Presentation Problems 1

21-355 A

Instructions: Your group should prepare a presentation for the problem corresponding to your group number. After presenting the solution and getting feedback from the class, you have until the beginning of the following class to send a Tex file with a polished form of the solution to the instructor. Make sure all group members' names are in the Tex file. There are 15 points available: 10 for the presentation and 5 for the written proof.

1. Let $\left(a_{n}\right)$ be a convergent sequence. Then $\left(a_{n}\right)$ is bounded. In addition, let $\left(a_{n_{k}}\right)$ be a subsequence of $\left(a_{n}\right)$. Then the subsequence $\left(a_{n_{k}}\right)$ converges to $\lim a_{n}$.
2. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences such that $\lim a_{n}=a$ and $\lim b_{n}=b$. Then for any $\alpha, \beta \in \mathbb{R}, \lim \left(\alpha a_{n}+\beta b_{n}\right)=\alpha a+\beta b$ and $\lim \left(a_{n} b_{n}\right)=a b$. Further, $\lim \frac{a_{n}}{b_{n}}=\frac{a}{b}$ provided $b \neq 0$.
3. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences such that $\lim a_{n}=a$ and $\lim b_{n}=b$.
(a) If $a_{n} \geq \alpha$ for all $n \in \mathbb{N}$, then $a \geq \alpha$. Similarly, if $a_{n} \leq \beta$ for all $n \in \mathbb{N}$, then $a \leq \beta$.
(b) If $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then $a \leq b$.
4. Let $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(c_{n}\right)$ be sequences in \mathbb{R} such that $a_{n} \leq b_{n} \leq c_{n}$ for all $n \in \mathbb{N}$. If $\lim a_{n}=\lim c_{n}=\gamma$, then $\lim b_{n}=\gamma$. Note: It is NOT given that $\left(b_{n}\right)$ converges.
5. Prove that an increasing, bounded sequence $\left(a_{n}\right)$ converges to $\sup \left\{a_{n}\right\}$ and a decreasing, bounded sequence $\left(b_{n}\right)$ converges to $\inf \left\{b_{n}\right\}$. Show that for any bounded sequence $\left(a_{n}\right)$, the sequences $\left(y_{n}\right)$ and $\left(z_{n}\right)$ where

$$
y_{n}:=\sup \left\{a_{k}: k \geq n\right\}
$$

and

$$
z_{n}:=\inf \left\{a_{k}: k \geq n\right\}
$$

converge. (These limits are defined as the limit superior, $\lim \sup a_{n}$, and the limit inferior, $\lim \inf a_{n}$, respectively. Thus, any bounded sequence has a limit superior and limit inferior.)
6. Prove that for any bounded sequence $\left(a_{n}\right), \lim \inf a_{n} \leq \lim \sup a_{n}$ and show that $\liminf a_{n}=\lim \sup a_{n}$ if and only if $\lim a_{n}$ exists.
7. A Cauchy sequence is bounded and a convergent sequence is Cauchy.
8. Let $\sum_{k=1}^{\infty} a_{k}=A$ and $\sum_{k=1}^{\infty} b_{k}=B$. Then for any $\alpha, \beta \in \mathbb{R}$,

$$
\sum_{k=1}^{\infty} \alpha a_{k}+\beta b_{k}=\alpha A+\beta B
$$

9. The series $\sum_{k=1}^{\infty} x_{k}$ converges if and only if for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n>m \geq N$,

$$
\left|\sum_{k=m+1}^{n} x_{k}\right|<\varepsilon
$$

Conclude that if $\sum_{k=1}^{\infty} x_{k}$ converges, then $\lim _{k \rightarrow \infty} x_{k}=0$.
10. If $\sum_{k=1}^{\infty}\left|x_{k}\right|$ converges, then $\sum_{k=1}^{\infty} x_{k}$ converges.
11. Let $\left(x_{n}\right)$ be a decreasing sequence such that $\lim x_{n}=0$. Then $\sum_{k=1}^{\infty}(-1)^{k+1} x_{k}$ converges.
12. Let $f: \mathbb{N} \mapsto \mathbb{N}$ be bijective. Let $\left(x_{k}\right)$ be a sequence in \mathbb{R} and define $y_{k}:=x_{f(k)}$. If $\sum_{k=1}^{\infty} x_{k}$ converges absolutely, then

$$
\sum_{k=1}^{\infty} x_{k}=\sum_{k=1}^{\infty} y_{k}
$$

