Presentation Problems 1-Proofs

21-355 A

1. Let $\left(a_{n}\right)$ be a convergent sequence. Then $\left(a_{n}\right)$ is bounded. In addition, let $\left(a_{n_{k}}\right)$ be a subsequence of $\left(a_{n}\right)$. Then the subsequence $\left(a_{n_{k}}\right)$ converges to $\lim a_{n}$.

Theorem 1. Let $\left(a_{n}\right)$ be a convergent sequence. Then $\left(a_{n}\right)$ is bounded.
Proof. From the definition of a convergent sequence we know:
$\left(a_{n}\right)$ is convergent $\Rightarrow \forall \epsilon>0, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N$ it follows that $\left|a_{n}-l\right|<\epsilon$
In order for $\left(a_{n}\right)$ to be bounded we must show:

$$
\exists M>0 \text { s.t. }\left|a_{n}\right| \leq M, \forall n \in \mathbb{N}
$$

We know from the convergence of $\left(a_{n}\right)$ that $\left|a_{n}-l\right|<\epsilon$, so by the definition of absolute value it follows that $-\epsilon<a_{n}-l<\epsilon$. From this it follows that $-\epsilon+l<a_{n}<\epsilon+l$. While this is correct we don't know that l is positive so we will use $-\epsilon-|l|<a_{n}<\epsilon+|l|$ so we can be certain that our lower bound is the opposite of our upper bound, which would mean we could rewrite the statement as $\left|a_{n}\right|<\epsilon+|l|$.
We now have a value, $\epsilon+|l|$, that we can use for M that we know bounds the sequence when $n \geq N$. However we cannot be certain that this value of M will bound the sequence when $n<N$, so we should let $M=\max \left(\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{n-2}\right|, \epsilon+|l|\right)$.
Note that because every term in the sequence up to a_{n-1} is less than or equal to the greatest term of that part of the sequence, and every term from a_{n} onward it follows that $\left|a_{n}\right| \leq M \forall n \in \mathbb{N}$.

Theorem 2. Let $\left(a_{n_{k}}\right)$ be a sub-sequence of $\left(a_{n}\right)$. The the sub-sequence $\left(a_{n_{k}}\right)$ converges to the same limit as $\left(a_{n}\right)$.

Proof. Aside: Observe that $n_{1} \geq 1$ because as part of the definition of a sub-sequence the first term of the sub-sequence must be at least the first term of the original sequence. Assume that $n_{k} \geq k$ then it follows that:

$$
\begin{aligned}
& n_{k}+1 \geq k+1 \\
& n_{k+1} \geq n_{k}+1
\end{aligned}
$$

Because the $k+1$ term of the sub-sequence must be at least the next term of the sequence.

$$
n_{k+1} \geq n_{k}+1 \geq k+1 \Rightarrow n_{k+1} \geq k+1
$$

From the definition of a convergent sequence we know:
$\left(a_{n}\right)$ is convergent $\Rightarrow \forall \epsilon>0, \exists N \in \mathbb{N}$ s.t. $\forall n \geq N$ it follows that $\left|a_{n}-l\right|<\epsilon$

Since $n_{k} \geq k$, let $k \in \mathbb{N}$ s.t. $k \geq N$. This implies that $n_{k} \geq N$, so it follows that $\left|a_{n_{k}}-l\right|<\epsilon$. So the sub-sequence converges to the same value as the original sequence.
2. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences such that $\lim a_{n}=a$ and $\lim b_{n}=b$. Then for any $\alpha, \beta \in \mathbb{R}, \lim \left(\alpha a_{n}+\beta b_{n}\right)=\alpha a+\beta b$ and $\lim \left(a_{n} b_{n}\right)=a b$. Further, $\lim \frac{a_{n}}{b_{n}}=\frac{a}{b}$ provided $b \neq 0$.
Proposition 3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be real sequences such that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ and let $\alpha, \beta \in \mathbb{R}$. Then $\lim \left(\alpha a_{n}+\beta b_{n}\right)=\alpha a+\beta b$.

Proof. We first prove that $\lim \left(a_{n}+b_{n}\right)=a+b$. Equivalently, we want to show that for any $\epsilon>0$, there is some $N \in \mathbb{N}$ such that for $n>N$, $\left|a_{n}+b_{n}-(a+b)\right|<\epsilon$.
Let $\epsilon>0$. Then there is some $N_{1} \in \mathbb{N}$ such that if $n \geq N_{1},\left|a_{n}-a\right|<\frac{\epsilon}{2}$. Similarly, there is some $N_{2} \in \mathbb{N}$ such that if $n \geq N_{2},\left|b_{n}-b\right|<\frac{\epsilon}{2}$.
Pick $N=\max \left(N_{1}, N_{2}\right)$, then for $n \geq N$,

$$
\begin{aligned}
\left|a_{n}+b_{n}-(a+b)\right| & =\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \\
& \leq\left|a_{n}-a\right|+\left|b_{n}-b\right| \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Therefore, for $n>N,\left|a_{n}+b_{n}-(a+b)\right|<\epsilon$ holds for all $\epsilon>0$.
So $\lim \left(a_{n}+b_{n}\right)=a+b$
We then prove that $\lim \left(\alpha a_{n}\right)=\alpha a$ for any $\alpha \in \mathbb{R}$. Equivalently, we want to show that for any $\epsilon>0$, there is some $N \in \mathbb{N}$ such that for $n \geq N$, $\left|\alpha a_{n}-\alpha a\right|<\epsilon$.

