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In this paper, wc propose a general probabilistic medel for modeling the evelution of demand forecasts. referred o as the Martin-
gale Model of Forecast Evolution (MMFE). We cormbine the MMFE with a linear programming model of production and dis-
tribution planning implemented in a rolling horizon fashion. The resulting simulation methodelogy is used to analyze safety
stock levels for a muiti-product/multi-plant production/distribution system with seasonal stochastic demand. In the context of
this application we demonstrate the importance of good forecasting.

B In this paper we muake three contributions: 1) we
propose a general probabilistic model for modeling the
evolution of demand forecasts, referred to as the Mar-
tingale Model of Forecast Evolution (MMFE); 2} we
describe an application of this model in a simuation
study to analyze safety stock levels for a mubti-product/
multi-plant production/distribution system with seasonal
stochastic demand; and 3) in the context of this appli-
cation we demonstrate the importance of good forecast-
ing. The simulation model in 2) is 4 combination of the
MMFE with a linear programming (LP) model of pro-
duction and distribution planning implemented in a roli-
ing horizon fashion.

Case Study

We motivate the need for a general model of forecast
evolution by considering the specific problem posed in
the application. The operating company is a national
producer and distributor of consumer grocery products.
Any data in the case that could identify the company
or its product lines have been disguised. The focus of
the study is a product family consisting of five product
lines that differ primarily in package sizes. The family
has dedicated production plants in different regions of
the country with a number of production lines of dif-
fering efficiencies and capabilitics. It is also possible
to outsource the production with another ten possible
suppliers. although outsourcing arrangements arc less
flexible than internal production plans. The production
plants feed a national distribution system with eight re-
gional warehouses. Transshipments berween warchouses
can be used to redress inventory imbalances.

Demand for the product family is highly seasonal with
a major selting scason spanning six months and the peak
sclling season spanning three months. Due to sales pro-
motions, one month in particular always exhibits sig-
nificantly higher demand than adjacent months. In
general, demand in any month following a sales pro-
motion is negatively correlated with demand in the pro-
motion month. This is due in part to major buyers
batching their orders to take advantage of the promo-
tions. Forecasts are made by region. by month, and by
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product line for twelve months in advance. Forecast
crror is high, even on the eve of the month of sale. De-
mand is highly corrclated across product lines and, to
a lesser extent. across regions.

Production capacity is limited and so inventory is pro-
duced in anticipation of sales beginning three to four
months in advance of the major selling season. The in-
ventory is sold on a first-in-first-out basis and, in any
event, the product has a long shelf life. So much in-
ventory is created that the company must rent additional
warehouse space (“‘overflow'"), at high cost, during
the cyclic build-up phase of the season. In spite of high
production changeover times, every product line is pro-
duced in every plant in every month. There is sufficient
volume of some product lines to dedicate certain pro-
duction lines to these products. The company uses a
fincar programming model for aggregate production and
distribution planning by month. Plant-specific scheduling
rules are used to disaggregate this plan into weekly pro-
duction schedules.

The existing corporate safety stock policy for each
region is expressed in months of supply at the begin-
ning of each month: the region must have enough in-
ventory to cover & months of forecast demand. The
current value of s at the beginning of the study was sig-
nificantly larger than 1. The safety stock factor, s. 1s
a key input to the aggregate production planning LP,
and a major driver of the cyclic build-up of inventory
within the distribution system.

The performance attributes of the production-distribu-
tion system are cost and customer service. Major cost
categories are production costs (proportional to stand-
ard hours of production), transportation costs (propor-
tional to velume-miles), and inventory holding costs
(including financing cost and a premium for overflow
inventory). Customer service is measured by a weighted
average of monthly fill rates across product lines and
regions.

The purposes of the study were as follows. The major
concern was to find an economical safety stock factor.
The current. conservative value of s had been set dur-
ing the product family introduction phase some years
earlier when demand uncertainty had been extemely high
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and production capabilities were low. Although fore-
cast errors were still high, the product family was now
in a mature phase of marketing and production capabili-
ties had expanded considerably. The company wanted
a quantitative model of safety stock analysis that would
permit them to explore the impact of varying s by prod-
uct line, by region, and by month; and to explore the
impact of adding additional production lines in different
parts of the country.

In approaching this study, we found the stochastic,
sequential, and multi-dimensional nature of the problem
to defy an optimization-based approach, so we opted
to develop a simulation model of the system and use
that model to explore issues important to the company.
Furthermore, since the company currently used a linear
programming model for aggregate production planning,
we proposed to use a variation of that model at the heart
of the simulation to mimic the way in which production
plans and distribution decisions werce made. Note that
no claim is made that the linear programming model
yields optimal plans in the face of stochastic demands;
only that it reasonably approximates actual planning de-
cisions. In developing a simulation model of the system,
it was clear immediately that a good model of the evolu-
tion of forecasts and demands was crucial to the overall
model’s accuracy. Intuitively. the production distribu-
tion system has many opportunities for substitution: low
demand in one region of the country can be balanced
by shipping product from that region to a region ex-
periencing high demand; low demand for one product
can be balanced by shifting production plans and using
the capacity to produce a high demand product; low
demand in one peried can be balanced with high de-
mand in another period by carrying inventory. How-
ever, the ability to translate this flexibility into reduced
safety stock requirements depends on demand correla-
tions. If demand among regions is highly positively cor-
related. then transshipments will be less effective; if
demand among products is highly positively correlated,
then reallocating production capacity will be less effec-
tive; and if demand from one period to the next is highly
correlated, then inventory becomes less effective. Fur-
thermore, since production and inventory plans are based
on forecast demand, the correlations between changes
in forecasts by region, product, and time period also
become important. The forecast evolution model we pro-
pose and applied in this study captures these correlations.

