the sub-sequence must be at least the first
term of the original sequence. Assume that nk ≥ k then it follows that:

nk + 1 ≥ k + 1

nk+1 ≥ nk + 1
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Because the k+1 term of the sub-sequence must be at least the next term
of the sequence.

nk+1 ≥ nk + 1 ≥ k + 1⇒ nk+1 ≥ k + 1

From the definition of a convergent sequence we know:

(an) is convergent⇒ ∀ε > 0,∃N ∈ N s.t. ∀n ≥ N it follows that |an−l| < ε

Since nk ≥ k, let k ∈ N s.t. k ≥ N . This implies that nk ≥ N , so it follows
that |ank

− l| < ε. So the sub-sequence converges to the same value as the
original sequence.

2. Let (an) and (bn) be sequences such that lim an = a and lim bn = b. Then
for any α, β ∈ R, lim(αan + βbn) = αa+ βb and lim(anbn) = ab. Further,
lim an

bn
= a

b provided b 6= 0.

Proposition 3. Let (an) and (bn) be real sequences such that an → a and
bn → b and let α, β ∈ R. Then lim(αan + βbn) = αa+ βb.

Proof. We first prove that lim(an + bn) = a + b. Equivalently, we want
to show that for any ε > 0, there is some N ∈ N such that for n > N ,
|an + bn − (a+ b)| < ε.
Let ε > 0. Then there is some N1 ∈ N such that if n ≥ N1, |an − a| < ε

2 .
Similarly, there is some N2 ∈ N such that if n ≥ N2, |bn − b| < ε

2 .
Pick N = max(N1, N2), then for n ≥ N ,

|an + bn − (a+ b)| = |(an − a) + (bn − b)|
≤ |an − a|+ |bn − b|

<
ε

2
+
ε

2
= ε

Therefore, for n > N , |an + bn − (a+ b)| < ε holds for all ε > 0.
So lim(an + bn) = a+ b

We then prove that lim(αan) = αa for any α ∈ R. Equivalently, we want
to show that for any ε > 0, there is some N ∈ N such that for n ≥ N ,
|αan − αa| < ε.

• Case 1: α 6= 0. Since ε > 0, there is some N ∈ N such that for
n ≥ N , we have |an − a| < ε

|α| . By properties of absolute value,

|αan − αa| < ε follows.

• Case 2: α = 0. Then |αan − αa| = 0 < ε

2



Since lim(an + bn) = a+ b and lim(αan) = αa, lim(αan + βbn) = αa+ βb
follows immediately.

Proposition 4. Let (an) and (bn) be real sequences such that an → a and
bn → b. Then lim(anbn) = ab.

Proof. Equivalently, we want to show that for any ε > 0, there is some
N ∈ N such that for n > N , |anbn − ab| < ε.
Since sequence (bn) converges to limit b, it is bounded. Let K be the
bound, |bn| < K. Since ε > 0, there is some N1 ∈ N such that for n ≥ N1,
we have |an − a| < ε

2(K+1) . Similarly, there is some N2 ∈ N such that if

n ≥ N2, |bn − b| < ε
2(|a|+1) .

Pick N = max(N1, N2), then for n ≥ N ,

|anbn − ab| = |anbn − abn + abn − ab|
≤ |(an − a)bn|+ |a(bn − b)|

<
ε

2(K + 1)
×K + |a| × ε

2(|a|+ 1)

<
ε

2
+
ε

2
= ε

Therefore, lim(anbn) = ab holds.

Proposition 5. Let (an) and (bn) be real sequences such that an → a and

bn → b 6= 0. Then lim
(
an
bn

)
= a

b .

Proof. We have shown that lim(anbn) = ab. If we can prove that lim
(

1
bn

)
=

1
b , then lim(anbn ) = a

b follows immediately. Proving lim
(

1
bn

)
= 1

b is equiv-
alent to proving that for any ε > 0, there is some N ∈ N such that for
n > N , | 1bn −

1
b | < ε.