- Case 1: $\alpha \neq 0$. Since $\epsilon>0$, there is some $N \in \mathbb{N}$ such that for $n \geq N$, we have $\left|a_{n}-a\right|<\frac{\epsilon}{|\alpha|}$. By properties of absolute value, $\left|\alpha a_{n}-\alpha a\right|<\epsilon$ follows.
- Case 2: $\alpha=0$. Then $\left|\alpha a_{n}-\alpha a\right|=0<\epsilon$

Since $\lim \left(a_{n}+b_{n}\right)=a+b$ and $\lim \left(\alpha a_{n}\right)=\alpha a, \lim \left(\alpha a_{n}+\beta b_{n}\right)=\alpha a+\beta b$ follows immediately.

Proposition 4. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be real sequences such that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$. Then $\lim \left(a_{n} b_{n}\right)=a b$.

Proof. Equivalently, we want to show that for any $\epsilon>0$, there is some $N \in \mathbb{N}$ such that for $n>N,\left|a_{n} b_{n}-a b\right|<\epsilon$.
Since sequence $\left(b_{n}\right)$ converges to limit b, it is bounded. Let K be the bound, $\left|b_{n}\right|<K$. Since $\epsilon>0$, there is some $N_{1} \in \mathbb{N}$ such that for $n \geq N_{1}$, we have $\left|a_{n}-a\right|<\frac{\epsilon}{2(K+1)}$. Similarly, there is some $N_{2} \in \mathbb{N}$ such that if $n \geq N_{2},\left|b_{n}-b\right|<\frac{\epsilon}{2(|a|+1)}$.
Pick $N=\max \left(N_{1}, N_{2}\right)$, then for $n \geq N$,

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|a_{n} b_{n}-a b_{n}+a b_{n}-a b\right| \\
& \leq\left|\left(a_{n}-a\right) b_{n}\right|+\left|a\left(b_{n}-b\right)\right| \\
& <\frac{\epsilon}{2(K+1)} \times K+|a| \times \frac{\epsilon}{2(|a|+1)} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{2} \\
& =\epsilon
\end{aligned}
$$

Therefore, $\lim \left(a_{n} b_{n}\right)=a b$ holds.

Proposition 5. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be real sequences such that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b \neq 0$. Then $\lim \left(\frac{a_{n}}{b_{n}}\right)=\frac{a}{b}$.

Proof. We have shown that $\lim \left(a_{n} b_{n}\right)=a b$. If we can prove that $\lim \left(\frac{1}{b_{n}}\right)=$ $\frac{1}{b}$, then $\lim \left(\frac{a_{n}}{b_{n}}\right)=\frac{a}{b}$ follows immediately. Proving $\lim \left(\frac{1}{b_{n}}\right)=\frac{1}{b}$ is equivalent to proving that for any $\epsilon>0$, there is some $N \in \mathbb{N}$ such that for $n>N,\left|\frac{1}{b_{n}}-\frac{1}{b}\right|<\epsilon$.
Suppose $b>0$. Since $\epsilon>0$, there is some $N_{1} \in \mathbb{N}$ such that for $n \geq N_{1}$, $\left|b_{n}-b\right|<\frac{b^{2}}{2} \epsilon$. Besides, there is some $N_{2} \in \mathbb{N}$ such that for $n \geq N_{2}$, $\left|b_{n}-b\right|<\frac{b}{2}$. By properties of absolute value, we have that $\frac{b}{2}<b_{n}<\frac{3 b}{2}$. Since we have supposed that $b>0$, this implies that $\left|b_{n}\right|>\frac{b}{2}$.
Pick $N=\max \left(N_{1}, N_{2}\right)$, then for $n>N$,

$$
\begin{aligned}
\left|\frac{1}{b_{n}}-\frac{1}{b}\right| & =\left|\frac{b-b_{n}}{b b_{n}}\right| \\
& <\frac{\frac{b^{2}}{2} \epsilon}{b \times \frac{b}{2}} \\
& =\epsilon
\end{aligned}
$$

Suppose $b<0$. Since $\lim \left(\alpha a_{n}\right)=\alpha a$, we have $\lim \left(-1 \times b_{n}\right)=-b$, where $-b>0$. Then by the above proof, we have $\lim \left(-\frac{1}{b_{n}}\right)=-\frac{1}{b}$. Again using $\lim \left(\alpha a_{n}\right)=\alpha a$, we have $\lim \left(-1 \times-\frac{1}{b_{n}}\right)=\lim \left(\frac{1}{b_{n}}\right)=-1 \times-\frac{1}{b}=\frac{1}{b}$.
Therefore, $\lim \left(\frac{1}{b_{n}}\right)=\frac{1}{b}$ holds. Since $\lim \left(a_{n} b_{n}\right)=a b, \lim \left(\frac{a_{n}}{b_{n}}\right)=\frac{a}{b}$ holds provided that $b \neq 0$.
3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences such that $\lim a_{n}=a$ and $\lim b_{n}=b$.
(a) If $a_{n} \geq \alpha$ for all $n \in \mathbb{N}$, then $a \geq \alpha$. Similarly, if $a_{n} \leq \beta$ for all $n \in \mathbb{N}$, then $a \leq \beta$.

