
SETS AND FUNCTIONS
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1. Sets

As a review, we begin by considering a naive look at set theory. For our purposes,
we define a set as a collection of objects. Except for certain sets like N, Z, Q, R,
C, etc., we generally use capital letters A,B, . . . , Z to identify sets. We can define
sets in several ways. One way is to simply list the items in the set, called the set’s
elements, for example,

A = {1, 2, 7}.
This method works well for sets that have finite cardinality (more on that in a bit),
but what about sets that have an infinite number of items in them? We cannot
very well write all of them explicitly. If there is a clear pattern, though, we may be
able to “list” them, for example,

N = {1, 2, 3, . . .}.

Moreover, we can define a set without actually listing its elements as below.

B = {x ∈ C : 6x5 − 27x2 + 433x+ π = 0}

Note that the colon in the definition of B means “such that” (sometimes a | is used
instead). Thus, B is the set of all the complex zeros of the polynomial 6x5−27x2 +
433x + π. We say that x ∈ E if x is an element of E and x /∈ E if x is not an
element of E. For example, 2 ∈ A, but 0 /∈ N.

We have the following definitions of subsets and set equality.

Definition 1. A is a subset of B, denoted A ⊆ B if and only if for all x ∈ A,
x ∈ B. A is called a proper subset of B, denoted A ⊂ B, if and only if A ⊆ B
and there is some y ∈ B such that y /∈ A.

Definition 2. Sets A and B are equal, denoted A = B, if and only if A ⊆ B and
B ⊆ A.

Remark 3. Some texts use A ⊂ B if A is a subset of B or equal to B and A ( B
if A is a proper subset of B.

Definition 2 provides a method for proving that two sets are equal: prove that
each is a subset of the other. Next, we define two ways to combine sets: union and
intersection.

Definition 4. The union of sets A and B is the set of all elements that are in A
or in B. It is denoted as

A ∪B := {x : x ∈ A or x ∈ B}.
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Definition 5. The intersection of sets A and B is the set of all elements that are
in A and in B. It is denoted as

A ∩B := {x : x ∈ A and x ∈ B}.

Remark 6. Some texts use the notation AtB for the disjoint union of A and B,
that is,

A tB := {x : x ∈ A ∪B and x /∈ A ∩B}.

Definition 7. Let A and B be sets. We define the set of ordered pairs, called the
Cartesian product of A and B, denoted A×B as

A×B := {(a, b) : a ∈ A and b ∈ B}.

We can also consider unions and complements of large collections of sets. Let I
be an indexing set, such that we have a collection of sets Ai for each i ∈ I. (Note
that I can be finite or infinite.) Then we have the following definition.

Definition 8. The union of a collection of sets is⋃
i∈I

Ai := {x : ∃i ∈ I such that x ∈ Ai}.

The intersection of a collection of sets is⋂
i∈I

Ai := {x : x ∈ Ai ∀i ∈ I}.

Exercise 1. Prove that for any set A, we have that A ⊆ A and ∅ ⊆ A.

Exercise 2. Is ∅ ∈ A for an arbitrary set A?

Exercise 3. Does {∅} = ∅?

Exercise 4. Prove the following.

(1) A ∩B = B ∩A
(2) A ∩

⋃
i∈I Bi =

⋃
i∈I(A ∩Bi)

(3) A ∪
⋂

i∈I Ci =
⋂

i∈I(A ∪ Ci)

Exercise 5. For each x ∈ R, let Ax := [x−1, x+1]. Find the following intersections
and unions.

(1)
⋂

x∈RAx

(2)
⋂

x∈[0,1)Ax

(3)
⋃

x∈RAx

(4)
⋃

x∈[0,1)Ax

Next, we consider the possibility that we have some set A such that A ∈ A. For
our purposes, we will call such a set “abnormal” and any set such that A /∈ A a
“normal” set. Consider the set X := {A : A is a normal set}. Show that

Exercise 6. If X is normal, then X ∈ X.

Exercise 7. If X is abnormal, then X /∈ X.