We fitted the simulation forecast model to four years
of historical forecasts and forecast errors to represent
the behavior of the company’s existing (human) fore-
casting system. In an interesting twist to the study, we
discovered that the company had developed a detailed
guantitative model for forecasting ncar-term demand
on a weckly basis, taking into account such things as
local promotions and competitors’ prices. When ex-
tended to a long term forecast model for monthly de-
mands, the model appeared to have many desirable
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properties. Accordingly, we simulated the performance
of the production distribution system under this model
as well and demonstrated the cost and customer service
impact of this improved forecasting system.
Management scientists within the company conducted
extensive simulation studies using this model. Based
on their recommendations and ours, the company re-
duced the safety stock factor dramatically and acceler-
ated the implementation schedule for the new forecasting
system. One year later. the company has achieved the
predicted cost reductions and still maintains the desired
customer service level. While ancedotal in nature, this
case study illustrates that the proposed approach is prac-
tical and that it is effective in demonstrating the cost
and service impact of improving forecast accuracy.
In the next section, we review the literature that is
related to this problem and observe the differences from
our approach, and briefly describe the simulation model.
Details of the LP production planning model are deferred
to the Appendix. Then, we describe the Martingale
Model of Forecast Evolution, illustrate the method with
specific results from the application, and summarize
some of the simulation results from the application.

Literature Review

Hausman [ 14] suggests modeling the evolution of fore-
casts as a quasi-Markovian or Markovian system. As
a specific application, he suggests modeling a series of
ratios of successive forecasts for the same quantity as
independent lognormal variates. The independence im-
plies the quasi-Markovian property. Hausman reports
on several statistical studies of actual forecasting sys-
tems. both human and mechanical, that support the log-
normal model and he suggests two rationales to explain
the phenomenon, One of his rationales, that is also used
in the finance literature to justify the geometric Brownian
motion model of stock prices, will be used in this paper
as the foundation for a more general model. Hausman
suggests using the independent conditionally lognormal
forecast ratio model in dynamic programming ap-
proaches to sequential decision problems. Hausman and
Peterson [15] formulate a production scheduling prob-
lem for multiple products in a single capacity-constrained
facility with a single selling scason but with multiple
production/selling periods. The forecasts for total sales
in the selling season evolve over the production/selling
periods according to the lognormal model. The dynamic
programming state space is too large for practical com-
putation so they propose heuristic solution techniques.

The Hausman model seems not to have generated the
sort of research interest that we believe it deserves. The
Martingale Model of Forecast Evolution, proposed here,
can be seen as an extension of the Hausman model. It
fits within the framework of a quasi-Markovian system
but is more general than the specific model proposed
by Hausman. In particular, it accomodates the simul-
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taneous evolution of forecasts for demand in many time
periods. Consequently, we are not limited to the single
selling season models considered by Hausman and Peter-
son. Our model captures correlation in forecasts between
products and between time periods. This is particularly
important for the application we describe. The model
can capture both times series models of prediction as
well as the expertise of the human forecaster. In our
case study, as in Hausman’s studies, the lognormal
model provides a good fit for the behavior of ratios of
successive forecasts in the industrial data we studied.

A competing approach would be a Bayesian model
of evalving estimates of demand distribution parameters.
Scarf [22] initiated the study of Bayesian inventory mod-
els with a dynamic programming maodel of a single item
periodic review inventory problem in which the demands
in each period are independent and identically distributed
random variables with an unkown distribution function.
See Azoury [1] for recent extensions to the Bayesian
inventory model. The Bayesian approach is applied by
Bitran, Haas. and Matsuo [3] to a variation of the sin-
gle selling season (*‘style-goods™’) problem in which
there is a single selling period and each product family
is produced in only one period prior to this. They for-
mulate a stochastic mixed-integer programming prob-
lem to plan production and use a hierarchical approxima-
tion scheme that is easier to solve. An application of
this approach to a consumer electronics company re-
veals that the model results in production plans that de-
fer production of product families with initially high
forecast errors to late in the season when forecast er-
rors are smaller. Other Bayesian approaches to the style
goods problem are reviewed and proposed in Bradford
and Sugrue [7].

Another approach is to consider the use of time series
models of forecasting demand. These models are de-
scribed by Box and Jenkins [6]. For example, Johnson
and Thompson [20] extend the results of Veinott [23]
to show the optimality of myopic order-up-to inventory
policies when demand is given by a stationary auto-
regressive moving-average (ARMA) process. Erkip,
Hausman, and Nahmias [13] extend the approach to a
depot warehouse system and derive a closed form ex-
pression for the optimal order-up-to system inventory
level. Badinelli [2] argues that exponential smoothing
techniques are routinely applied in practice when an
examination of the pattern of autocorrelations would
actually suggest an ARMA process. He demonstrates
that such a mis-specification of the demand process re-
sults in a substantial inventory cost penalty under a fixed
order interval, order-up-to-S type inventory policy. Ex-
ponential smoothing is developed for non-stationary
processes. ARMA models are developed for stationary
processes. By this interpretation, the model we develop
is for a stationary process. As mentioned, the Martin-
gale Model of Forecast Evolution can represent an
ARMA process as well as human forecasting systems.
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We will argue that the MMFE approach is to be pre-
ferred to a direct times series approach in modeling the
behavior of forecasting-production-distribution systems
because of its potential to capture the impact of such
factors as expert judgment.