Proof. Assume for sake of contradiction that $a<\alpha$. By definition of a limit of a sequence, for any arbitrary $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $n>N$, we have that $\left|a_{n}-a\right|<\epsilon$. Fix an arbitrary $\epsilon>0$. Then we have $N \in \mathbb{N}$ such that for all $n>N,\left|a_{n}-a\right|<\epsilon$. We now want to show that $\left|a_{n}-\alpha\right|<\epsilon$. This implies that α is a limit of $\left(a_{n}\right)$, and by the uniqueness of limits, then $a=\alpha$ and we would have a contradiction. By the assumption, $a<\alpha \Longrightarrow a_{n}-a>a_{n}-\alpha$. Since $a_{n} \geq \alpha$, then $a_{n}-\alpha \geq 0$ and so $\left|a_{n}-a\right| \geq\left|a_{n}-\alpha\right|>0$. However, since $\left|a_{n}-a\right|<\epsilon$, this means that $\left|a_{n}-\alpha\right|<\epsilon$. Since ϵ was arbitrary, this proves that α is a limit of $\left(a_{n}\right)$, and we are done.

A similar proof follows for the case where $a_{n} \leq \beta$ for all $n \in \mathbb{B}$ by assuming that $a>\beta$. By defintion of a limit of a sequence, we have for any arbitrary ϵ, there exists $N \in \mathbb{N}$ such that for all $n>N$, $\left|a_{n}-a\right|<\epsilon$. By the assumption, $a-a_{n}>\beta-a_{n}$. Also, since $\beta-a_{n} \geq 0$, then $a-a_{n}>\beta-a_{n} \geq 0 \Longrightarrow\left|a-a_{n}\right|>\left|\beta-a_{n}\right|$ and thus $\epsilon>\left|a_{n}-a\right|=\left|a-a_{n}\right|>\left|\beta-a_{n}\right|=\left|a_{n}-\beta\right| \geq 0 \Longrightarrow\left|a_{n}-\beta\right|<\epsilon$. Then β is a limit of $\left(a_{n}\right)$, thus $\beta=a$, and we have a contradiction.
(b) If $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.

Proof. Assume for sake of contradiction that $a>b$. Then b cannot be the limit of $\left(a_{n}\right)$ because limits are unique.
By negation of the definition of limit of a sequence, there exists ϵ such that for all $N \in \mathbb{N}$ there exists $n>N$ such that $\left|a_{n}-b\right|>\epsilon$. Let us choose this ϵ.
By definition of limits of a sequence, there exists $N_{1} \in \mathbb{N}$ such that for all $n>N_{1},\left|a_{n}-a\right|<\epsilon$
Similarly, there exists $N_{2} \in \mathbb{N}$ such that for all $n>N_{1},\left|b_{n}-b\right|<\epsilon$
Let $N=N_{1}+N_{2}$ and let $n>N$ be arbitrary and fixed. Then we have the following five inequalities:

$$
\begin{array}{r}
\left|a_{n}-b\right|>\epsilon \tag{1}\\
\left|a_{n}-a\right|<\epsilon \\
\left|b_{n}-b\right|<\epsilon \\
a_{n} \leq b_{n} \\
a>b
\end{array}
$$

Given our choice of n , there are 2 cases: either $b \geq a_{n}$ or $b<a_{n}$.
i. If $b \geq a_{n}$, then $\epsilon<\left|a_{n}-b\right|$ [by (1)]
$=b-a_{n}$ [since $b \geq a_{n}$ for this case]
$<a-a_{n}[$ since $a>b$ by (5)]
$=\left|a-a_{n}\right|$ [since $\left.a>b \geq a_{n}\right]$.
This is a contradiction because by (2) we have that $\left|a_{n}-a\right|<\epsilon$
ii. If $b<a_{n}$, then
$\epsilon<\left|a_{n}-b\right|[$ by (1)]
$=a_{n}-b$ [since $a_{n}>b$ for this case]
$\leq b_{n}-b$ [since $b_{n} \geq a_{n}$ by (4)]
$=\left|b_{n}-b\right|\left[\right.$ since $\left.b_{n} \geq a_{n} \geq b\right]$.
This is a contradiction because by (3) we have that $\left|b_{n}-a\right|<\epsilon$.
4. Let $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(c_{n}\right)$ be sequences in \mathbb{R} such that $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$. If $\lim a_{n}=\lim c_{n}=\gamma$, then $\lim b_{n}=\gamma$. Note: It is NOT given that $\left(b_{n}\right)$ converges.