Exercise 8. Discuss whether X normal or abnormal.
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The field of set theory devotes much effort on the problem of defining exactly
what a set is. There is a set of axioms called the Zermelo-Frankel (ZF) axioms
which most mathematicians use to define sets. In the ZF system, it is not possible
to have A ∈ A. To avoid this and other logical problems, we often define a universe
U in which we work. We can then define the complement of a set

Definition 9. Let A ⊆ U for a given universe U . The complement of A is the
set

Ac := {x : x ∈ U and x /∈ A}.
If U is understood but not explicitly mentioned, we often write

Ac := {x : x /∈ A}.

Now that the complement of a set is defined, we can define the set theoretic
difference.

Definition 10. The set theoretic difference A−B is defined as

A−B := A ∩Bc.

We also define the power set of A as follows.

Definition 11. The power set of A, denoted as P(A) is defined as

P(A) := {B : B ⊆ A}.

Exercise 9. Prove the following

(1)
(⋂

i∈I Ai

)c
=
⋃

i∈I A
c
i .

(2)
(⋃

i∈I Ai

)c
=
⋂

i∈I A
c
i .

(3) (Ac)c = A.

Exercise 10. Prove or disprove:

(1) (A−B)− C = A− (B ∩ C).
(2) (A−B)− C = A− (B ∪ C).

Exercise 11. How many elements does P(A) have if

A = {1, 2, 3, . . . , n}?

2. Functions

Now that we have defined sets, we define functions between them

Definition 12. f is a function from set X to set Y , taking elements x ∈ X to
elements y ∈ Y if and only if for each x ∈ X, there exists exactly one y ∈ Y such
that f maps x to y. We denote this as f(x) = y and write f : X 7→ Y . X is called
the domain of f and Y is called the codomain. The set of y ∈ Y such that there
is some x ∈ X such that f(x) = y is called the range of f .

We also have special types of functions: one to one and onto.

Definition 13. We say f is one to one or injective if a = b whenever f(a) = f(b).
We say f is onto or surjective if its range equals its codomain. f is called bijective
if and only if f is one to one and onto.

Taking subsets A ⊆ X and B ⊆ Y of the domain and codomain, respectively,
we can define images and preimages of sets.
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Definition 14. Let A ⊆ X and B ⊆ Y , with f : X 7→ Y . We define the image of
A, denoted f(A) as

f(A) := {y ∈ Y : y = f(x) for some x ∈ A}

and the preimage of B, denoted f−1(B) as

f−1(B) := {x ∈ X : f(x) = b for some b ∈ B}.

Suppose that we have a function f : X 7→ Y and a function g : Y 7→ Z for sets
X, Y , and Z. We can define a new function h : X 7→ Z by taking the composition
of f and g.

Definition 15. Let f : X 7→ Y and g : Y 7→ Z. Then the composition of g and
f , denoted g ◦ f maps X to Z and is defined as

(g ◦ f)(x) = g(f(x)).

Exercise 12. Let f : R 7→ R be given by f(x) = x2. Calculate

(1) f((0, 3])
(2) f−1((0, 3])
(3) f−1((−1, 2))

Exercise 13. Let f : X 7→ Y and A,B ⊆ X. Prove or disprove:

(1) f(A ∪B) = f(A) ∪ f(B)
(2) f(A ∩B) ⊆ f(A) ∩ f(B)
(3) f(A ∩B) = f(A) ∩ f(B).

Exercise 14. Let f : X 7→ Y and C,D ⊆ Y . Prove or disprove the following.

(1) f−1(C ∪D) = f−1(C) ∪ f−1(D)
(2) f−1(C ∩D) = f−1(C) ∩ f−1(D)

Exercise 15. Let f : X 7→ Y . Prove that f is one to one if and only if f−1(f(A)) =
A for all A ⊆ X.

Exercise 16. Let f : X 7→ Y . Prove that f is onto if and only if f(f−1(B)) = B
for all B ⊆ Y .

Exercise 17. Let f : X 7→ Y be one to one and onto. Show there is a function
f−1 : Y 7→ X such that f(f−1(y)) = y for all y ∈ Y and f−1(f(x)) = x for all
x ∈ X. Prove that f−1 is itself one to one and onto. f−1 is called the inverse of
f .