Suppose b > 0. Since ε > 0, there is some N1 ∈ N such that for n ≥ N1,

|bn − b| < b2

2 ε. Besides, there is some N2 ∈ N such that for n ≥ N2,

|bn − b| < b
2 . By properties of absolute value, we have that b

2 < bn <
3b
2 .

Since we have supposed that b > 0, this implies that |bn| > b
2 .

Pick N = max(N1, N2), then for n > N ,∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =

∣∣∣∣b− bnbbn

∣∣∣∣
<

b2

2 ε

b× b
2

= ε

3



Suppose b < 0. Since lim(αan) = αa, we have lim(−1 × bn) = −b, where
−b > 0. Then by the above proof, we have lim

(
− 1
bn

)
= − 1

b . Again using

lim(αan) = αa, we have lim
(
− 1×− 1

bn

)
= lim

(
1
bn

)
= −1×− 1

b = 1
b .

Therefore, lim
(

1
bn

)
= 1

b holds. Since lim(anbn) = ab, lim
(
an
bn

)
= a

b holds

provided that b 6= 0.

3. Let (an) and (bn) be sequences such that lim an = a and lim bn = b.

(a) If an ≥ α for all n ∈ N, then a ≥ α. Similarly, if an ≤ β for all n ∈ N,
then a ≤ β.

Proof. Assume for sake of contradiction that a < α. By definition of
a limit of a sequence, for any arbitrary ε > 0, there exists N ∈ N such
that for all n > N , we have that |an−a| < ε. Fix an arbitrary ε > 0.
Then we have N ∈ N such that for all n > N , |an − a| < ε. We now
want to show that |an−α| < ε. This implies that α is a limit of (an),
and by the uniqueness of limits, then a = α and we would have a
contradiction. By the assumption, a < α =⇒ an− a > an−α. Since
an ≥ α, then an − α ≥ 0 and so |an − a| ≥ |an − α| > 0. However,
since |an−a| < ε, this means that |an−α| < ε. Since ε was arbitrary,
this proves that α is a limit of (an), and we are done.

A similar proof follows for the case where an ≤ β for all n ∈ B by
assuming that a > β. By defintion of a limit of a sequence, we have
for any arbitrary ε, there exists N ∈ N such that for all n > N ,
|an − a| < ε. By the assumption, a − an > β − an. Also, since
β−an ≥ 0, then a−an > β−an ≥ 0 =⇒ |a−an| > |β−an| and thus
ε > |an − a| = |a − an| > |β − an| = |an − β| ≥ 0 =⇒ |an − β| < ε.
Then β is a limit of (an), thus β = a, and we have a contradiction.

(b) If an ≤ bn for all n ∈ N, then a ≤ b.

Proof. Assume for sake of contradiction that a > b. Then b cannot
be the limit of (an) because limits are unique.

By negation of the definition of limit of a sequence, there exists ε
such that for all N ∈ N there exists n > N such that |an − b| > ε.
Let us choose this ε.

By definition of limits of a sequence, there exists N1 ∈ N such that
for all n > N1, |an − a| < ε

Similarly, there exists N2 ∈ N such that for all n > N1, |bn − b| < ε

Let N = N1 + N2 and let n > N be arbitrary and fixed. Then we
have the following five inequalities:
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|an − b| > ε(1)

|an − a| < ε(2)

|bn − b| < ε(3)

an ≤ bn(4)

a > b(5)

Given our choice of n, there are 2 cases: either b ≥ an or b < an.

i. If b ≥ an, then
ε < |an − b| [by (1)]
= b− an [since b ≥ an for this case]
< a− an [since a > b by (5)]
= |a− an| [since a > b ≥ an].
This is a contradiction because by (2) we have that |an − a| < ε

ii. If b < an, then
ε < |an − b| [by (1)]
= an − b [since an > b for this case]
≤ bn − b [since bn ≥ an by (4)]
= |bn − b| [since bn ≥ an ≥ b].
This is a contradiction because by (3) we have that |bn − a| < ε.

4. Let (an), (bn), and (cn) be sequences in R such that an ≤ bn ≤ cn for all
n ∈ N. If lim an = lim cn = γ, then lim bn = γ. Note: It is NOT given
that (bn) converges.