Proof. Suppose $\lim a_{n}=\lim c_{n}=\gamma$.
Then for all $\epsilon>0$ and $n \geq N$ for some $N=\max \left\{N_{1}, N_{2}\right\}, N_{1}, N_{2} \in \mathbb{N}$
$\left|a_{n}-\gamma\right|<\epsilon$, and $\left|c_{n}-\gamma\right|<\epsilon$.
$=>-\epsilon<a_{n}-\gamma<\epsilon$ and $-\epsilon<c_{n}-\gamma<\epsilon$
$=>-\epsilon+\gamma<a_{n}<\gamma+\epsilon$ and $-\epsilon+\gamma<c_{n}<\gamma+\epsilon$
Since $b_{n} \geq a_{n},-\epsilon+\gamma<a_{n} \leq b_{n}$
and since $b_{n} \leq c_{n}, b_{n} \leq c_{n}<\epsilon+\gamma$
Thus $-\epsilon+\gamma<b_{n}<\epsilon+\gamma$
$=>\left|b_{n}-\gamma\right|<\epsilon$
Therefore $\lim b_{n}=\gamma$
5. Prove that an increasing, bounded sequence $\left(a_{n}\right)$ converges to $\sup \left\{a_{n}\right\}$ and a decreasing, bounded sequence $\left(b_{n}\right)$ converges to $\inf \left\{b_{n}\right\}$. Show that for any bounded sequence $\left(a_{n}\right)$, the sequences $\left(y_{n}\right)$ and $\left(z_{n}\right)$ where

$$
y_{n}:=\sup \left\{a_{k}: k \geq n\right\}
$$

and

$$
z_{n}:=\inf \left\{a_{k}: k \geq n\right\}
$$

converge. (These limits are defined as the limit superior, $\lim \sup a_{n}$, and the limit inferior, $\lim \inf a_{n}$, respectively. Thus, any bounded sequence has a limit superior and limit inferior.)

Theorem 6. Let $\left(a_{n}\right)$ be an increasing, bounded sequence and $\left(b_{n}\right)$ be a decreasing, bounded sequence. Then $a_{n} \rightarrow \sup \left\{a_{n}\right\}$ and $b_{n} \rightarrow \inf \left\{b_{n}\right\}$.

Proof. Let s be the least upper bound of the sequence $\left(a_{n}\right)$. so $s=\sup \left\{a_{n}\right\}$ We want to show that $\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n \geqslant N,\left|a_{n}-s\right|<\epsilon$.
It is equivalent to show that $\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n \geqslant N, s-\epsilon<a_{n}<s+\epsilon$ Since S is the supremum, $s+\epsilon$ is an upper bound of $\left(a_{n}\right)$. So $a_{n}<$ $s+\epsilon \forall a_{n} \in\left(a_{n}\right)$
Since s is the supremum, $s-\epsilon$ must not be an upper bound of $\left(a_{n}\right)$. So $\exists N \in \mathbb{N}, \forall n \geqslant N, a_{n}>s-\epsilon$
We've shown $\forall \epsilon>0, \exists N \in \mathbb{N}, \forall n \geqslant N, s-\epsilon<a_{n}<s+\epsilon$
Thus the supremum of $\left(a_{n}\right)$ is also the limit of the sequence. Hence, an increasing, bounded sequence $\left(a_{n}\right)$ converges to sup $\left\{a_{n}\right\}$
Similarly, we can prove that a decreasing, bounded sequence $\left(b_{n}\right)$ converges to $\inf \left\{b_{n}\right\}$.

Theorem 7. Let $\left(a_{n}\right)$ be a bounded sequence in \mathbb{R}. Then $\limsup a_{n}$ and $\lim \inf a_{n}$ exist.

Proof. By the definition of the sequence $\left(y_{n}\right)$, the sequence continuously takes the largest element from part of $\left(a_{n}\right)$. Hence, $\left(y_{n}\right)$ must be a decreasing sequence. Since $\left(a_{n}\right),\left(y_{n}\right)$ is bounded as well. Since $\left(y_{n}\right)$ is a decreasing, bounded sequence, by the first part of the problem, we know that $\left(y_{n}\right)$ converges to its infimum.
Similarly, we can show that $\left(z_{n}\right)$ is an increasing, bounded sequence, and it converges to its supremum.
6. Prove that for any bounded sequence $\left(a_{n}\right), \liminf a_{n} \leq \limsup a_{n}$.