3. Cardinality

The next idea about sets we discuss is their size, specifically, how many elements
they have. For sets that have a finite number of elements, which we call finite
sets, this is a simple thing: we just count the elements. However, for sets with an
infinite number of elements (infinite sets), the idea of the number of elements is
more subtle. To handle this, we introduce the idea of cardinality. To motivate the
definition, we consider finite sets A := {a, b, c, d, e} and B := {1, 2, 3, 4, 5}. Clearly,
A and B each have five elements. But note that we can form the bijection (verify)
f : A 7→ B where f(a) = 1, f(b) = 2, and so on. This observation motivates the
following definition of cardinality.
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Definition 16. We say that sets A with cardinality Â and B with cardinality B̂

have the same cardinality, denoted Â = B̂ if and only if there exists a bijection
f : A 7→ B. We also say A is equinumerous to B.

With this definition of cardinality, we can define a finite set with a bit more
rigor. We say a set A is finite if and only if it is the empty set (which we say

has cardinality zero, or ∅̂ = 0) or it is equinumerous to a set {1, 2, 3, . . . , n} for

some n ∈ N. In this second case we say Â = n. If A is not finite, it is infinite.
However, we divide sets of infinite cardinality into two camps: countably infinite
or uncountably infinite/uncountable. (Note that a countable set can be finite or
countably infinite.) A set is countably infinite if and only if it is equinumerous
to N. Otherwise, an infinite set is uncountable. To close this part, we prove a
proposition using Cantor’s diagonalization argument.

Proposition 17. Let A and B be countable sets. Then A×B is countable.

Proof. If A or B is empty, then A×B is empty (verify), and we are done. Otherwise,
we can write

A = {a1, a2, . . .}
B = {b1, b2, . . .},

where these lists may or may not terminate (see the exercises). Because of this, we
can write the ordered pairs of A×B in an array as

(a1, b1) (a1, b2) (a1, b3) · · ·
(a2, b1) (a2, b2) (a2, b3) · · ·
(a3, b1) (a3, b2) (a3, b3) · · ·

...
...

...
. . .

 .

We can now list the elements by going along diagonals going up to the right. We
start with (a1, b1) and continue with the next diagonal going up to the right with
(a2, b1) and (a1, b2) and we continue. We will then get a list of elements of A×B

{(a1, b1), (a2, b1), (a1, b2), (a3, b1), (a2, b2), (a1, b3) . . .}.
Since it can be written out as a list, A×B is countable. �

Prove the following.

Exercise 18. Let A be a set. Then A is countably infinite if and only if it can be
written as

A = {a1, a2, . . .}.
Conclude that a set A is countable if and only if A = ∅ or A = {a1, a2, . . .}, which
is a list that may or may not terminate.

Exercise 19. If A ⊆ B and B is countable, then A is countable.

Exercise 20. If A ⊆ B and A is uncountable, then B is uncountable.

Exercise 21. Q is countably infinite.

Exercise 22. If I is countable and for all i ∈ I, Ai is countable, then
⋃

i∈I Ai is
countable. Hint: Use the Cantor diagonalization argument.

Exercise 23. [0, 1] is uncountable. Conclude R is uncountable.

Exercise 24. R−Q is uncountable.
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3.1. Comparing Cardinality. So far, we have considered how to show two (or
more) sets are equinumerous by using the definition, namely, finding a bijection
between the sets. However, constructing a bijection or showing one exists can be
difficult. But there is an easier way. First, we define a less than or equal to operator
on set cardinalities.

Definition 18. Given two sets A and B, we say Â ≤ B̂ if and only if there is an

one to one function f : A 7→ B. If Â ≤ B̂ but Â 6= B̂, we say Â < B̂.

Since we know that for two real numbers x and y, x ≤ y and y ≤ x if and only if
x = y, you might be wondering if this holds for cardinality. Proving that equality
implies the two less than or equal to statements is easy, and is left as an exercise.
The other implication, however, is significantly harder to prove.

