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1 Introduction
Tao [Tao, 2007a] has recently proved the following theorem:

Theorem 1.1 (Main Theorem). Let l ≥ 1 be an integer. Assume T1, . . . , Tl : X →
X are commuting, invertible, measure-preserving transformations of a measure space
(X,B, µ). Then for any f1, . . . , fl ∈ L∞(X,B, µ), the averages

AN (f1, . . . , fl) :=
1
N

N∑
n=1

f1(Tn
1 x) · · · fl(Tn

l x)

converge in L2(X,B, µ).

The case l = 1 is the mean ergodic theorem, and the result can be viewed as a
generalization of that theorem. The l = 2 case was proven by Conze and Lesigne
[Conze and Lesigne, 1984], and various special cases for higher l have been shown by
Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne
[Lesigne, 1993], and Host and Kra [Host and Kra, 2005].

Tao’s argument is unusual, in that he uses the Furstenberg correspondence princi-
ple, which is traditionally used to obtain combinatorial results via ergodic proofs, in
reverse: he takes the ergodic system and produces a sequence of finite structures. He
then proves a related result for these finitary systems and shows that a counterexample
in the ergodic setting would give rise to a counterexample in the finite setting.

This paper began as an attempt to translate Tao’s argument into a purely infinite
one. The primary obstacle to this, as Tao points out ([Tao, 2007b]), is that the finitary
setting provides a product structure which isn’t present in the infinitary setting. In order
to reproduce it, we have to go by an indirect route, passing through the finitary setting
to produce a more highly structured dynamical system. The structure needed, however,
is not the full measure theoretic product. What is needed in the finitary setting is a
certain disentanglement of the transformations, which amounts to requiring that the
underlying set of points be a product of l sets, with the i-th transformation acting only
the i-th coordinate, together with a “nice” projection under a certain canonical factor.
We obtain this in the infinitary setting using an argument from nonstandard analysis.

A measure space with this property gives rise to measure spaces on each coordinate,
but need not be the product of these spaces: it could contain additional measurable sets
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which cannot be approximated coordinatewise. These additional sets turn out to be
key to the proof, since they are in some sense “uniform”: they behave, relative to
the commuting transformations, as if they were random. Perhaps unsurprisingly, the
behavior of such sets has turned out to be central to a proof of an infinitary analogue of
the hypergraph regularity lemma by Elek and Szegedy [Elek and Szegedy, 2007].

Using another nonstandard argument to pass from discrete averages to integrals,
we show that the non-random functions can be approximated by certain functions of
lower complexity in a certain sense. Proceeding by induction from low complexity
to high complexity, we will be able to prove the theorem, using arguments which are
essentially those given in [Tao, 2007a], translated to an infinitary setting.

This second nonstandard argument has a Furstenberg-style proof as well, which is
given in the appendix.

We thank Jeremy Avigad for providing many helpful suggestions. We also thank
Terrence Tao for answering a number of questions about his proof, and Tim Austin for
finding a significant error in an earlier version of this proof.

2 Extensions of Product Spaces
We wish to reduce convergence of the expression in Theorem 1.1 in arbitrary spaces to
convergence in spaces where the transformations have been, in some sense, disentan-
gled. The useful location turns out to be extensions of product spaces—that is, given
an ergodic dynamical system Y = (Y, C, ν, U1, . . . , Ul), we would like to find a system
X = (

∏
i≤l Xi,B, µ, T1, . . . , Tl) where each Ti acts only on the i-th coordinate, but

which preserves enough properties of the original system that proving convergence for
all L∞(X ) functions is sufficient to give convergence for all L∞(Y) functions.

X naturally gives rise to a product space, taking Bi to be the restriction of B to
those sets depending only on the i-th coordinate, but we do not require that B be the
product of the Bi; in general, B may properly extend the product.

Given any such system, there is a maximal factor X ′ = (X ′,B′, µ � B′) in which
all sets are TiT

−1
j invariant for each i, j ≤ l. We must either accept poor point-

wise behavior, since, for example, this factor does not separate x from TiT
−1
j x, or, as

well will do here, take X ′ to be a different set. Formally, we will want the property
that, if γ is the projection of

∏
Xi onto X ′, then for every i ≤ l and almost every

x1, . . . , xi−1, xi+1, . . . , xl, the function xi 7→ γ(x1, . . . , xl) is an isomorphism from
(Xi,Bi, µ � Bi) to X ′. This obviously requires that all the Xi be pairwise isomorphic
themselves (and further, that B be symmetric under any change of coordinates).

This requirement is derived from the behavior in the finitary setting. Here the
product space is the finite measure space on Zl

N and X ′ is the finite measure space
on ZN . The map γ : Zl

N → ZN is just the map x1, . . . , xl 7→
∑

i xi, which has the
property that if we fix xi for i 6= k, the map xk 7→

∑
i 6=k xi + xk is an isomorphism.

Since (
∏

Xi,B, µ, T1, . . . , Tl) is not a true product space, we cannot rely on Fu-
bini’s Theorem. Since we nonetheless wish to integrate over coordinates, we have
to rely on the use of certain invariant subsets to produce an analogous property. If
e ⊆ [1, l], we will write xe for an element of

∏
i∈e Xi; we also write e for the comple-

ment of e. Given some xe, if i ∈ e then xi denotes the corresponding element of the
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sequence xe. Given two such variables, say, xe, xe, will write x for the combination of
these two vectors.

In particular, if f is a function on
∏

Xi, we will often write f(xk, z) as an abbre-
viation for f(x1, . . . , xk−1, z, xk+1, . . . , xl).