Proof. Assume $\left(a_{n}\right)$ is bounded. Let $p_{n}:=\inf \left\{a_{k}: k \geq n\right\}$ and let $q_{n}:=\sup \left\{a_{k}: k \geq n\right\}$.
So $\liminf a_{n}=\lim p_{n}:=x$ and $\limsup a_{n}=\lim q_{n}:=y$.
Assume for sake of contradiction that $x>y$.
So $\exists \delta_{1} \in \mathbb{N}$ s.t. $n \geq \delta_{1} \Longrightarrow\left|p_{n}-x\right|<\frac{|x-y|}{2}$
and $\exists \delta_{2} \in \mathbb{N}$ s.t. $n \geq \delta_{2} \Longrightarrow\left|q_{n}-x\right|<\frac{|x-y|}{2}$
Without loss of generality, assume $\delta_{1} \geq \delta_{2}$.
We now have $\frac{y-x}{2}=\frac{-|x-y|}{2}<p_{\delta_{1}}-x \Longrightarrow \frac{y+x}{2}<p_{\delta_{1}}$ and $q_{\delta_{1}}-y<\frac{|x-y|}{2}=\frac{x-y}{2} \Longrightarrow q_{\delta_{1}}<\frac{x+y}{2}$
and so $q_{\delta_{1}}<\frac{x+y}{2}<p_{\delta_{1}} \Longrightarrow q_{\delta_{1}}<p_{\delta_{1}}$.
This means that the infimum of a set is larger than the supremum, which is a contradiction since the infimum is a lower bound and the supremum is an upper bound.
Therefore $\liminf a_{n} \leq \limsup a_{n}$.
Show that $\liminf a_{n}=\lim \sup a_{n}$ if and only if $\lim a_{n}$ exists.
Proof. (\Longrightarrow) Assume $\lim \inf a_{n}=\limsup a_{n}:=L$.
Let $I_{n}=\inf \left\{a_{k}: k \geq n\right\}$
So $\forall \varepsilon>0, \exists q \in \mathbb{N}$ s.t. $n \geq q \Longrightarrow\left|I_{n}-L\right|<\varepsilon$
We know $I_{q} \leq a_{i} \forall i \geq q$ and $\left|I_{q}-L\right|<\varepsilon \Longrightarrow-\varepsilon<I_{q}-L$.
So $\forall i \geq q, a_{i}-L>-\varepsilon$.
Now let $S_{n}=\sup \left\{a_{k}: k \geq n\right\}$.
We know $\forall \varepsilon>0, \exists p \in \mathbb{N}$ s.t. $n \geq p \Longrightarrow\left|S_{n}-L\right|<\varepsilon$.
We also know $S_{p} \geq a_{i} \forall i \geq p$ and $\left|S_{p}-L\right|<\varepsilon \Longrightarrow S_{p}-L<\varepsilon$.
So $\forall i \geq p, a_{i}-L<\varepsilon$.
Therefore, $\forall i \geq \max (p, q),-\varepsilon<a_{i}-L<\varepsilon$
and so $\forall i \geq \max (p, q),\left|a_{i}-L\right|<\varepsilon$ as desired.
(\Leftarrow) Assume $\lim a_{n}$ exists, then want to show that $\lim \sup a_{n}=\lim \inf a_{n}$. First, we know that a_{n} is bounded and converges, so it has $\lim \sup a_{n}$ and $\liminf a_{n}$.
Now WTS $\lim \sup a_{n}=\lim a_{n}=L$
By the definition of limit, we know that $\exists N_{2} \in \mathbb{N}$ s.t. $\left|a_{k}-L\right|<\varepsilon / 2 \forall k \geq$ N_{2}.
$\limsup a_{n}=\lim S_{n}$ where $S_{n}=\sup \left\{a_{k}: k \geq n\right\}$

From Lemma 1.3.8, we know that $S_{N_{2}}$ is the supremum iff
$\forall \varepsilon>0, \exists a_{x} \in\left\{a_{k}: k \geq N_{2}\right\}$ such that $\left|S_{N_{2}}-a_{x}\right|<\varepsilon / 2$
$\left|S_{N_{2}}-L\right|=\left|S_{N_{2}}-a_{k}+a_{k}-L\right| \leq\left|S_{N_{2}}-a_{k}\right|+\left|a_{k}-L\right|<\varepsilon / 2+\varepsilon / 2=$ $\varepsilon \forall k \geq N_{2}$
So $\limsup a_{n}=L$
$\liminf a_{n}=\lim I_{n}$ where $I_{n}=\inf \left\{a_{k}: k \geq n\right\}$
By the same reasoning as in the last part, we have
$\forall \varepsilon>0, \exists a_{x} \in\left\{a_{k}: k \geq N_{2}\right\}$ such that $\left|I_{N_{2}}-a_{x}\right|<\varepsilon / 2$
$\left|I_{N_{2}}-L\right|=\left|I_{N_{2}}-a_{k}+a_{k}-L\right| \leq\left|I_{N_{2}}-a_{k}\right|+\left|a_{k}-L\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon \forall k \geq N_{2}$
So $\liminf a_{n}=L$, and so $\lim \sup a_{n}=\liminf a_{n}$
7. A Cauchy sequence is bounded and a convergent sequence is Cauchy.

