Matrices

Joshua Ballew

Spring 2016

Abstract

Matrices are arrays of numbers. More specifically, an $m \times n$ matrix A is an array of m rows and n columns. We denote the element in the i-th row and j-th column as $a_{i j}$ or $(A)_{i j}$, calling it the $i j$-th element of A. We define the transpose of A, denoted A^{T} (your book uses A^{\prime}) as the $n \times m$ matrix with $\left(A^{T}\right)_{i j}=a_{j i}$.

1 Scalar Multiplication and Addition

For any $m \times n$ matrix A and constant c, we define the scalar product of $c A$ as the $m \times n$ matrix where $(c A)_{i j}=c a_{i j}$. We define $-A$ as $(-1) A$, the matrix formed by multiplying A by the scalar -1 .

Two matrices can be added together provided they are the same size. For two $m \times n$ matrices A and B, we define the sum $A+B$ such that $(A+B)_{i j}=a_{i j}+b_{i j}$. The difference $A-B$ is defined as $A+(-1) B$.

Scalar multiplication and matrix addition obey the following properties.
Theorem 1. Let A, B, and C be $m \times n$ matrices, O be the $m \times n$ matrix with all entries being zero, and let c and d be real numbers. Then

1. $(A+B)+C=A+(B+C)$
2. $A+B=B+A$
3. $A+O=A$
4. $A-A=O$
5. $(c+d) A=c A+d A$
6. $c(A+B)=c A+c B$.

2 Matrix Multiplication

In addition to scalar multiplication and addition of matrices, we can also multiply two matrices. However, we can only multiply two matrices subject to conditions on their sizes. The product of two matrices A and B, denoted $A B$, is defined only if A is $m \times r$ and B is $r \times n$. That is, the number of columns
in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix $A B$ will be $m \times n$. We define the product $A B$ such that

$$
(A B)_{i j}=\sum_{k=1}^{r} a_{i k} b_{k j}
$$

In other words, for the $i j$-th element of the product, we take the first entry in the i-th row of A and multiply it by the first element in the j-th column of B, the second entry in the i-th row of A multiplied it by the second element in the j-th column of B, and so on, and then add these r products together.

Matrix multiplication obeys the following properties.
Theorem 2. Let A be $m \times r, B$ and D be $r \times s$, and C be $s \times n$. Let I_{k} be the $k \times k$ square matrix with ones on the main diagonal (upper left to lower right) and zeros for all the other entries. Then

1. $(A B) C=A(B C)$, which is often denoted $A B C$ (what are the dimensions of $A B C$?)
2. $A B$ need not be equal to $B A$ (in fact, $B A$ may not be defined)
3. $A(B+D)=A B+A D$
4. $(B+D) C=B C+D C$
5. $A I_{r}=A$
6. $I_{m} A=A$.

It is also important to note that if we define

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a m 1 & a_{m 2} & \ldots & a_{m n}
\end{array}\right], \\
& \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right],
\end{aligned}
$$

and

$$
\mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

then $A \mathbf{x}=\mathbf{b}$ is the same thing as the system of equations

$$
\begin{array}{lllll}
a_{11} x_{1} & +a_{12} x_{2} & +\ldots & +a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1} & +a_{22} x_{2} & +\ldots & +a_{1 n} x_{n} & =b_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} x_{1} & +a_{m 2} x_{2} & +\ldots & +a_{m n} x_{n} & =b_{m} .
\end{array}
$$

3 Vectors

Vectors are matrices of one column, that is, $n \times 1$ matrices. We say that a vector $\mathbf{x} \in \mathbb{R}^{n}$ if it is an $n \times 1$ matrix. We write the elements of \mathbf{x} as

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

We have the above results on matrix addition, scalar multiplication, and matrix multiplication since vectors are matrices. However, we can define a new operation: the dot product. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, we define the dot product as

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Using the dot product, we define the length of a vector \mathbf{x} as

$$
|\mathbf{x}|=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

We also define the angle θ between two non-zero vectors as

$$
\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{|\mathbf{x}||\mathbf{y}|}
$$

4 Square Matrices and Eigenvalues and Eigenvectors

For a square $(n \times n)$ matrix A, we define the trace of A, denoted $\operatorname{tr} A$ as

$$
\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}
$$

which is just the sum of the elements on the main diagonal.
The determinant of a 2×2 matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is $a d-b c$.
An eigenvalue of a square matrix A is defined as a value λ such that there is some non-zero $\mathbf{x} \in \mathbb{R}^{n}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Zero can be an eigenvalue, as can complex numbers. Only square matrices can have eigenvalues. To find the eigenvalues of an $n \times n$ matrix A, we solve the equation

$$
\operatorname{det}\left(\lambda I_{n}-A\right)=0
$$

Once we find the eigenvalue(s), we can find corresponding eigenvectors by solving the system of equations

$$
\begin{aligned}
(\lambda-a) x_{1}-b x_{2} & =0 \\
-c x_{1}+(\lambda-d) x_{2} & =0
\end{aligned}
$$

for each eigenvector λ. Note that when you solve this system, you will always get a free variable. If you don't, there is a mistake in the calculations.

Example 1. Find the eigenvalues and corresponding eigenvectors for the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]
$$

Solution. We begin by finding $\lambda I_{2}-A$ to be

$$
\left[\begin{array}{cc}
\lambda-1 & 1 \\
-2 & \lambda-4
\end{array}\right]
$$

Its determinant is

$$
(\lambda-1)(\lambda-4)+2=\lambda^{2}-5 \lambda+6
$$

Setting this determinant equal to zero and solving for λ yields solutions $\lambda_{1}=3$ and $\lambda_{2}=2$. To find an eigenvector \mathbf{u}_{1} corresponding to λ_{1}, we solve the system

$$
\begin{array}{r}
2 x_{1}+x_{2}=0 \\
-2 x_{1}-x_{2}=0
\end{array}
$$

yielding solutions of the form

$$
t\left[\begin{array}{c}
1 \\
-2
\end{array}\right],
$$

from which we take $t=1$ to pick $\mathbf{u}_{1}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$. (Note: We could pick any nonzero value for t to obtain \mathbf{u}_{1}.) By following a similar procedure for finding an eigenvector \mathbf{u}_{2} corresponding to λ_{2}, we find such a vector to be $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ (try this for yourself).