Definition 2.1. Given a measure space (
∏

i≤l Xi,B, µ), for k ≤ l, let Bk be the
restriction of B to those sets of the form

∏
i 6=k Bi × Xk where Bi ⊆ Xi (or having

symmetric difference of measure 0 with such a set).

With respect toBk, we may identify elements of
∏

i≤l Xi with elements of
∏

i 6=k Xi

by discarding the k-th coordinate.
When we refer to elements x ∈

∏
i≤l Xi, we intend x to be read as a vector, and

will frequently refer to its components xi. It will also be convenient to refer to subvec-
tors, so if e ⊆ [1, l], xe refers to the vector 〈xi〉i∈e. We write e for the complement of
e. We will sometimes use xe for a variable ranging over

∏
i∈e Xi, and given two such

variables, say, xe, xe, will write x for the combination of these two vectors.

Definition 2.2. Let Z,Z ′ be dynamical systems with Z ′ a factor of Z as witnessed by
π : Z → Z ′. We say a measure disintegration exists if there is a map z′ 7→ µz′ from Z ′
to the space of measures on Z preserved by the group action, so that µx′ is supported
on π−1(z′) and for any f ∈ L2(Z),∫

fdµ =
∫∫

fdµz′dµ′

where in particular, the right side is defined.

This disintegration always holds given certain conditions on Z , but in our case, it
is easier to prove that one exists outright than to arrange for those conditions to hold.
We may now state the key additional property the extension of a product space we will
be using has:

Definition 2.3. Let X = (
∏

i≤l Xi,B, µ, T1, . . . , Tl) be a dynamical system extending
a product measure

∏
i(Xi,Bi, νi, Ti). Suppose that for each of the factors (

∏
i 6=k Xi,Bk, µ �

Bk, T1, . . . , Tl), a measure disintegration exists. Suppose thatX ′ = (X ′,B′, µ′, T ′1, . . . , T ′l )
is a factor of X such that a measure disintegration exists and the projection γ :∏

i≤l Xi → X ′ is TiT
−1
j -invariant for each i, j. We say X ′ cleanly factors X if for

each k ≤ l and almost every xk ∈
∏

i 6=k Xi, the function γxk
given by γxk

(xk) :=
γ(x) is an isomorphism from (Xk,B, µk,xk

) onto X ′ where µk,xk
is the measure on

(Xk,B) given by the measure disintegration of (
∏

i 6=k Xi,Bk, µ � Bk, T1, . . . , Tl)
evaluated at xk.

Theorem 2.4. If Y = (Y, C, ν, T1, . . . , Tl) is an ergodic dynamical system with the Ti

commuting, invertible, measure-preserving transformations and f1, . . . , fl ∈ L∞(Y)
then there is a dynamical system X := (

∏
i≤l Xi,B, µ, T̃1, . . . , T̃l) such that for each

of the factors (
∏

i 6=k Xi,Bk, µ � Bk, T̃1, . . . , T̃l) a measure disintegration exists, and
such that an X ′ exists which cleanly factors X . Furthermore, there are functions
f̃1, . . . , f̃l ∈ L∞(X ) such that for each i there is an Si such that T̃i has the form

T̃i(x1, . . . , xi, . . . , xl) = (x1, . . . , Sixi, . . . xl)
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and if
AN (f̃1, . . . , f̃l)

converges then
AN (f1, . . . , fl)

does as well. Note that in the first AN above, the transformations in question are the
T̃i, while in the latter, the transformations are the Ti.

The proof depends on arguments from nonstandard analysis and the Loeb measure
construction; see, for instance, [Goldblatt, 1998] for a reference on these topics.

Proof. If ~v ∈ [1, P ]l, write T~v for T v1
1 · · ·T vl

l . By the pointwise ergodic theorem, for
any function g and almost every x,∫

gdν = lim
P→∞

1
P l

∑
~v∈[1,P ]l

g(T~vx)

Such a point is called generic for g. Let G be the set of polynomial combinations of
shifts of the functions fi with rational coefficients. Since this is a countable set, we
may choose a single point x0 which is generic for every element of G. For each g ∈ G,
define

ĝ(~n) := g(T ~nx0)

Since the fi are L∞ bounded, we may assume that each ĝ is bounded, since this only
requires the boundedness of countably many functions at countably many points.

Working in an ℵ1-saturated nonstandard extension, choose some nonstandard c.
Using the Loeb measure construction, we may extend the internal counting measure on
[1, c]l to a true external measure µ on the σ-algebra generated by the internal subsets
of [1, c]l. The functions g̃ := ĝ∗ � [1, c]l, the restriction of the nonstandard extension
of ĝ, are internal, and therefore measurable, and bounded everywhere since each ĝ is.

For each g ∈ G, by the definition of µ

∫
g̃dµ = st

 1
cl

∑
~n∈[1,c]l

ĝ∗(~n)


where st is the standard part of a bounded nonstandard real. Furthermore

st

 1
cl

∑
~n∈[1,c]l

ĝ∗(~n)

 = lim
P→∞

1
P l

∑
~v∈[1,P ]l

g(T~vx0)

follows by transfer: for any rational α greater than limP→∞
1

P l

∑
~v∈[1,P ]l g(T~vx0)

and for large enough P , α is greater than the average at P , so for all nonstandard c, α
is greater than the average. Similarly for α less than the limit. Putting these together,
for any g ∈ G, ∫

gdν =
∫

g̃dµ
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Taking T̃i to be adding 1 mod c to the i-th coordinate, it follows that T̃ig̃ = T̃ig,
and by ordinary properties of limits, ·̃ commutes with sums and products. Therefore in
particular,∫

[AN (f1, . . . , fl)−AM (f1, . . . , fl)]
2
dν =

∫ [
AN (f̃1, . . . , f̃l)−AM (f̃1, . . . , f̃l)

]2

dµ

At each point xk in (
∏

i 6=k[1, c],Bk, µ � Bk), the Loeb measure construction in-
duces a measure µk,xk

generated by setting

µk,xk
(B) := st

1
c

∑
n∈[1,c]

χB(xk, n)


for internal B.

