Homework 1-21-241 Lec 3, Matrices and Linear Transformations

Spring 2017

Name:
Section:

Instructions: Complete the following problems. Staple this sheet, with your name and section filled in, to the top of your work. Failure to attach this sheet will result in a three-point deduction in the grade. The assignment will be graded out of fifty points.

DUE: BEGINNING OF CLASS, FRIDAY, JANUARY 27

Book Problems

1. Section 1.1: 2, 8, 12, 14, 16, 24
2. Section 1.2: 2, 8, 14, 17, 22, 24, 26, 30, 38, 42, 52
3. Section 1.3: 6, 10, 14, 28
4. Section 1.4: 4

Other Problems

1. Let

$$
\mathbf{u}=\left[\begin{array}{c}
2 \\
1 \\
1 \\
-1
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
3 \\
1 \\
2 \\
0
\end{array}\right]
$$

(a) Using MATLAB, calculate $-5 \mathbf{u}+2.5 \mathbf{v}$.
(b) Using MATLAB, calculate $\mathbf{u} \cdot \mathbf{v},\|\mathbf{u}\|$, and $\|\mathbf{v}\|$. Verify that the Cauchy-Schwarz Inequality holds.

Hint: Look at Appendix E for your textbook online. Attach a printout of your work in MATLAB.
2. Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be in \mathbb{R}^{n}. Show that if \mathbf{u} is orthogonal to \mathbf{v} and to \mathbf{w}, then \mathbf{u} is orthogonal to any linear combination of \mathbf{v} and \mathbf{w}.