A common approach in practice for single item prob-
lems is to assume the form of a demand distribution
(e.g., Poisson or normal) and use statistical estimates
of the distribution parameters in the calculation of in-
ventory policy parameters, using for example the power
approximation method of Ehrhardt [12]. Periodically,
these estimates are revised based on more recent de-
mand data and the safety stock policy parameters are
recomputed. The statistical estimates commonly used
would be the standard sample cstimates of the mean
and standard deviation. Jacobs and Wagner [ 18] demon-
strate that when demand variability is high, exponen-
tially smoothed estimators of the distribution mean and
variance result in lower inventory costs. This is because
these estimators are less sensitive to extreme values.
Iyer and Schrage [17] take a different approach and sug-
gest developing (s,.5) parameters by optimizing the de-
terministic (5,S) inventory problem using historical
demands. They demonstrate that the (s,5) parameters
generated in this way outperform the parameters gen-
erated by optimizing the infinite horizon (s,5) using a
statistical estimate of the long run demand rate based
on the historical demands. The method also performs
well when serial correlation is present in the demand
process. All of these papers indicate that imperfect
knowledge of the form or parameters of the demand
process is an important consideration when applying
inventory models.

The combined use of a sophisticated meodel of forecast
evolution with a linear programming model of produc-
tion planning in a rolling horizon is not new. Dzielin-
ski, Baker and Manne [11] report on a simulation study
in which the past history file of orders was used as input
in a rolling horizon fashion to an exponential smooth-
ing technique for forecasting orders. Orders were fore-
cast as many periods into the future as required by the
production planning technique, a linear program that
considered setup costs, inventory costs, shortage costs,
labor costs, and hiring and firing costs. The production
decisions for the first period of the planning model were
taken as the implemented decisions, in a simulation,
and the simulation clock was advanced to the next pe-
riod. Although they report the impact of two different
levels of protection in the safety stock policy in their
study, the thrust of their paper was to recommend the
use of optimization-based aggregate production plan-
ning techniques. Later studies such as Lee and Khuma-
wala [21] also use aggregate production planning models
in a simulation study but the simulation is a test vehicle
for examining the quality of alternative production plan-
ning heuristics.

There is considerable emphasis in the literature of
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production planning models on planning horizons. A
planning horizon exists if extending the model plan be-
yond this horizon has no impact on the decisions taken
in the first period of the plan. (See, for example, Bean
and Smith [4].) Relatively less has been said about the
overall effectiveness of rolling horizon models. Baker
and Peterson [3] review this literature and, for a sim-
plified model, study exact dynamic programming solu-
tions. Here again, the focus is on the length of the
planning horizon.

Our use of simulation combining forecast evolution
models with rolling horizen, optimization-based produc-
tion planning differs from these previously reported stud-
ies in several ways. One difference is the purpose of
the study. The operating company under study already
used linear programming production planning models
and did not need to be convinced of their value. Also,
because of the highly seasonal nature of the business,
the choice of planning herizon was not a major issue.
Every twelve month period included a month of near-
zero inventory so production decisions in the current
month would have negligible impact on inventory status
after twelve months. What was of concern was the level
of safety stock in the system and a simulation study
seemed the most viable approach to adequately describ-
ing the system dynamics. The need for safety stock in
the distribution system is critically related to the flex-
ibility of the production system with regard to changes
in forecast demand. Accordingly, it was important in
the simulation to model the evolution of the forecasts
as carefully as possible. OQur forecast evolution model
is therefore more detailed than in any previously reported
study. The study is also distinguished from past reported
studies in its magnitude. The earliest study of this type,
Dzielinski, Baker and Manne, was limited to 70 con-
straints in the LP. Advances in computing hardware
and software have made the routine use of 2000 con-
straint LP’s in a simulation study practical.

Simulation studies are not the only type of applica-
tion for the forecast evolution model that we propose.
Research is underway using dynamic programming to
understand the form of optimal policies under such a
madel and to reduce the state space requirements of com-
putational dynamic programming approaches to the
problem.

The Simulation Model

As the simulation progresses through time, it will track
the evolution of inventory, production and shipment de-
cisions, and demand. Since production and shipment
decisions depend upon planned decisions for the future,
the simulation will also generate a production and ship-
ment plan as well as forecasts of future demand. The
forecasts are generated by a program calied SIMFORE-
CAST. The methodology underlying this program is
described in the next section. The production and ship-
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ment decisions for the current period of the simulation
as well as the planned production and shipment deci-
sions for future periods are generated by the hinear pro-
gramming model called SIMLP. After each period is
simulated, the simulated demand observations, the in-
ventory, production, and shipment decisions, the cost
summarics, and the customer service observations for
the period are stored in a file for subsequent statistical
analysis.