Proof. Let $\left(a_{n}\right)$ be a Cauchy sequence. Let $\varepsilon>0$. By definition of Cauchy sequence, we know that there exists some $N \in \mathbb{N}$ such that if $m, n \geq N$ then

$$
\left|a_{m}-a_{n}\right|<\varepsilon
$$

By the properties of absolute value and since $\varepsilon>0$, we know that

$$
-\varepsilon<a_{n}-a_{m}<\varepsilon
$$

We take $m=N$, giving us

$$
-\varepsilon<a_{n}-a_{N}<\varepsilon
$$

Adding a_{N} to both sides this gives us the inequality

$$
-\varepsilon+a_{N}<a_{n}<\varepsilon+a_{N}
$$

Now we have that for all $n \geq N$

$$
\begin{aligned}
& a_{n}<\varepsilon+a_{N} \\
& a_{n}>-\varepsilon+a_{N} .
\end{aligned}
$$

Notice that this gives us an upper and lower bound for all the elements in $\left(a_{n}\right)$ after some finite index N. This means that if we take the maximum and minimum over the elements before index N (with the above bounds included), we can derive an upper and lower bound for all elements in $\left(a_{n}\right)$. It follows that for all $n \in \mathbb{N}$, we have that

$$
\begin{aligned}
& a_{n} \leq \max \left\{a_{1}, a_{2}, \ldots, a_{N-1}, \quad \varepsilon+a_{N}\right\} \\
& a_{n} \geq \min \left\{a_{1}, a_{2}, \ldots, a_{N-1},-\varepsilon+a_{N}\right\}
\end{aligned}
$$

Thus $\left(a_{n}\right)$ is bounded.
Let $\left(a_{n}\right)$ be a convergent sequence and L be its limit. Recall that by definition of limits, we know that for all $\varepsilon>0$ there is some $N \in \mathbb{N}$ such that if $n \geq N$ then

$$
\left|a_{n}-L\right|<\varepsilon
$$

Let $\varepsilon>0$. Since $\frac{\varepsilon}{2}>0$, we know by definition of limits that there exists some $N \in \mathbb{N}$ such that for all $n \geq N$ we have that

$$
\left|a_{n}-L\right|<\frac{\varepsilon}{2}
$$

We will now show that $\left(a_{n}\right)$ is Cauchy. Let $m, n \geq N$. Notice that it is enough to show that

$$
\left|a_{m}-a_{n}\right|<\varepsilon .
$$

By the triangle inequality, we have that

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & \leq\left|a_{m}-L\right|+\left|L-a_{n}\right| \\
& =\left|a_{m}-L\right|+\left|a_{n}-L\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

Therefore we have shown that $\left|a_{m}-a_{n}\right|<\varepsilon$, so it follows that $\left(a_{n}\right)$ is Cauchy.
8. Let $\sum_{k=1}^{\infty} a_{k}=A$ and $\sum_{k=1}^{\infty} b_{k}=B$. Then for any $\alpha, \beta \in \mathbb{R}$,

$$
\sum_{k=1}^{\infty} \alpha a_{k}+\beta b_{k}=\alpha A+\beta B
$$

Proof. For any $m \in \mathbb{N}$, we denote the following partial sums:

$$
\begin{aligned}
& s_{m}=\sum_{i=1}^{m} b_{i} \\
& t_{m}=\sum_{i=1}^{m} r_{i}
\end{aligned}
$$

We also denote the corresponding infinite series as

$$
\begin{aligned}
& A=\sum_{i=1}^{\infty} a_{i} \\
& B=\sum_{i=1}^{\infty} b_{i}
\end{aligned}
$$

Finally, we let α and β be arbitrary real constants. Then by the definition of an infinite series, we know that

$$
\begin{aligned}
A & =\lim \left(t_{m}\right) \\
B & =\lim \left(s_{m}\right)
\end{aligned}
$$

Multiplying both sides of both equations by constants gives

$$
\begin{aligned}
& \alpha A=\alpha \lim \left(t_{m}\right) \\
& \beta B=\beta \lim \left(s_{m}\right)
\end{aligned}
$$

We know algebraic properties of limits from Problem 2 of this set of presentations. For now we utilize the scalar multiple property to conclude

$$
\begin{aligned}
& \alpha A=\alpha \lim \left(t_{m}\right)=\lim \left(\alpha t_{m}\right) \\
& \beta B=\beta \lim \left(s_{m}\right)=\lim \left(\beta s_{m}\right)
\end{aligned}
$$

Then, adding these two equations together,

$$
\alpha A+\beta B=\lim \left(\alpha t_{m}\right)+\lim \left(\beta s_{m}\right)
$$

Next, we can use the additive property of limits from Problem 2 to conclude that

$$
\alpha A+\beta B=\lim \left(\alpha t_{m}+\beta s_{m}\right)
$$

Finally, we conclude by the definition of an infinite series that

$$
\alpha A+\beta B=\sum_{i=1}^{\infty}\left(\alpha a_{i}+\beta b_{i}\right)
$$

as desired.
9. The series $\sum_{k=1}^{\infty} x_{k}$ converges if and only if for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n>m \geq N$,

$$
\left|\sum_{k=m+1}^{n} x_{k}\right|<\varepsilon
$$

Conclude that if $\sum_{k=1}^{\infty} x_{k}$ converges, then $\lim _{k \rightarrow \infty} x_{k}=0$.
Proof. (\Rightarrow) Let $L \in \mathbb{R}$ be the limit of the series $\sum_{k=1}^{\infty} x_{k}$. Then we know that the sequence of partial sums $\left(S_{n}\right)$ is convergent. As we have proved that a convergent series is Cauchy. $\forall \epsilon>0, \exists N \in \mathbb{N}$, such that for any $n>m \geq N$, we have

$$
\left|S_{n}-S_{m}\right|<\epsilon
$$

WLOG let $n \geq m$ and we can rewrite the inequality above as

$$
\left|\sum_{k=1}^{n} x_{k}-\sum_{k=1}^{m} x_{k}\right|=\left|\sum_{k=m+1}^{n} x_{k}\right|<\epsilon
$$