Finally, let X ′ be the Loeb measure on [1, c], and let γ : [1, c]l → [1, c] be
γ(x1, . . . , xl) =

∑
i xi mod c. The function γ is measurable (since it is internal)

and measure-preserving (since it maps exactly cl−1 points of [1, c]l to each point of
[1, c]). For each n ∈ [1, c], we may define

µ′n(B) := st

 1
cl−1

∑
~v∈[1,c]l|

P
vi=n mod c

χB(~v)


for internal B and extend this to a measure on B by the Loeb measure construction.
Then for any internal B,

µ(B) := st
(

1
cl

∑
~v∈[1,c]l χB(~v)

)
= st(

(
1
c

∑
n∈[1,c]

1
cl−1

∑
~v∈[1,c]l|

P
vi=n mod c χB(~v)

)
=

∫
µ′n(B)dµ′(n)

For any k ≤ l and any x1, . . . , xk−1, xk+1, . . . , xl ∈
∏

i 6=k[1, c], γ~x is a measure-
preserving bijection from [1, c] to itself mapping measurable sets to measurable sets,
and therefore an isomorphism.

Using the ergodic decomposition, we may reduce the main theorem to the case
where X is ergodic, and then use Theorem 2.4 to reduce to the following case:

Theorem 2.5. Let X = (
∏

i≤l Xi,B, µ, T1, . . . , Tl) be a cleanly factored dynamical
system such that each Ti has the form

Ti(x1, . . . , xi, . . . , xl) = (x1, . . . , T
′
ixi, . . . xl)

Then for any f1, . . . , fl in L∞(X ), AN (f1, . . . , fl) converges in the L2 norm.

For the remainder of the paper, assume X has this form and that X ′ is the factor
witnessing that X is cleanly factored, and let γ be the projection onto this factor. By
restricting to the factor generated by the countably many translations of the functions
fi, we may assume X and X ′ are separable. In order to prove this theorem, we need
a slightly stronger inductive hypothesis, which is what we will actually prove; assume
that Y is an arbitrary measure space.
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Lemma 2.6. Let X = (
∏

i≤l Xi,B, µ, T1, . . . , Tl) be a cleanly factored dynamical
system such that each Ti has the form

Ti(x1, . . . , xi, . . . , xl) = (x1, . . . , T
′
ixi, . . . xl)

Then for any f1, . . . , fl in L∞(X ×Y), AN (f1, . . . , fl) converges in the L2 norm.

3 Diagonal Averages
Note that the projection γ we have constructed is consistent with the transformations
Ti, in the sense that γ(x) = γ(y) implies γ(Tix) = γ(Tiy). Furthermore, since γ is
TiT

−1
j -invariant, γ(x) = γ(y) implies that γ(Tix) = γ(Tjy), even if i 6= j.

Definition 3.1. Define Tl+1 on X ′ such that for each x′ ∈ X ′, if γ(x) = x′ then
γ(Tix) = Tl+1x

′.

With the particular construction we have given, this definition makes sense point-
wise. In general, this is true only almost everywhere.

We wish to reduce Lemma 2.6 to the case where X is ergodic. In order to apply the
usual theorem for the existence of an ergodic decomposition (see [Furstenberg, 1981]),
the measure space must be a standard Borel space. It will be easier to take advantage of
the fact that we are working with the L2 norm, and get a weaker ergodic decomposition
that suffices for our purposes. Let C be the factor consisting of sets which are Ti-
invariant for each i and fix representations of E(f | C) for each f ∈ L2(X ). Let ν
be the restriction of µ to C. For each point x ∈

∏
Xi, we can define a measure µx by∫

fdµx = E(f | C)(x) with the property that
∫∫

fdµxdν(x) =
∫

fdµ. Furthermore,
the map x 7→ µx is Ti-invariant for each i, since C is, and µx is ergodic for almost
every x.

We may carry out the same construction on X ′ and observe that this preserves
the clean factoring property, so it suffices to prove Lemma 2.6 in the case where µ is
ergodic.

We wish to extendX×X ′ to ensure that the needed functions xk, x′ 7→ f(xk, γ−1
xk

(x′))
are measurable with integral

∫
fdµ; the fact that this is not automatic is a reflection of

the fact that X is not a product space. Formally, for each k ≤ l, we may define a mea-
sure space on

∏
i 6=k Xi × X ′ such that the functions xk, x′ 7→ f(xk, γ−1

xk
(x′)) have

integral
∫

fdµ by taking this to be the image of (B, µ) under γ. Since these measures
and (B, µ) all agree on sets measurable on fewer coordinates (since they are all projec-
tions of the same measure and the measure on X is symmetric), they can be combined
into a single measure on

∏
Xi ×X ′, which we call X ∗.

Definition 3.2. By abuse of notation, we take Ti, i ≤ l + 1, to be transformations
on X ∗ × Y where Ti(x, x′, y) is given by (Tix, x′, y) if i ≤ l and Tl+1(x, x′, y) :=
(x, Tl+1x

′, y).
Let e ⊆ [1, l + 1]. We say f ∈ L2(X ∗ ×Y) is e-measurable if it is Ti-invariant for

each i 6∈ e. We define Id := {e ⊆ [1, l + 1]] | |e| = d}. We say f has complexity d if it
is a finite sum of functions of the form

∏
e∈Id

ge where each ge is e-measurable.
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We write ν for the measure on X ∗ ×Y and µ for the measure on X ×Y . We write
µk and νk for the restriction of µ and ν to the σ-algebra of Tk-invariant sets.