SIMLP

SIMLP is a multi-location, multi-time-period model
of the production, shipment, and inventory activities.
The first period in the model, indexed by r=1, repre-
sents the current period of the simulation. Decisions
variables for this period represent decisions made in
the current period of the simulation. These decisions
affect, among other things, the cost and customer serv-
ice reported by the simulation for the current period.
In other words, the simulation will implement the de-
cisions for the current period. Decision variables for
future periods in the model represent planned decisions.
The simulation will not implement those decisions.
When the simulation advances to the next period. it will
solve a new LP and implement the decisions from the
first period of the new model.

SIMLP is a variation on a standard linear program-
ming model of production and distribution. A simpli-
fied version of the formulation is summarized in the
Appendix. The actual implementation included greater
detail to handle the use of overflow warehouses, and
the limited flexibility associated with using certain pro-
duction lines (copackers).

The Martingale Model of Forecast Evolution

In this section, we develop a technique for modeling
the results of forecasting procedures. This will show
that under simple and plausible assumptions we are led
to a class of models which is very general, yet very
simple. The assumptions we make (or very similar as-
sumptions) underlie most forecasting methods. In par-
ticular, for methods based only on previous demands.
see the discussion in Brockwell and Davis 19, Chapter
5]. Although it might seem desirable to develop a sto-
chastic model for these quantities based on the partic-
ular statistical method which is used to produce the
forecasts, this turns out {in many cascs) to be unncc-
essary. It is indeed fortunate that this is so. for many
forecasting techniques are based on more data than past
demands. For example, prices of competing goods. and
marketing, advertising, and other promotional plans,
and sometimes even expert judgement are used to pro-
duce the forecasts on which decisions arc based. For
many reasons (lack of data, the difficulty of modeling
competitors’ price changes, and the obvious problem
of modeling expert judgement) it would be very diffi-
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cult to produce and fit 2 model in this way, and to have
confidence in the resulting model.

Notation

To make things precise we need some notation: For
every pair (5,7 of times, we denote by Dy, the pre-
dictions made at time s for the amount(s) demanded at
time 7. (If we are considering demands for more than
one type of good, each Dy, will be a vector.) For s
< 1, these are genuine predictions, while for s = 1 they
are “‘predictions of past demands"" and thus are equal
to the past demands. Of course, D, (which we some-
times write as D,) is simply the actual demand at time 5.

If each vector D, , contains N entries, (i.e., if we
are predicting demands for N goods), then for each s
we construct the (infinite) vector X, whose first N en-
tries are D, ., whose next N entries are Dy, and
s0 on. The vector X, is simply a list of the current de-
mands and the forecasts for all future periods. We now
focus attention on the changes in the X vectors. We de-
velop two classes of models for the behavior of these
changes: the additive model and the multiplicative
model. We explain the simpler of these two first. the
additive model, although the multiplicative model will
likely be the more useful in practice.

The Additive Model
For the additive models, we define the N-vector e, by

€ — Du,n—Dr\—l.n,

fort = 5. We construct the infinite vector ¢, analogously
to the vector X.: e, = (€)% . Thus, the k-th coordinate
of ¢, is the k-th coordinate of X, minus the (k+N)-th
coordinate of X, ;. Clearly, each coordinate of ¢, rep-
resents the change from time 5—1 to time s in the pre-
diction of some demand occurring at or after time s.
Moreover, € is known at time s, Figure | illustrates:
each row shows the successive forecasts and forecast
changes for a given time-dated demand vector. Fore-

casting ceascs once the actual demands are observed.

The Martingale Model of Forecast Evolution in this
case produces a model in which the e vectors are in-
dependent, identically distributed, muitivariate normal
random vectors with mean 0. The only medel param-
eters are the variance-covariance matrix for the distri-
bution of each € vector and the initial state of the system,
Xo.

Derivation of the Martingale Model of
Forecast Evolution

The result in the additive model that the e vectors
are independent, identically distributed, multivariate nor-
mal random vectors with mean 0 follows from a se-
quence of assumptions each of which narrows the
domain of applicability of our methodology.

The first assumption we shall make is that the infor-
mation available to make predictions at time § grows
as s increases. That is, at each time 5, we suppose that
a certain amount of information .%.. 1s known and that
F. C T

The second assumption requires some discussion. as
it can be justified in at lcast two different ways. The
assumption is that e, is uncorrelated with the infor-
mation in .%,, and hence is uncorrelated with all €, for
u = s5. Furthermore, Ele..,] = 0.

This second assumption will be satisfied in two im-
portant cases. In the one case, it will be satisfied if the
predictions made are the conditional expectations of the
variables to be predicted given the available informa-
tion. If one uses the most general prediction techniques,
then minimum mean-squared error predictors are con-
ditional expected values. In this case, we assume that
&, is a o-field describing the knowledge available at
time s, and the prediction of any future random vari-
able Z is its conditional expectation E[Z| ], In this
case the successive predictions for Z form a martingale.
It is this assumption that leads to the name for meth-
odology. Hence,

Start with: Add: | To Get: Add: To Get: Add: To Get:
Initial Faorecast Period 1 Forecast Period 2 Forecast Period 3
Forecasts Change Forecasts Change Forecasts Change Forecasts
Forecasting Xo £, X, € : Xz €3 X
Oy Doy
Dy Lo €(1.1) Dy
D, Dio.2) €1.2) D12y €22 D22y
Dy Dro.3) €11.3) D 3) €23 Oz 3 €i3,3) Diazy
Dy Dro.4) €14 Dp14 €(2.d) Diz.4) €(3,4) Dy,

Figure 1. Forecast evolution: additive model
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€ — Dfs.r) ‘_D(s—l.r) = E[D(r,f)|!¢5] _ElDu.:] Js-l]-

Assuming all random variables are square-integrable,
it is easily shown that the martingale property implies
that €., is uncorrelated with any random variable meas-
urable with respect to %, and that Ele,.] = 0.