Proof. Suppose lim an = lim cn = γ.
Then for all ε > 0 and n ≥ N for some N = max {N1, N2}, N1, N2 ∈ N
|an − γ| < ε, and |cn − γ| < ε.
=> −ε < an − γ < ε and −ε < cn − γ < ε
=> −ε+ γ < an < γ + ε and −ε+ γ < cn < γ + ε
Since bn ≥ an, −ε+ γ < an ≤ bn
and since bn ≤ cn, bn ≤ cn < ε+ γ
Thus −ε+ γ < bn < ε+ γ
=> |bn − γ| < ε
Therefore lim bn = γ

5. Prove that an increasing, bounded sequence (an) converges to sup{an}
and a decreasing, bounded sequence (bn) converges to inf{bn}. Show that
for any bounded sequence (an), the sequences (yn) and (zn) where

yn := sup{ak : k ≥ n}
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and

zn := inf{ak : k ≥ n}

converge. (These limits are defined as the limit superior, lim sup an, and
the limit inferior, lim inf an, respectively. Thus, any bounded sequence
has a limit superior and limit inferior.)

Theorem 6. Let (an) be an increasing, bounded sequence and (bn) be a
decreasing, bounded sequence. Then an → sup{an} and bn → inf{bn}.

Proof. Let s be the least upper bound of the sequence (an). so s = sup{an}
We want to show that ∀ε > 0,∃N ∈ N,∀n > N, | an − s |< ε.
It is equivalent to show that ∀ε > 0,∃N ∈ N,∀n > N, s− ε < an < s+ ε
Since s is the supremum, s + ε is an upper bound of (an). So an <
s+ ε ∀an ∈ (an)
Since s is the supremum, s − ε must not be an upper bound of (an). So
∃N ∈ N, ∀n > N, an > s− ε
We’ve shown ∀ε > 0,∃N ∈ N,∀n > N, s− ε < an < s+ ε
Thus the supremum of (an) is also the limit of the sequence. Hence, an
increasing, bounded sequence (an) converges to sup {an}
Similarly, we can prove that a decreasing, bounded sequence (bn) converges
to inf {bn}.

Theorem 7. Let (an) be a bounded sequence in R. Then lim sup an and
lim inf an exist.

Proof. By the definition of the sequence (yn), the sequence continuously
takes the largest element from part of (an). Hence, (yn) must be a de-
creasing sequence. Since (an), (yn) is bounded as well. Since (yn) is a
decreasing, bounded sequence, by the first part of the problem, we know
that (yn) converges to its infimum.

Similarly, we can show that (zn) is an increasing, bounded sequence, and
it converges to its supremum.

6. Prove that for any bounded sequence (an), lim inf an ≤ lim sup an.

Proof. Assume (an) is bounded. Let pn := inf{ak : k ≥ n} and let
qn := sup{ak : k ≥ n}.
So lim inf an = lim pn := x and lim sup an = lim qn := y.
Assume for sake of contradiction that x > y.

So ∃δ1 ∈ N s.t. n ≥ δ1 =⇒ |pn − x| < |x−y|
2

and ∃δ2 ∈ N s.t. n ≥ δ2 =⇒ |qn − x| < |x−y|
2

Without loss of generality, assume δ1 ≥ δ2.

We now have y−x
2 = −|x−y|

2 < pδ1 − x =⇒ y+x
2 < pδ1

and qδ1 − y <
|x−y|

2 = x−y
2 =⇒ qδ1 <

x+y
2
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and so qδ1 <
x+y
2 < pδ1 =⇒ qδ1 < pδ1 .

This means that the infimum of a set is larger than the supremum, which
is a contradiction since the infimum is a lower bound and the supremum
is an upper bound.
Therefore lim inf an ≤ lim sup an.

Show that lim inf an = lim sup an if and only if lim an exists.

Proof. ( =⇒ ) Assume lim inf an = lim sup an := L.
Let In = inf{ak : k ≥ n}
So ∀ε > 0,∃q ∈ N s.t. n ≥ q =⇒ |In − L| < ε
We know Iq ≤ ai ∀i ≥ q and |Iq − L| < ε =⇒ −ε < Iq − L.
So ∀i ≥ q, ai − L > −ε.