Lemma 3.3. If f ∈ L2(X ∗ × Y) is e-measurable for some e with |e| < l + 1 then
f(x, γ(x), y) is a well-defined L2 function and ||f(x, γ(x), y)||L2(X×Y) = ||f ||L2(X∗×Y).

Proof. By the assumption about γ, for any i 6∈ e,∫
[f(x, γ(x), y)]2dµ =

∫
[f(xi, γ(xi), y)]2dµi,xi

dµi

=
∫

[f(xi, γ
−1
xi

(x′), x′, y)]2dνi

=
∫

[f(x, x′, y)]2dν

The last step follows since f is Ti-invariant and xi is ergodic with respect to Ti.

In particular, this means that f(x, γ(x), y) is well-defined when f ∈ L2(X ∗ × Y)
has complexity d for some d < l + 1.

Definition 3.4. If f ∈ L∞(X ∗ × Y) has complexity d, define

∆Nf :=
1
N

N∑
n=1

f(x, Tn
l+1γ(x), y)

We can reduce the question of the convergence of AN to the convergence of ∆N :

Definition 3.5. If f ∈ L2(X × Y), define f i(x, x′, y) := f(xi, γ
−1
xi

(x′), y).

Note that f i(x, Tn
l+1x

′, y) = f(xi, γ
−1
xi

(Tn
l+1x

′), y) = f(xi, T
n
i γ−1

xi
(x′), y).

Lemma 3.6. Let f1, . . . , fl be given. AN (f1, . . . , fl) converges in the L2 norm iff
∆N

∏
i∈{1,...,l} f i

i converges in the L2 norm.

Proof.

∆N

∏
f i

i (x, y) =
1
N

N∑
n=1

∏
i

f i
i (x, Tn

l+1γ(x), y)

=
1
N

N∑
n=1

∏
i

fi(xi, γ
−1
xi

(Tn
l+1γ(x)), y)

=
1
N

N∑
n=1

∏
i

fi(xi, T
n
i γ−1

xi
(γ(x)), y)

=
1
N

N∑
n=1

∏
i

fi(xi, T
n
i xi, y)

=AN (f1, . . . , fl)(x, y)
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Each f i
i is [1, l + 1] \ {i}-measurable, so to prove the main theorem, it suffices to

prove convergence of ∆Ng for functions of complexity d < l + 1.
While ∆Nf was defined as a function in L∞(X × Y), we will sometimes view it

as the function in L∞(X ∗ × Y) where x′ is a dummy variable.

Lemma 3.7. If g and f are L∞(X ∗×Y) functions with complexity d < l + 1 and g is
Tl+1-invariant then ∆Ngf = g∆Nf .

Proof. Immediate from the definition.

Lemma 3.8. Suppose g has complexity 1. Then ∆Ng converges in the L2 norm.

Proof. If for almost every y ∈ Y , we have convergence for x 7→ g(x, y) then we
may apply the dominated convergence theorem to obtain convergence over X ∗ × Y .
Since ∆N distributes over sums, we may further assume that g has the form

∏
i gi

where each gi is {i}-measurable. Then ∆Ng =
∏

i 6=l+1 gi∆Ngl+1, and it suffices to
show that ∆Ngl+1 converges. But this follows immediately from the mean ergodic
theorem.

Because the inductive step generalizes the proof of the ordinary mean ergodic theo-
rem, it is instructive to consider the form of that proof. The key step is proving that the
function gl+1 can be partitioned into two components; these components are usually
described as an invariant component g⊥ and a component g> in the limit of functions
of the form u − Tl+1u. Unfortunately, this characterization of the second set does not
generalize. There is an alternative characterization, namely that g> has the property
that ||∆Ng>|| converges to 0. This turns out to be harder to work with (and, in particu-
lar, this characterization does not seem to give a pointwise version of the theorem), but
it can be extended to a higher complexity versions.

We will argue as follows: take a function of complexity d in the form
∏

ge with
each ge e-measurable, and argue that each ge can be written in the form ge,⊥ + ge,>,
where ge,> is suitably random, so that ||∆Nge,>

∏
he′ || → 0, while ge,⊥ is essentially

of complexity d−1. If we observe that constant functions have complexity 0, the usual
proof of the mean ergodic theorem has the same form.

4 From Averages to Integrals
We need a way to pass from discrete limits to an integral in order to apply the inductive
hypothesis.

Lemma 4.1. Let X = (X,B, µ) be a separable measure space and let b be a real
number. For s ≤ k, let Xs be a factor of X and {bm,s}m∈N be a sequence of L∞(Xs)
functions bounded (in the L∞) norm by b. Let {mt}t∈N be a sequence such that

1
mt

mt∑
i=1

∏
s≤k

bi,s

converges weakly to f . Then there is a space Y = (Y,D, σ) and functions b̃s ∈
L∞(Xs × Y) such that f =

∫ ∏
b̃s(x, y)dσ.
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Proof. Consider an ℵ1-saturated nonstandard extension of a universe containingX and
the sequence {bm,s}. For convenience, we assume that the extension is obtained by an
ultrapower construction.