Alternatively, the second assumption will be satisfied
if we make the weaker assumption that the predictions
are the minimum mean squared error linear predictions
based on a set of observable random variables which
grows with time and which includes the current actual
observations. In this case, the set %, consists of those
random variables which have been observed by time
5. In either case we assume that all past and present
demands are included in the information available at
time s. A fundamental property of the minimum mean
squared error predictor is the following:

Proposition: Suppose 5, < 5, < 7. If the predictions
are minimum mean-squared error predictions, then the
change in predictions, D, n—Dg, . is uncorrelated
with any of the random variables in .%,, and has mean 0.

Proof: The result follows, for example, from the dis-
cussion entitled ‘*The Prediction Equations™” in Brock-
well and Davis |9, p. 53]. In their notation, X is the
minimum mean square error predictor of X, solet X de-
note D, let Xy = Dy, the prediction of Dy, made
at time s,, and let X; = Dy, the prediction of D,
made at time 5,. Let € denote any one of the random
variables observed by time s, {also observed by time
5y, since §;, = 5,). Taking ¥ = ¢ in Brgckwell and
Davis (2.3.8) yields E{(X—X,)e] = E[(X~X,)e] = 0, so
E[(X,—X,)e] = 0. That is, the change in predictions
is uncorrelated with any observed e. Taking e = 1 yields
E[X,—-%] = 0.

The second assumption, that changes in forecasts are
mean zero and uncorrelated with past observations, de-
scribes a desirable property of a forecasting system.
In fact, if the second assumption is not satisfied it will
be possible to construct improved predictions (in the
mean squared error sense) as a linear combination of
the given predictions, the current observations, and pre-
vious changes. Replacing the given predictions by the
best improved predictions ensures that this second as-
sumption will be satisfied.

The third assumption is one of stationarity. We as-
sume that the changes in the predictions (i.e., the € vec-
tors) form a stationary stochastic process. As is usual
in time series modeling, *‘stationary’” has several mean-
ings. If one is interested only in properties which de-
pend only on the first two moments of all variables,
then *‘weak stationarity”’ (sometimes called “‘covariance
stationarity’’) suffices. If one is interested in all pos-
sible properties, *‘strict stationarity’” is needed. Under
assumptions of normality, weak stationarity implies
strong stationarity. In either case (considering only prop-
erties depending on first and second moments, or as-
suming normality and considering properties which may
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depend on the distributions}, all important model prop-
erties can be captured by the variance-covariance matrix
of the vectors.

There are many techniques for transforming a time
series to make it more nearly stationary. Differencing.
which is what these forecast changes represent, tends
to improve stationarity and can never destroy it. Most
time series texts give good discussions of techniques
for modifying or decomposing a time series to obtain
more nearly stationary time series, and many of these
techniques are useful in our setting. In particular. the
multiplicative model presented below was useful in the
case study for improving stationarity.

The fourth and final assumption is that of normality
(or alternatively the assurnption that whatever we do
with our predictions depends only on the first and sec-
ond moments of these random variables).

Almost all of the existing forecasting techniques are
based on assumptions stronger than those required here:
thus, our model is appropriate whenever these forecast-
ing methods are applicable.

The Multiplicative Model

The above model represents the changes due to new
information as additive, In particular, the size of the
changes in forecasts is unrelated to the sizes of the fore-
casts. In the data of the case study, however, we ob-
served that the standard deviation of forecast error was
roughly proportional to the size of the forecast. (Cf.
Brown [10, p. 94] **You will be very likely to find that
the standard deviation of demand is nearly proportional
to the total annual usage, ot to the average monthly us-
age.”’ See also his Appendix C on applications of the
Lognormal distribution to inventory models. ) (See Haus-
man [14] for documented examples.) Since the forecasts
were highly seasonal this meant that the stationarity as-
sumption was violated. This observation suggested a
log transformation would be appropriate to improve sta-
tionarity. If all of the demands (and hence also the fore-
casts) are strictly positive, a multiplicative model can
be obtained by modeling the logarithms of the forecasts
and demands in an additive way.

For the multiplicative model, (assuming all the data
values to be non-negative) we define v, by:

Ve = 10g(D(\‘u) - log(Dn- ks

where the logarithms are taken componentwise. We con-
struct the infinite vector », analogously to the vector
X v, = (vp,)7. Thus, letting ¥, = log(X,), compo-
nentwise, the k-th coordinate of », is the k-th coordinate
of Y, minus the (k-+MN)-th coordinate of Y._,. Clearly,
each coordinate of v, represents the change from time
s—1 to time s in the log of the prediction of some de-
mand occurring at or after time .