Now let Sn = sup{ak : k ≥ n}.
We know ∀ε > 0,∃p ∈ N s.t. n ≥ p =⇒ |Sn − L| < ε.
We also know Sp ≥ ai ∀i ≥ p and |Sp − L| < ε =⇒ Sp − L < ε.
So ∀i ≥ p, ai − L < ε.
Therefore, ∀i ≥ max(p, q), −ε < ai − L < ε
and so ∀i ≥ max(p, q), |ai − L| < ε as desired.

(⇐) Assume lim an exists, then want to show that lim sup an = lim inf an.
First, we know that an is bounded and converges, so it has lim sup an and
lim inf an.
Now WTS lim sup an = lim an = L
By the definition of limit, we know that ∃N2 ∈ N s.t. |ak−L| < ε/2 ∀k ≥
N2.
lim sup an = limSn where Sn = sup{ak : k ≥ n}

From Lemma 1.3.8, we know that SN2 is the supremum iff
∀ε > 0,∃ax ∈ {ak : k ≥ N2} such that |SN2 − ax| < ε/2
|SN2

− L| = |SN2
− ak + ak − L| ≤ |SN2

− ak| + |ak − L| < ε/2 + ε/2 =
ε ∀k ≥ N2

So lim sup an = L
lim inf an = lim In where In = inf{ak : k ≥ n}
By the same reasoning as in the last part, we have
∀ε > 0,∃ax ∈ {ak : k ≥ N2} such that |IN2

− ax| < ε/2
|IN2
−L| = |IN2

−ak+ak−L| ≤ |IN2
−ak|+|ak−L| < ε/2+ε/2 = ε ∀k ≥ N2

So lim inf an = L, and so lim sup an = lim inf an

7. A Cauchy sequence is bounded and a convergent sequence is Cauchy.

Proof. Let (an) be a Cauchy sequence. Let ε > 0. By definition of Cauchy
sequence, we know that there exists some N ∈ N such that if m,n ≥ N
then

|am − an| < ε.
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By the properties of absolute value and since ε > 0, we know that

−ε < an − am < ε.

We take m = N , giving us

−ε < an − aN < ε.

Adding aN to both sides this gives us the inequality

−ε+ aN < an < ε+ aN .

Now we have that for all n ≥ N

an < ε+ aN ,

an > −ε+ aN .

Notice that this gives us an upper and lower bound for all the elements in
(an) after some finite index N . This means that if we take the maximum
and minimum over the elements before index N (with the above bounds
included), we can derive an upper and lower bound for all elements in
(an). It follows that for all n ∈ N, we have that

an ≤ max{a1, a2, . . . , aN−1, ε+ aN},
an ≥ min{a1, a2, . . . , aN−1,−ε+ aN}.

Thus (an) is bounded.

Let (an) be a convergent sequence and L be its limit. Recall that by
definition of limits, we know that for all ε > 0 there is some N ∈ N such
that if n ≥ N then

|an − L| < ε.

Let ε > 0. Since ε
2 > 0, we know by definition of limits that there exists

some N ∈ N such that for all n ≥ N we have that

|an − L| <
ε

2
,

We will now show that (an) is Cauchy. Let m,n ≥ N . Notice that it is
enough to show that

|am − an| < ε.

By the triangle inequality, we have that

|am − an| ≤ |am − L|+ |L− an|
= |am − L|+ |an − L|

<
ε

2
+
ε

2
= ε

Therefore we have shown that |am − an| < ε, so it follows that (an) is
Cauchy.
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8. Let
∑∞
k=1 ak = A and

∑∞
k=1 bk = B. Then for any α, β ∈ R,

∞∑
k=1

αak + βbk = αA+ βB.