Then for each s ≤ k, there is a nonstandard extension of the sequence {bm,s}m∈N,
which we denote b∗m,s. The elements b∗m,s are L∞(X ∗

s ); consider the restriction of
these functions to functions on X (and compose with st to give functions to the reals).
Since there is a compact metric on the σ-algebra Bs given by µ(A4B), every element
B of the σ-algebra B∗s satisfies µ∗(A∗4B) = 0 for some set in A ∈ Bs. In particular
this means that for any α, the set of x ∈ X such that b∗m,s(x) > α belongs to Bs.
Therefore the restriction of st ◦ b∗m,s to X is an L∞(Xs).

The sequence {mt} represents an integer M in the nonstandard model1. Let Y :=
[1,M ].

Y is a hyperfinitely additive measure space (taking the counting measure on Y ), and
so, by the Loeb measure construction, there is an external σ-additive measure extending
it, which we denote Loeb(Y ). For any measurable set A on X , and measurable set I
of real numbers, and any s, the set of y ∈ Y such that

∫
A

st ◦ b∗y,sdµ ∈ I is internal,
and therefore measurable.

Define b̃s(x, y) := st(b∗y,s(x)). We must check that this is measurable on X ×
Loeb(Y ). Consider the σ-algebra of sets on L∞(X) generated by sets of the form
{g | ||g − f ||L∞ < ε} for some f, ε. For any ε > 0, choose a countable partition of
L∞(X) into sets {F1, . . . , Fn, . . .} with diameter (under the L∞ norm) at most ε and
choose an fi ∈ Fi for each i. For convenience, assume that when m < n, the partition
for 1/2n refines the partition for 1/2m. Then define

bε,s(x, y) :=
∑

i

χ{y|st◦b∗y,s∈Fi} ⊗ fi

But then if m < n, ||b1/2m,s−b1/2n,s||L∞ ≤ 1/2m, so the functions b1/2m,s converge,
and to b̃s.

Let g ∈ L2(X ). Then∫
g(x)

∏
b̃s(x, y)dµdσ = st(

∫
1
N

M∑
y=1

g∗
∏

b∗y,sdµ)

But M was chosen so that

st(
∫

1
M

M∑
y=1

g∗b∗y,sdµ) =
∫

gfdµ

Since this holds for every g ∈ L2(X), it follows that
∫

b̃s(x, y)dσ = f .

5 The Inductive Step
We now return to the proof of Theorem 2.6. Let X = (

∏
i≤l Xi,B, µ, T1, . . . , Tl)

cleanly factored by X ′ be given, and let Y be an arbitrary measure space. Recall that
1If the nonstandard extension is not given by the ultrapower construction, m can be found as the result

of overflow using the sequence {mt} as an unbounded sequence of witnesses to the necessary properties.
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In is the set of subsets of [1, l + 1] with cardinality n. If e is a subset of [1, l + 1], we
write e for the complement of e, that is, [1, l + 1] \ e.

Definition 5.1. Let e0 ⊆ [1, l + 1] contain l + 1. Ze0 is the subspace of the e0-
measurable functions g such that for every sequence 〈ge〉e∈I|e0|\{e0} with each ge e-
measurable,

||∆Ng
∏
e

ge|| → 0

as N approaches infinity.
De0 is the set of e0-measurable functions generated by projections onto the e0-

measurable sets of weak limit points of sequences of the form

1
N

N∑
n=1

∏
i∈e0

bi(xk, Tn
k γ−1

xk
(x′), x′, y)

as N goes to infinity, for some k 6∈ e0, where each bi is [1, l + 1] \ {i}-measurable.

Lemma 5.2. If g is e0-measurable where l + 1 ∈ e0, |e0| < d + 1, and g 6∈ Ze0 then
there is an h ∈ De0 such that

∫
ghdµ > 0.

Proof. Let an e0-measurable g 6∈ Ze0 be given. Then there is a sequence 〈ge〉e∈I|e0|\{e0}
where each ge is e-measurable and some ε > 0 such that

||∆N (g
∏

e∈I|e0|,e 6=e0

ge)|| > ε

for infinitely many N . Choose an f and an infinite subsequence such that ∆Ng
∏

e ge

converges weakly to f . Then for infinitely many N ,∫
f∆N (g

∏
e

ge)dµ > ε/2

Expanding ∆N , the left side is∫
1
N

N∑
n=1

f(x, y)g(x, Tn
l+1γ(x), y)

∏
e

ge(x, Tn
l+1γ(x), y)dµ

Choose some k 6∈ e0. Then this is equal to∫
1
N

N∑
n=1

f(xk, γ−1
xk

(x′), y)g(xk, Tn
k γ−1

xk
(x′), x′, y)

∏
e

ge(xk, Tn
k γ−1

xk
(x′), x′, y)dνk

Since g is Tk-invariant, this is equal to∫
g(xk, x′, y)

1
N

N∑
n=1

f(xk, γ−1
xk

, x′), y)
∏
e

ge(xk, Tn
k γ−1

xk
(x′), x′, y)dνk

10



For each e 6= e0, there is some i ∈ e0 \ e, so we may assign to each ge some i such
that ge is independent of xi and collect the ge into terms bi, each a product of some
of the ge, such that bi is independent of xi. Since f is [1, l]-measurable, we may also
fold f into bl+1, and we have therefore shown that there exist functions bi which are
[1, l + 1] \ {i}-measurable such that∫

g(xk, x′, y)
1
N

N∑
n=1

∏
i

bi(xk, Tn
k γ−1

xk
(x′), x′, y)dνk > ε/2

for infinitely many N . Choosing a subsequence S of these N such that

h′ := lim
N∈S

1
N

N∑
n=1

∏
i

bi(xk, Tn
k γ−1

xk
(x′), x′, y)

converges, the projection h of h′ onto the e0-measurable sets witnesses the lemma. (In
particular, since g is e0-measurable,

∫
ghdµ =

∫
gh′dµ > 0.)