Conversely, let R, = exp(v,), taken componentwise,
Then, a coordinate of R,, represents the ratio of suc-
cessive forecasts for some demand occurring at or after
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time 5. If we assume, as betfore, that successive fore-
casts of a future demand form a martingale process,
then the expected value of each future forecast is the
same as the current forecast and the expected value of
the ratio of these successive forecasts is 1. Furthermore,
R.., is uncorrelated with R, for u = s.

Next, instead of assuming that the forecast differences
are jointly normally distributed, we assume that the com-
ponents of », are jointly normally distributed. It follows
that the mean of each component of », must equal the
negative of one half of the variance of that component.
(If  is N{u,0%) then Elexp(m)| = exp(u + 0%/2). Set-
ting Elexp(n)] =1 yields p = —a*/2.) Tt also follows
that the »’s are uncorrelated. To see this, note that if
7 and { are jointly normally distributed, then we have:
coviexp(y),exp({)) =explcov(n,{)) — |. Hence if exp(x)
and exp({) are uncorrelated, then g and { must be un-
correlated.

In summary, for the multiplicative model, we sup-
pose that the vectors » are independent, identically dis-
tributed multivariate normal random vectors with the
mean of cach coordinate equal to the negative of one-
half of its variance. Thus, once again, the model does
not require (nor allow) the exogenous specification of
means. The multiplicative model requires only the spec-
ification of variances and covariances and the initial
state, Xo.

The Forecast Update Horizon

We now impose one further restriction: we suppose
that there is some finite horizon M such that only the
first MN components of each e (respectively, ») vector
are non-zero. That is, forecasts for the N products are
not updated until time has advanced to within M periods
of the period being forecast. This is necessary to allow
estimation and computation, and should, for M large,
provide a reasonable approximation in a practical set-
ting. Under this assumption, the model is completely
specified by an MNXMN variance-covariance matrix
and the initial state.

We stress that in each of the two models (additive
and multiplicative), it is the change vectors (e or ») which
are independent, and not the components of each vec-
tor. Once the variance-covariance matrix is known, the
means of these vectors are determined. Thus, for each
model. the only model parameters are the variance-
covariance matrix for the appropriate multivariate ran-
dom vectors and the initial state of the system. X,.

Obtaining the Variance-Covariance Maltrix

This variance-covariance matrix can be obtained in
several ways. If the predictions are obtained from a mov-
ing average time series model, then the matrix ¢an be
computed directly. In this case, forecasts are available
for all future periods, so the matrix should have infinite-
ly many entries. For practical purposes, it would be
necessary to truncate the matrix as discussed above.
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Causal autoregressive moving average models are equiv-
alent to moving average models with infinitely many
lags. (For this equivalence, see Brockwell and Davis
[9], Def. 3.1.3, p. 83; Thm. 3.1.1, p. 85; and Remarks
on p. %6. For extension to the multivariate case. see
Thm. 11.1.1, p. 408). Truncating the series should pro-
vide a reasonable approximation.

If, instead, the predictions arise in a more complex
way {using not only past demand data, but other data
and perhaps expert opinion), past data on forecasts and
demands should allow estimation of the variance-covari-
ance matrix. From the past data, one can easily pro-
duce the sample e (respectively ») vectors, Knowing
that the mean of the vector e must be zero simplifies
estimation of the variance-covariance matrix. For esti-
mating the variance-covariance matrix of the » vector
(under the restriction that the means are related to the
variances) we have used a simple method of moments
estimator {matching the averages of the outer products
of the sample » vectors).

Simulating Forecast Evolution

To simulate multivariate normals. Bratley, Fox, and
Schrage [8] suggest finding 2 martrix C such that CC”
is the desired variance-covariance matrix. Given C, the
multivariate normal is generated by g + CZ where Z
is a standard normal random vector {i.e., whose com-
ponents are independent standard normal randem var-
iables).

There are many choices for finding €, we prefer to
represent the variance covariance matrix as UDU" where
{7 is a real unitary matrix (so that I/'=0"") and D is
a diagonal matrix with non-negative entries which are
decreasing down the diagonal. (For existence of this
representation, see Hoffman and Kunze [16]. Theorem
20 and corollary, p. 266.) Thus, C can be chosen to
be UD'2.

If C has been represented as above, then clearly CZ
is a random weighted sum of the columns of C (with
independent standard normal weights). Moreover, the
columns of C are arranged in decreasing order of size.
Thus, the changes in the forecasts have been represented
as sums of independent random vectors whose ““sizes™
are decreasing. This is the ““principal components rep-
resentation.”” The first component (the first column of
() describes the *‘largest™” sort of changes which oc-
cur; the second the second largest; and so on. These
components can give some idea of the type of infor-
mation which is revealed from period to period. As a
simple example, if all of the entries of the first column
of C have the same sign, this means that the largest com-
ponent of the new information revealed is that all de-
mands (present and future) will tend to be be larger,
or all wili tend to be smaller, than was previously pre-
dicted. A later section includes an examination of the
first principal component of the variance-covanance ma-
trix for two applications of this analysis.
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Examples

As a simple example, consider an additive model for
the demand for a single product. For the simplest case,
supposc that M=1; i.e., that only the first component
of the vector can be non-zero. Suppose further that the
initial state vector is of the form (x,, %, ¥,X,...) "1 i.e., to-
day’s demand is x,, and all predicted future demands
are ¥. The model is then characterized by the 1 x |
variance-covariance matrix whose only entry is the var-
iance of x,. This model corresponds to the case of in-
dependent demands with no forecasting updates until
the actual demand is observed.