Proof. For any m ∈ N, we denote the following partial sums:

sm =

m∑
i=1

bi

tm =

m∑
i=1

ri

We also denote the corresponding infinite series as

A =

∞∑
i=1

ai

B =

∞∑
i=1

bi

Finally, we let α and β be arbitrary real constants. Then by the definition
of an infinite series, we know that

A = lim(tm)

B = lim(sm)

Multiplying both sides of both equations by constants gives

αA = α lim(tm)

βB = β lim(sm)

We know algebraic properties of limits from Problem 2 of this set of pre-
sentations. For now we utilize the scalar multiple property to conclude

αA = α lim(tm) = lim(αtm)

βB = β lim(sm) = lim(βsm)

Then, adding these two equations together,

αA+ βB = lim(αtm) + lim(βsm)
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Next, we can use the additive property of limits from Problem 2 to con-
clude that

αA+ βB = lim(αtm + βsm)

Finally, we conclude by the definition of an infinite series that

αA+ βB =

∞∑
i=1

(αai + βbi),

as desired.

9. The series
∑∞
k=1 xk converges if and only if for any ε > 0, there exists

N ∈ N such that for any n > m ≥ N ,∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ < ε.

Conclude that if
∑∞
k=1 xk converges, then limk→∞ xk = 0.

Proof. (⇒) Let L ∈ R be the limit of the series
∑∞
k=1 xk. Then we know

that the sequence of partial sums (Sn) is convergent. As we have proved
that a convergent series is Cauchy. ∀ε > 0, ∃N ∈ N, such that for any
n > m ≥ N , we have

|Sn − Sm| < ε.

WLOG let n ≥ m and we can rewrite the inequality above as∣∣∣∣∣
n∑
k=1

xk −
m∑
k=1

xk

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ < ε.

(⇐=) We can rewrite
∣∣∑n

k=m+1 xk
∣∣ as∣∣∣∣∣

n∑
k=m+1

xk

∣∣∣∣∣ <
∣∣∣∣∣
n∑
k=1

xk −
m∑
k=1

xk

∣∣∣∣∣ < ε

the last inequality following from the fact that we can choose m,n larger
than some N . Thus, we know the sequence of partial sums is Cauchy,
which implies the convergence of this series.

Since
∑∞
k=1 xk converges, we know for any ε > 0, there exists N ∈ N such

that for any n > m ≥ N ,∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ < ε.

10



Let m = n− 1 and this inequality yields∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ =

∣∣∣∣∣
n∑
n

xk

∣∣∣∣∣ = |xn| < ε

Since this is true for all n > N , it must follow that (xn)→ 0 as n→∞

10. If
∑∞
k=1 |xk| converges, then

∑∞
k=1 xk converges.

Proof. From the result of 9, it is enough to show that for any ε > 0, there
exists N ∈ N such that for any n > m ≥ N ,∣∣∣∣∣

n∑
k=m+1

xk

∣∣∣∣∣ < ε

Let ε > 0. Then by using the result from 9 along with the fact that∑∞
k=1 |xk| converges, we know that there exists N ∈ N such that for any

n > m ≥ N , ∣∣∣∣∣
n∑

k=m+1

|xk|

∣∣∣∣∣ < ε

Now, let n > m ≥ N be arbitrary. Then we know that for m+ 1 ≤ k ≤ n,
by the properties of absolute value

−|xk| ≤ xk ≤ |xk|

which tells us that

−
n∑

k=m+1

|xk| =
n∑

k=m+1

−|xk| ≤
n∑

k=m+1

xk ≤
n∑

k=m+1

|xk|

We can then conclude that, by the properties of absolute value,∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑
k=m+1

|xk|

∣∣∣∣∣ < ε

So we have found N ∈ N such that for all n > m ≥ N ,∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ < ε

Thus by the result of 9, we know that
∑∞
k=1 xk converges.
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11. Let (xn) be a decreasing sequence such that limxn = 0. Then
∑∞
k=1(−1)k+1xk

converges.

Proof. Let Sn =

n∑
k=1

(−1)k+1xk.

First, we show xi ≥ 0 for all i. If xi < 0 for some i, choose ε = −xi

2 ; since
(xn) is decreasing, for all j ≥ i, xj < 0 and |xj | = −xj ≥ −xi > ε, so (xn)
does not converge. Thus xi ≥ 0 for all i.

For all ε > 0, there exists N such that ∀n ≥ N , xi ≤ |xi| < ε.