Lemma 5.3. Every e0-measurable function g may be written in the form g⊥ + g>
where g⊥ ∈ De0 and g> ∈ Ze0 .

Proof. Consider the projection of g onto De0 . By the previous lemma, if g − E(g |
De0) is not in Ze0 then there is an h ∈ De0 such that

∫
h(g−E(g | De0))dµ > 0; this

is a contradiction, so g − E(g | De0) belongs to Ze0 .

We could proceed to show that this decomposition is unique, but this is not neces-
sary for the proof.

Lemma 5.4. If g =
∏

e∈Id+1
ge and each ge ∈ De then ∆Ng converges in the L2

norm.

Proof. For convenience, assume g is in the stricter form
∏

e∈Id+1,l+1∈e ge. This is
without loss of generality, since if h =

∏
e∈Id+1,l+1 6∈e ge then we have

∆Nh
∏

e∈Id+1,l+1∈e

ge = h∆N

∏
e∈Id+1,l+1∈e

ge

First, assume each ge is a basic element of De; that is, there is a function g′e such
that ge is the projection of g′e onto Be0 and g′e is a weak limit of an average of the form

1
N

N∑
n=1

∏
i

be
i (xk, Tn

k γ−1
xk

(x′), x′, y)

Define be
i,n := be

i (xk, Tn
k γ−1

xk
(x′), x′, y). Then Lemma 4.1 applies, so there exist func-

tions b̃e
i such that

g′e(xk, x′, y) =
∫ ∏

i

b̃e
i (xk, z, x′, y)dσ

11



Since each ge is the e-measurable projection of this function, we may fold xe,0 into z,
integrating over a larger measure space to give

ge(xe, x
′, y) =

∫ ∏
i

b̃e
i (xe, z

′, x′, y)dσ′

Since each ge has this form, and these b̃e
i are e \ {i}-measurable, it follows that g has

complexity d− 1, so the result follows by the inductive hypothesis.
If the ge are sums of basic elements of De, the result follows immediately. If ge is a

limit of such elements, each ge can be written g0
e + g1

e where ge
0 is a finite sum of basic

elements of De and the norm of g1
e is small. Then

∏
ge =

∑
E⊆Id

∏
e∈E ge

0

∏
e 6∈E ge

1.
When E = Id, the result follows from the result for finite sums. When E 6= Id,
the product contains some g1

e , and sine g1
e is e-measurable, it follows that ||∆Nge|| ≤

||ge||. Since the ge′ are bounded in the L∞ norm, ||∆N

∏
e ge|| ≤ b

∏
e ||ge|| for some

constant b, so
∏

e∈E ge
0

∏
e 6∈E ge

1 has small norm if E 6= Id.

Using this, it is possible to prove Theorem 2.6. If g =
∏

e∈Id+1
ge(x, x′, y) where

each ge is e-measurable then it suffices to show convergence at each y, since then
the dominated convergence theorem implies convergence over the whole space. When
l+1 6∈ e, we have ∆Ngef = ge∆Nf , so it suffices to show that ∆Ng converges where
g has the form ∏

e∈Id+1,l+1∈e

ge

Then write each ge as ge,⊥ + ge,>. Expanding the product gives∑
E⊆{e∈Id+1|l+1∈e}

∏
e 6∈E

ge,⊥
∏
e∈E

ge,>

where each ge,> is in Ze and each ge,⊥ is in De. Since ∆N distributes over sums, it suf-
fices to show that each summand converges. When E is non-empty, ∆N

∏
e 6∈E ge,⊥

∏
e∈E ge,>

converges to the 0 function by the definition of Ze. When E is empty, Lemma 5.4 ap-
plies.

A A Furstenberg Correspondence for L∞

We give an alternate proof of Lemma 4.1 using a Furstenberg-style argument. See
[Furstenberg, 1981, Furstenberg et al., 1982, McCutcheon, 1999] for information about
the standard Furstenberg correspondence.

Lemma A.1. Let X = (X,B, µ) be a separable measure space and let b be a real
number. For s ≤ k, let Xs be a factor of X and {bm,s}m∈N be a sequence of L∞(Xs)
functions bounded (in the L∞) norm by b. Let {mt}t∈N be a sequence such that

1
mt

mt∑
i=1

∏
s≤k

bi,s

12



converges weakly to f . Then there is a space Y = (Y,D, σ) and functions b̃s ∈
L∞(Xs × Y) such that f =

∫ ∏
b̃s(x, y)dσ.

This construction will take the remainder of the section. Let L be the subset of
L∞(X ) functions bounded by b. Fix a countable orthonormal basis {gj} for L∞(X )
and take sets of the form {~f |

∫
(
∏

s∈S fs)gjdµ ∈ I} where I is an open interval in
[−b, b] to be a subbasis for a topology on Lk. This generates the weak∗ topology on
L∞(X k), and in particular, is compact.

Let Y consist of functions from Z to Lk; we equate a such an element with the
corresponding function from Z × [1, k] → L. Then the product topology on Y is
compact by Tychonoff’s Theorem. Let C be the algebra generated by closing the open
sets of Y under complements, finite unions, and finite intersections. We call such a set
simple if it has the form {y ∈ Y | y(i) ∈ I} where I is either a basis element or the
complement of a basis element.

By the Carthèodory extension lemma, if we produce a countably additive measure
on C then it extends to the σ-algebra generated by C (namely, the Borel sets on this
product space).