A more interesting class of models results for the sin-
gle product model with M=2. Suppose that the initial
state is (x,,%;,%,%,%,...) . Then the model is character-
ized by the 2 X 2 matrix, L:

2
g T12
£ =( 2
g1 02

where ¢,; =0,,. Letting (X,); denote the j-th element
of X,, the state vector at time s, we have (for s = 2),

(XJ)l =x + (E,)l + (E,‘—Jz
(X,); =X + (Es)z
(X)), =xforj =3

Notice that the two e values appearing in the first equa-
tion are independent random variables since they are
components of e-vectors observed at different times,
which are independent. However, the first two compo-
nents of the X vector are typicaily not independent, since
they both depend on the vector ¢, In fact, their co-
variance will be precisely o,:. It follows easily that the
covariance of (X,); and (X...), 18 also .. Thus if 0,, =0,
we still have independent demands, but some of the de-
mand variation is predictable one time period in advance.
In this special case, the fraction of the variability which
is predicted is exactly ¢3/(oi+0ol).

Why Not Use Time Series Models?

This example illustrates why the Martingale Model
of Forecast Evolution could be more useful in a simula-
tion of a production system than a more direct time seties
approach. As an extreme case, suppose that ¢f=0. Then
the demands are still independent, but are entirely known
one period in advance. In this case a time series anal-
ysis of the demands would seem to support the simple
models which assume independent (and unpredictable)
demands when in fact the production system could rely
on very accurate forecasts. Time series models that are
based only on previous demands cannot capture the po-
tential existence of very accurate forecasts that arc based
on more information than past demands.

We anticipate that a proponent of a time series ap-
proach to modeling forecast evolution within a simula-
tion study could respond to the above example by point-
ing out that the predictions could be improved by basing
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the forecasts on more data than just past demands. One
can imagine that human forecasters have notebooks of
competitors’ prices, weather forecasts, and other data
that improve the accuracy of their forecasts. If these
notebooks were available to the time series modeler than
perhaps the time series model accuracy could rival that
of the human forecaster., We agree. However, to sim-
ulate the behavior of such an extended time series model,
we would have to simulate the behavior of these note-
books over time and we do not believe that a simulation
model of notebook behavior would have greater credibil-
ity than the model we propose. Besides, if one of the
notebooks contained the human forecaster's best pre-
diction based on all available data and such predictions
really did minimize mean squared error, then no other
notebooks wouid be required: the extended time series
model should select this prediction. We are still left with
the problem of simulating the evolution of the human
forecaster’s predictions.

Correlations Reveal the Nature of New Information

In the last example, if a,; is not zero, its sign tells
something about the type of new information which is
learned at each period. If ¢,; is positive, then new in-
formation has a tendency to result in either an increase
in both the actual demand (over that predicted) and in
the prediction for the following demand, or a reduction
in both of these. If, on the other hand, o, is negative,
then new information tends to affect the “‘timing’” of
the demand: when the actual demand turns out to be
less than predicted, there is a tendency for the predic-
tion for the next period to rise (and vice versa). This
latter situation can arise if forecasters are confident about
the total demand being predicted but are unsure about
the timing. For example, customers may be under con-
tract to purchase certain amounts or the marketing de-
partment may be able to stimulate sales through sub-
sequent promotions to achieve a total sales objective.
Hence, if demands are lower than expected in one pe-
riod, it is natural to forecast that the deficiency will be
made up in the next period.

Application of the MMFE

As mentioned earlier, the study considered two meth-
ods of forecasting in use within the operating company.
The first method, called the Traditional Method. con-
sisted of forecasts generated by specialists within the
marketing department. We analyzed four years of
monthly demand and forecasts according to this method
and estimated the 8080 variance-covariance matrix
for the multiplicative model of forecast evolution. The
dimension 80 comes from the product of 5 products,
8 locations, and a two month forecast horizon. Using
a weighted average of the variances in that matrix, we
summarize in Table | the percentage of forecast var-
iability that is resolved as the system evolves from two
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Table 1. Percentage of Total Forecast Variability
Resolved by Forecast Period, Traditional Method

In Month of Sale 1 Month QOut
64 36

periods out to 1 month out and from | month out to
the month of sale. As is apparent from the table, a con-
siderable fraction, 64 %, of this variability is not resolved
until the month of sale. This can be expected to severe-
ly limit the ability of the production system to satisfy
demand without considerable safety stock.

To illustrate the demand and forecast correlations cap-
tured by the variance covariance matrix, we reproduce
in Table 2 the first principal component of that matrix,
scaled by the corresponding eigenvalue. Recall that in
the simulation this principal component is multiplied
by a standard normal random variate and that it would
represent the largest sort of change to be commonly
observed in the log of the forecast vector. Observe that
the sign of the change in the current period tends to
be the opposite of the sign of change in first period.
That is, it seems that an important phenomenen of the
Traditional Method is that the change in forecasts one
month out are negatively correlated with observed fore-
cast error (from one month out to the month of sale).
This suggests that the forecasting specialists are confi-
dent about the total demand over a two month period
so that if demand in the first month turns out to be higher
or lower than expected, then the forecast for the sub-

sequent period is adjusted downwards or upwards ac-
cordingly.