Theorem 19 (Cantor, Bernstein, Schroeder). Let A and B be sets such that Â ≤ B̂
and B̂ ≤ Â. Then Â = B̂.

Proof. Let Â ≤ B̂ and B̂ ≤ Â. Then there are one to one mappings f : A 7→ B and
g : B 7→ A. Our goal is to produce a bijective mapping h : A 7→ B. Take b ∈ B.
If there is some a ∈ A such that f(a) = b, we will call a the first ancestor of b.
Likewise, if there is also some c ∈ B such that g(c) = a, then c is a first ancestor
to a and a second ancestor to b, and so on. We note each ancestor is unique since
f and g are one to one.

We partition A, leaving it to the reader to verify that the following is a partition
of A, (recall that a collection of sets {Ai}i∈I is a partition of A if and only if⋃

i∈I Ai = A and for all i, j ∈ I, Ai ∩Aj = ∅ if i 6= j):

A = Ao ∪Ae ∪A∞
where

Ao :={a ∈ A : a has an odd number of ancestors}
Ae :={a ∈ A : a has an even number of ancestors}
A∞ :={a ∈ A : a has an infinite number of ancestors}.

We similarly partition B as B = Bo ∪Be ∪B∞.
Next, we show that f maps Ae to Bo and A∞ to B∞ and both of these restrictions

are onto (we know already that f is one to one on both of these restrictions since
it is one to one on A). Let b ∈ Bo. Then b has an odd number of ancestors; in
particular, it has a first ancestor which we will call a, in A, such that f(a) = b.
Since b has an odd number of ancestors, a must have as ancestors all of b’s ancestors
except itself. Thus, a has one fewer ancestor than b, which means a has an even
number of ancestors. Thus a ∈ Ae, and therefore f restricted to Ae is a bijective
map to Bo.

To prove f is an onto mapping from A∞ to B∞, we take some arbitrary d ∈ B∞.
Since it has an infinite number of ancestors, it has a first ancestor γ ∈ A and
f(γ) = d. However, γ will only have one fewer ancestor than d does, therefore it
has an infinite number of ancestors as well and is in A∞. Thus, f maps Ae ∪ A∞
to Bo ∪B∞ bijectively.

So the only part of the mapping h we need to define is from Ao to Be. We cannot
use f as some elements of Be may have zero ancestors. Instead, we will show that
g maps Be bijectively to Ao, and use g’s inverse. We already know that g is one
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to one, so we only need to show that each element a of Ao has some b ∈ Be that
maps to it. But if a ∈ Ao, it has an odd number of ancestors, so it has at least one
ancestor, b ∈ B where g(b) = a. However, b has one fewer ancestor than a does, so
b has an even number of ancestors. Thus, g is a bijective mapping from Be to Ao

and therefore g−1 is bijective from Ao to Be.
In conclusion we have the bijective mapping h : A 7→ B where

h(a) :=

{
f(a), a ∈ Ae ∪A∞
(g|Be

)−1(a), a ∈ Ao

.

Note that we can only consider the inverse of g restricted to Be as this is where we
have shown g is bijective, and thus has an inverse. �

Prove the following, assuming A, B, and C are arbitrary sets:

Exercise 25. If Â = B̂, then Â ≤ B̂.

Exercise 26. Â = Â.

Exercise 27. If Â ≤ B̂ and B̂ ≤ Ĉ, then Â ≤ Ĉ.

Exercise 28. Â < P̂(A). Hint: You will need to show that there is no onto
mapping from A to P(A). Prove this by contradiction by assuming the existence
of an onto g : A 7→ P(A) and let C := {a ∈ A : a /∈ g(a)} ∈ P(A). Taking c ∈ A
such that g(c) = C (why does this c exist?), consider if c ∈ C or c /∈ C.

Exercise 29. R̂ = R̂2.

Exercise 30. ̂[0, 1] = (̂0, 1) = R̂. Note that [0, 1] and (0, 1) can be replaced by
arbitrary infinite or finite intervals.

Exercise 31. Let P := {p(x) : p(x) is a polynomial with integer coefficients}. Then

P̂ = N̂.
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