Observe that b := {bm,s} ∈ Y . Consider the sequence mt, and, by diagonalizing,
choose a subsequence mts such that for each C ∈ C, the limit

lim
s→∞

1
mts

mts∑
i=1

χC(T ib)

exists, and define ρ(C) to be the value of this limit, where (T ib)(n) := b(i + n).
This is the naive function we might hope would extend to a measure, since it is closely
analogous to the usual Furstenberg measure, but while it is finitely additive, it is not
σ-additive. For instance, suppose that

∫
bm,sgjdµ > α converges to α from above as

m → ∞. Then {y |
∫

y(0, s)gjdµ = α} ought to be infinite, since this is the “long-
term behavior”. Instead, for any ε > 0, {y |

∫
y(0, s)gjdµ > α + ε} has measure 0,

but {y |
∫

y(0, s)gjdµ > α} has measure 1.
We should reduce the measure on open sets by insisting that values be boundedly

inside the set2. We wish to replace ρ with a modified function, σ, defined by something
like

σ({y |
∫

y(i)gjdµ ∈ (α, β)}) := lim
ε→0

ρ({y | y(i) ∈ [α + ε, β − ε])}

However, as stated, this is a definition on a description of a set, rather than a set, so
we must do some additional work to extend this definition and ensure that it is well-
defined.

It will be helpful to work with representations of sets, as well as the sets themselves.
A representation R consists of an integer kR, for each i ≤ kR an integer mR

i , and for

2This construction is inspired by the definition of the standard part in nonstandard analysis. Roughly, the
idea is that a sequence {αi} converging to α from above has the property of being strictly greater than α
everywhere, but should represent a nonstandard real which is infinitesimally close to α. The real > relation
should require that the sequence {αi} be bounded away from α.
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each i ≤ kR, j ≤ mR
i , a simple set CR

i,j . We say that R represents the set

Ř :=
⋃

i≤kR

⋂
j≤mR

i

CR
i,j

Clearly, there may be multiple representations for the same set. It is also convenient
to define a clause to be a representation with kR = 0 (that is, a representation which
consists of only a single intersection). We define the representations Ri for i ≤ kR to
be given by kRi := 0, mRi

0 := mR
i , and CRi

0,j := CR
i,j , and call these representations the

clauses of R. A disjoint representation is one where distinct clauses represent disjoint
sets.

We define an operation C 7→ Cε on simple sets for each ε > 0 by

{y |
∫

(
∏
s∈S

y(i, s))gjdµ ∈ (α, β)}ε := {y |
∫

(
∏
s∈S

y(i, s))gjdµ ∈ [α + ε, β − ε]}

{y |
∫

(
∏
s∈S

y(i, s))gjdµ ∈ [α, β]}ε := {y |
∫

(
∏
s∈S

y(i, s))gjdµ ∈ [α− ε, β + ε]}

(Open intervals of the form (α, b] become intervals [α+ε, b], and similarly for intervals
[−b, α).) We may then define R 7→ Rε by CRε

i,j := (CR
i,j)ε (that is, coordinatewise

application).
Given some set C ∈ C, we wish to set

σ(C) := lim
ε→0

ρ(Řε)

where R is a representation of C. We must check that this is well-defined.

Lemma A.2. Let R,S be two representations of a set C. Then there is some ε > 0
such that whenever δ < ε, Řδ = Šδ .

This follows immediately from the following stronger lemma (which will also be
useful):

Lemma A.3. Let R,S be representations such that Ř ⊆ Š. Then there is some ε > 0
such that whenever δ < ε, Řδ ⊆ Šδ .

Proof. First, observe that it suffices to prove this in the case where R is a single clause,
since otherwise we may find such ε for each clause of R and the minimum of these will
immediately be the necessary witness for R.

Suppose S consists of multiple clauses. For convenience, consider the case where
S consists of two clauses, S0, S1 (the general case can be obtained by induction, or by
extending the same argument). There are finitely many simple sets D0

j such that
⋃

D0
j

is the complement of S0. Therefore Ř ⊆ Š is equivalent to the assertion that for each
D0

j , Ř∩D0
j ⊆ Š0. Hence if we can prove the lemma when S consists of a single clause

then, when ε is smaller then the witnesses for each of these cases, we will have

Řε ∩ (D0
j )ε ⊆ ˇ(S0)ε
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and therefore
Řε ⊆ Šε

(using the fact that ε preserves complements of simple sets).
So it suffices to prove the lemma when R and S are both single clauses. Suppose

that, for some ε, y 6∈ Šε. Then there is some j such that y 6∈ (CS
0,j)ε. Suppose CS

0,j has
the form

{y |
∫

(
∏
s∈S

y(i, s))gjdµ ∈ (α, β)}

Suppose
∫

(
∏

s∈S y(i, s))gjdµ < α + ε. Since Ř ⊆ Š, there is some CR
0,j with the

form
{y |

∫
(
∏
s∈S

y(i, s))gjdµ ∈ (γ, δ)}

with γ ≥ α, or

{y |
∫

(
∏
s∈S

y(i, s))gjdµ ∈ [γ, δ]}

with γ > α. In the former case, it immediately follows that y 6∈ (CR
0,j)ε, and in the

latter it follows when ε < γ−α
2 . Other cases follow similarly.

Since there are finitely many simple sets in S and R, there are finitely many con-
straints on the size of ε, so we may simply choose ε small enough to satisfy all of
them.

Given this, we may conclude that σ(C) is well-defined in the sense that it does
not depend on the representation of C chosen. We must also check that the limit is
convergent.

Lemma A.4. For any representation R, the limit

lim
ε→0

ρ(Řε)

exists.