We show (xn) to be Cauchy. Let m,n ≥ N and without loss of generality,
m ≤ n. There are four cases:

• m is even, n is odd. Since (xn) is nonnegative and decreasing,
Sn−Sm = xm+1−xm+2 + · · ·+xn = (xm+1−xm+2) + · · ·+ (xn−2−
xn−1) +xn ≥ xn ≥ 0 and Sn−Sm = xm+1 + (−xm+2 +xm+3) + ...+
(−xn−1 + xn) ≤ xm+1 < ε. Thus |Sn − Sm| < ε.

• m is even, n is even. Then Sn − Sm = xm+1 − xm+2 + · · · − xn =
xm+1 +(−xm+2 +xm+3)+ · · ·+(−xn−2 +xn+1)−xn ≤ xm+1−xn ≤
xm+1 < ε. Thus |Sn − Sm| < ε.

• m is odd, n is odd. Then Sn − Sm = −xm+1 + xm+2 − · · ·+ xn =
(−xm+1 + xm+2) + · · ·+ (−xn−1 + xn) ≤ 0 since (xn) is decreasing.
However, Sn−Sm = −xm+1 +(xm+2−xm+3)+ · · ·+(xn−2−xn−1)+
xn ≥ −xm+1 + xn ≥ −xm+1 > −ε, so |Sn − Sm| < ε.

• m is odd, n is even. Then Sn−Sm = −xm+1 + xm+2− · · · − xn =
(−xm+1 + xm+2) + · · ·+ (−xn−2 + xn+1)− xn ≤ −xn ≤ 0 since (xn)
is decreasing and nonnegative. But Sn − Sm = −xm+1 + (xm+2 −
xm+3) + · · ·+ (xn−1 − xn) ≥ −xm+1 > −ε. Thus |Sn − Sm| < ε.

Thus, (xn) meets the Cauchy criterion, and by the result of Problem 9,
Sn converges.

12. Let f : N 7→ N be bijective. Let (xk) be a sequence in R and define
yk := xf(k). If

∑∞
k=1 xk converges absolutely, then

∞∑
k=1

xk =

∞∑
k=1

yk.

Proof. Denote Sn :=
n∑
k=1

xk and Tn :=
n∑
k=1

yk. By presentation problem

10, since
∑
k≥1

xk is absolutely convergent, we know it converges to some
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x <∞, such that with an ε > 0 that is arbitrary and fixed

∃N1 ∈ N, such that ∀n ≥ N1, |Sn − x| <
ε

2
(6)

And by presentation problem 9 along with absolute convergence, we also
know that

∃N2 ∈ N, such that ∀n > m ≥ N2,

∣∣∣∣∣
n∑

k=m+1

|xk|

∣∣∣∣∣ =

n∑
k=m+1

|xk| <
ε

2
(7)

Let N = max{N1, N2} and let N3 = max{f(k) | k ∈ [N ]}, where [N ] =
{1, 2, 3, ..., N} and f−1 is well defined because f is a bijection. Notice
that N3 ≥ N since [N ] contains the smallest N integers of the naturals
and f : N 7→ N. By construction of N3, the first N3 elements of (yn)
must contain the first N elements of (xn). So TN3

is equal to SN plus
the sum of extra terms, denoted E. There are exactly N3 − N extra
terms each taking the form xN+i for positive i (since we already accounted

for the first N terms of (xn) with Sn). Thus, E ≤
M∑

k=N+1

|xk| where

M = max{f−1(k) | k ∈ [N3]}. (Once again, note that M ≥ N3 ≥ N f

is a bijection. We can use (2) to say E <
ε

2
, so since TN3

− SN = E, we

know TN3 − SN <
ε

2
. See

|TN3
− x| = |TN3

− SN + SN − x|
≤ |TN3

− SN |+ |SN − x| by triangle inequality

<
ε

2
+
ε

2
= ε

Since ε was arbitrary, any n > N3 guarantees |Tn − x| < ε, and thus, Tn

converges to x. Hence,
∑
k≥1

xk =
∑
k≥1

yk.
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