(\Longleftarrow) We can rewrite $\left|\sum_{k=m+1}^{n} x_{k}\right|$ as

$$
\left|\sum_{k=m+1}^{n} x_{k}\right|<\left|\sum_{k=1}^{n} x_{k}-\sum_{k=1}^{m} x_{k}\right|<\epsilon
$$

the last inequality following from the fact that we can choose m, n larger than some N. Thus, we know the sequence of partial sums is Cauchy, which implies the convergence of this series.
Since $\sum_{k=1}^{\infty} x_{k}$ converges, we know for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n>m \geq N$,

$$
\left|\sum_{k=m+1}^{n} x_{k}\right|<\epsilon
$$

Let $m=n-1$ and this inequality yields

$$
\left|\sum_{k=m+1}^{n} x_{k}\right|=\left|\sum_{n}^{n} x_{k}\right|=\left|x_{n}\right|<\epsilon
$$

Since this is true for all $n>N$, it must follow that $\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$
10. If $\sum_{k=1}^{\infty}\left|x_{k}\right|$ converges, then $\sum_{k=1}^{\infty} x_{k}$ converges.

Proof. From the result of 9 , it is enough to show that for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n>m \geq N$,

$$
\left|\sum_{k=m+1}^{n} x_{k}\right|<\epsilon
$$

Let $\epsilon>0$. Then by using the result from 9 along with the fact that $\sum_{k=1}^{\infty}\left|x_{k}\right|$ converges, we know that there exists $N \in \mathbb{N}$ such that for any $n>m \geq N$,

$$
\left|\sum_{k=m+1}^{n}\right| x_{k}| |<\epsilon
$$

Now, let $n>m \geq N$ be arbitrary. Then we know that for $m+1 \leq k \leq n$, by the properties of absolute value

$$
-\left|x_{k}\right| \leq x_{k} \leq\left|x_{k}\right|
$$

which tells us that

$$
-\sum_{k=m+1}^{n}\left|x_{k}\right|=\sum_{k=m+1}^{n}-\left|x_{k}\right| \leq \sum_{k=m+1}^{n} x_{k} \leq \sum_{k=m+1}^{n}\left|x_{k}\right|
$$

We can then conclude that, by the properties of absolute value,

$$
\left|\sum_{k=m+1}^{n} x_{k}\right| \leq\left|\sum_{k=m+1}^{n}\right| x_{k}| |<\epsilon
$$

So we have found $N \in \mathbb{N}$ such that for all $n>m \geq N$,

$$
\left|\sum_{k=m+1}^{n} x_{k}\right|<\epsilon
$$

Thus by the result of 9 , we know that $\sum_{k=1}^{\infty} x_{k}$ converges.
11. Let $\left(x_{n}\right)$ be a decreasing sequence such that $\lim x_{n}=0$. Then $\sum_{k=1}^{\infty}(-1)^{k+1} x_{k}$ converges.

Proof. Let $S_{n}=\sum_{k=1}^{n}(-1)^{k+1} x_{k}$.
First, we show $x_{i} \geq 0$ for all i. If $x_{i}<0$ for some i, choose $\epsilon=-\frac{x_{i}}{2}$; since $\left(x_{n}\right)$ is decreasing, for all $j \geq i, x_{j}<0$ and $\left|x_{j}\right|=-x_{j} \geq-x_{i}>\epsilon$, so (x_{n}) does not converge. Thus $x_{i} \geq 0$ for all i.

For all $\epsilon>0$, there exists N such that $\forall n \geq N, x_{i} \leq\left|x_{i}\right|<\epsilon$.

We show $\left(x_{n}\right)$ to be Cauchy. Let $m, n \geq N$ and without loss of generality, $m \leq n$. There are four cases:

- m is even, n is odd. Since $\left(x_{n}\right)$ is nonnegative and decreasing, $S_{n}-S_{m}=x_{m+1}-x_{m+2}+\cdots+x_{n}=\left(x_{m+1}-x_{m+2}\right)+\cdots+\left(x_{n-2}-\right.$ $\left.x_{n-1}\right)+x_{n} \geq x_{n} \geq 0$ and $S_{n}-S_{m}=x_{m+1}+\left(-x_{m+2}+x_{m+3}\right)+\ldots+$ $\left(-x_{n-1}+x_{n}\right) \leq x_{m+1}<\epsilon$. Thus $\left|S_{n}-S_{m}\right|<\epsilon$.
- m is even, n is even. Then $S_{n}-S_{m}=x_{m+1}-x_{m+2}+\cdots-x_{n}=$ $x_{m+1}+\left(-x_{m+2}+x_{m+3}\right)+\cdots+\left(-x_{n-2}+x_{n+1}\right)-x_{n} \leq x_{m+1}-x_{n} \leq$ $x_{m+1}<\epsilon$. Thus $\left|S_{n}-S_{m}\right|<\epsilon$.
- m is odd, n is odd. Then $S_{n}-S_{m}=-x_{m+1}+x_{m+2}-\cdots+x_{n}=$ $\left(-x_{m+1}+x_{m+2}\right)+\cdots+\left(-x_{n-1}+x_{n}\right) \leq 0$ since $\left(x_{n}\right)$ is decreasing. However, $S_{n}-S_{m}=-x_{m+1}+\left(x_{m+2}-x_{m+3}\right)+\cdots+\left(x_{n-2}-x_{n-1}\right)+$ $x_{n} \geq-x_{m+1}+x_{n} \geq-x_{m+1}>-\epsilon$, so $\left|S_{n}-S_{m}\right|<\epsilon$.
- m is odd, n is even. Then $S_{n}-S_{m}=-x_{m+1}+x_{m+2}-\cdots-x_{n}=$ $\left(-x_{m+1}+x_{m+2}\right)+\cdots+\left(-x_{n-2}+x_{n+1}\right)-x_{n} \leq-x_{n} \leq 0$ since $\left(x_{n}\right)$ is decreasing and nonnegative. But $S_{n}-S_{m}=-x_{m+1}+\left(x_{m+2}-\right.$ $\left.x_{m+3}\right)+\cdots+\left(x_{n-1}-x_{n}\right) \geq-x_{m+1}>-\epsilon$. Thus $\left|S_{n}-S_{m}\right|<\epsilon$.

Thus, $\left(x_{n}\right)$ meets the Cauchy criterion, and by the result of Problem 9, S_{n} converges.
12. Let $f: \mathbb{N} \mapsto \mathbb{N}$ be bijective. Let $\left(x_{k}\right)$ be a sequence in \mathbb{R} and define $y_{k}:=x_{f(k)}$. If $\sum_{k=1}^{\infty} x_{k}$ converges absolutely, then

$$
\sum_{k=1}^{\infty} x_{k}=\sum_{k=1}^{\infty} y_{k}
$$

Proof. Denote $S_{n}:=\sum_{k=1}^{n} x_{k}$ and $T_{n}:=\sum_{k=1}^{n} y_{k}$. By presentation problem 10, since $\sum_{k \geq 1} x_{k}$ is absolutely convergent, we know it converges to some
$x<\infty$, such that with an $\varepsilon>0$ that is arbitrary and fixed
(6) $\exists N_{1} \in \mathbb{N}$, such that $\forall n \geq N_{1},\left|S_{n}-x\right|<\frac{\varepsilon}{2}$

And by presentation problem 9 along with absolute convergence, we also know that
(7) $\exists N_{2} \in \mathbb{N}$, such that $\forall n>m \geq N_{2},\left|\sum_{k=m+1}^{n}\right| x_{k}| |=\sum_{k=m+1}^{n}\left|x_{k}\right|<\frac{\varepsilon}{2}$

Let $N=\max \left\{N_{1}, N_{2}\right\}$ and let $N_{3}=\max \{f(k) \mid k \in[N]\}$, where $[N]=$ $\{1,2,3, \ldots, N\}$ and f^{-1} is well defined because f is a bijection. Notice that $N_{3} \geq N$ since $[N]$ contains the smallest N integers of the naturals and $f: \mathbb{N} \mapsto \mathbb{N}$. By construction of N_{3}, the first N_{3} elements of $\left(y_{n}\right)$ must contain the first N elements of $\left(x_{n}\right)$. So $T_{N_{3}}$ is equal to S_{N} plus the sum of extra terms, denoted E. There are exactly $N_{3}-N$ extra terms each taking the form x_{N+i} for positive i (since we already accounted for the first N terms of $\left(x_{n}\right)$ with $\left.S_{n}\right)$. Thus, $E \leq \sum_{k=N+1}^{M}\left|x_{k}\right|$ where $M=\max \left\{f^{-1}(k) \mid k \in\left[N_{3}\right]\right\}$. (Once again, note that $M \geq N_{3} \geq N f$ is a bijection. We can use (2) to say $E<\frac{\varepsilon}{2}$, so since $T_{N_{3}}-S_{N}=E$, we know $T_{N_{3}}-S_{N}<\frac{\varepsilon}{2}$. See

$$
\begin{aligned}
\left|T_{N_{3}}-x\right| & =\left|T_{N_{3}}-S_{N}+S_{N}-x\right| \\
& \leq\left|T_{N_{3}}-S_{N}\right|+\left|S_{N}-x\right| \quad \text { by triangle inequality } \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

Since ε was arbitrary, any $n>N_{3}$ guarantees $\left|T_{n}-x\right|<\epsilon$, and thus, T_{n} converges to x. Hence, $\sum_{k \geq 1} x_{k}=\sum_{k \geq 1} y_{k}$.