Proof. Since representations of the same set have the same limit, we may assume with-
out loss of generality that R is a disjoint representation. Using the finite additivity of ρ
and the fact that limits distribute over sums, we may assume that R consists of a single
clause

We proceed by induction on the number of simple sets making up R. If R is a
single simple set then the result follows from the monotonicity in ε on sets which are
open or closed.

If R consists of k sets, observe that for any S ⊆ [0, . . . , k], we may express σ(
⋂

Ci)
by a finite sum of σ(

⋂
i∈S Ci ∩

⋂
i 6∈S Cc

i ) and expressions σ(
⋂

i∈T Ci) where T ⊆
[0, . . . , k] has size < k. Since we may choose S so that

⋂
i∈S Ci ∩

⋂
i 6∈S Cc

i is open,
and therefore use monotonicity to show that σ is defined, and since we may use IH to
obtain the other expressions, it follows that the limit exists for R.
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We must still show that σ is σ-additive. Suppose
⋃

i∈N Ci = C where C,Ci ∈ C.
Certainly, since σ is finitely additive, σ(

⋃
Ci) ≤ σ(C). In the usual Furstenberg

correspondence, the opposite direction follows from the fact that the space is compact
and all elements of C are clopen. In this case we will argue instead that every element
of C can be approximated from above by open sets and from below by closed sets.
Then we can choose open sets C ′

i containing Ci such that
∑

(σ(C ′
i)− σ(Ci)) < ε/2,

and a closed set C ′ ⊆ C such that σ(C) − σ(C ′) < ε/2, and use compactness and
finite additivity to argue that

∑
i ν(Ci) + ε ≥ σ(C). Since this holds for any ε, it will

follow that
∑

i σ(Ci) = σ(
⋃

Ci) = σ(C).

Lemma A.5. If C ∈ C and ε > 0 then there is a closed C ′ ⊆ C such that σ(C) −
σ(C ′) < ε.

Proof. Choose a disjoint representation for C. By finite additivity, we may assume that
this representation has only one clause. Suppose C =

⋂
Ci ∩D where D is open and

the Ci are simple (but may be open or closed); it will be convenient to abuse notation
and use C to refer to the natural representation of C as a single clause. For any γ > 0,
define

C(γ) :=
⋂

Ci ∩Dγ

D has the form {y |
∫

(
∏

s∈S fs)gjdµ ∈ (α, β)} (the case where one end-point is the
closed b or −b is similar). Let ∆γ := {y |

∫
(
∏

s∈S fs)gjdµ(α, α + γ) ∪ (β − γ, β)}.
Choose γ > 0 so that ρ(∆γ) < ε/3.

Now choose δ > 0 so that δ < γ,

|σ(C)− ρ(Cδ)| < ε/3

and
|σ(C(γ))− ρ((C(γ))δ)| < ε/3

Observe that the symmetric difference Cδ 4 (C(γ))δ ⊆ ∆γ , since Cδ is the set⋂
(Ci)δ ∩ {y |

∫
(
∏
s∈S

fs)gjdµ ∈ [α + δ, β − δ]}

and (C(γ))δ is the set⋂
(Ci)δ ∩ {y |

∫
(
∏
s∈S

fs)gjdµ ∈ (α + γ − δ, β − γ + δ)}

But then

σ(C)−σ(C(γ)) ≤ |σ(C)− ρ(Cδ)|+|ρ(Cδ 4 (C(γ))δ)|+|ρ((C(γ))δ)− σ(C(γ))| < ε

Then if C =
⋂

Ci, we may apply this argument successively to each i such that Ci

is not closed to approximate C by a closed set.

By a similar argument,
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Lemma A.6. If C ∈ C and ε > 0 then there is an open C ′ ⊇ C such that σ(C ′) −
σ(C) < ε.

Putting this together, we have

Lemma A.7. σ is σ-additive on C.

Then σ extends to a σ-additive measure on the σ-algebra generated by C. Let

b̃s(x, y) :=
∑

i

gi(x) ·
∫

y(0, s)gidµ

This is a sum of functions f1 × f2 where f1 is measurable with respect to X and f2

is measurable with respect to Y , so b̃s is measurable with respect to X × Y . Since∑
i gi

∫
hgidµ = h for any h, we may more easily express this by b̃s(x, y) = y0,s(x),

and since y0,s is bounded by b, it follows that b̃s is as well, so b̃s ∈ L∞(X × Y ).
Note that if

∫
bm,sgidµ = 0 for all m then also σ({y |

∫
y(0, s)gidµ = 0}) = 1, so∫

b̃s(x, y)gidµ× σ = 0.
To show that

∫ ∏
b̃sdσ = f , it suffices to show that for each i,

∫∫
gi

∏
b̃sdσdµ =∫

gifdµ. Observe that∫∫
gi

∏
b̃sdσdµ =

∫∫
gi(x)

∏
y0,s(x)dσdµ

Switching the order of integration, we may view this as the integral of the function

y 7→
∫

gi(x)
∏

y0,s(x)dµ

Let Cα,β := {y ∈ Y | α ≤
∫

gi(x)
∏

y0,s(x)dµ < β}. Then, by the definition of
Lebesgue integration, we may approximate the integral by sums of the form∑

(α,β)∈Q

αµ(Cα,β)

where Q is a partition of [−b, b]. This sum is equal to

∑
(α,β)∈Q

lim
ε→0

lim
s→∞

α
|{j ≤ mts | α ≤

∫
gi

∏
bj,sdµ ≤ β + ε}|

|It|

But as the size of the intervals in Q approaches 0, this also approximates

lim
t→∞

1
|It|

mts∑
j=1

∫
gi

∏
bj,sdµ

But by the initial choice of {mts
}, this is equal to

∫
gifdµ. This concludes the proof

of Lemma 4.1.
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