The operating company had in place a second method
of forecasting demand for a portien of the total busi-
ness that appeared to give very good results. This was
a detailed quantitative model of customer behavior that
included promotions and price considerations. Further-
more, it was able to provide forecasts for up to four
months into the future. We refer to this method as the
Statistical Method. In order to simulate the likely be-
havior of this system when extended to the entire busi-
ness, the Statistical Method was simulated using two
years of detailed historical data (threc other years of
nen-overlapping data were used to calibrate the Statis-
tical Method). From the simulated forecasts and actual
demands for that two year period, we estimated the
160 %160 variance covariance matrix of the logarithm
of the forecast vector. The dimension of 160 is the re-
sult of the product of 5 products, & locations, and a fore-
cast horizon of 4 months. The total variability of both
the Traditional Method and the Statistical Method is
the same. The major difference between the systems
lies in when the reduction in variability occurs. Table
3 summarizes the successive reductions in variability
over the course of the four months. Comparing Table
3 with Table 1 reveals that the Statistical Method of
forecasting offers a great advantage over the Traditional
Method. From the three month cut forecast to the ac-
tual sale accounts for roughly the same fraction of var-
iability as from the one month forecast to the actual sale
in the Traditional method and the nearer term forecasts

Table 2. First Principal Component of VCV Matrix for Traditional Method
Location
Period Product 1 2 3 4 5 6 7 8

0 1 ~-.5511 .0086 0549 —.4902 -.1735 -.0286 .3602 -.6934
0 2 -.3528 —.3450 -.0854 —.2094 -.3982 —-.2608 - .0807 -.0183
0 3 —-.4483 —.1447 —.1369 - .2256 —-.2584 -.1792 0699 .0687
0 4 —.6352 —.2848 —.1855 —.3547 —.65595 - .2726 - .2BS0 .0758
0 5 -.4719 .5393 .2631 —.1407 —.0932 .2B05 1289 4920
1 1 4343 .5623 .2880 1736 -.0027 1454 .2605 7386
1 2 .2981 3231 1257 .2454 2418 2621 .0654 .0285
1 3 4571 4149 1714 .2560 .2768 1838 .0835 .0387
1 4 2555 171 .1395 .0787 .1844 1178 —.0326 —.0860
1 5 2048 .0651 .0000 -.0045 .0421 .0000 0474 .0000

Table 3. Percentage of Total Forecast Variability Resolved by Forecast Period, Statistical Method

In month of Sale 1 Month Out 2 Months Qut 3 Months Out
7 18 30 44
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are even better. This should permit more effective man-
agement of the production and distribution system. In
the next section we summarize the degree to which this
advantage can translate into improved customer serv-
ice and lower costs.

To illustrate the demand and forecast correlations cap-
tured by the variance covariance matrix of the Statis-
tical Method, we reproduce in Table 4 the first principal
component of that matrix, scaled by the corresponding
cigenvalue. The average absolute value of entries is in-
creasing by period (0.149, 0,238, 0.296, and 0.400 for
periods 0, 1, 2, and 3, respectively). Taking the view
that the magnitude of entries in the principal cormpo-
nent is indicative of the amount of information that is
gained (or uncertainty resolved), this is consistent with
the observations concerning Table 3. Although not as
pronounced as in Table 2, Table 4 does exhibit a gen-
eral trend towards sign reversals as the forecast period
increases: there are 27 negative numbers in periods 0
and 1 and 58 negative numbers in periods 2 and 3. This

suggests the phenomenon that lower than expected (re-
spectively, higher than expected) sales in the current
month result in downward (resp. upward) adjustments
of forecasts for sales in the next month and upward (resp.
downward) adjustments in forecasts for sales in the fol-
lowing two months.

Simulation Results

The simulation methodology, the rolling horizon LP
with the MMFE, was tested with data from the oper-
ating company for a variety of safety stock factor lev-
els. Figures 2 and 3 summarize the results of these
simulations by relating the minimum average fill rate
(minimum across products and locations and average
over simulation runs) and annual cost reductions, re-
spectively, to the relative safety stock factor level. The
figures compare the impact of the two forecasting meth-
ods described in the previous section, the Traditional
Method and the Statistical Method. Each plotted point

Table 4. First Principal Component of VCV Matrix for Statistical Method
Location
Period Product 1 2 3 4 5 6 7 8
0 1 1616 1254 —.1043 1974 .0373 .0416 1342 1776
0 2 —.0650 -.0552 3584 —.0248 3673 1770 0677 -.1579
0 3 2146 .0507 -.0115 3478 .0323 1288 2140 2724
0 4 .0688 —.0566 2144 .0845 .3662 1700 1718 -.1038
+) 5 1025 0141 1348 .3569 3547 .0684 .0863 .0802
1 1 3143 0621 - 2724 2532 —.3628 -.3628 2268 1606
1 2 - .1466 .5185 0789 .2807 1212 -.3917 -.3019 —.1001
1 3 .2589 .0056 -.0824 1076 -.3237 1962 2455 0121
1 4 -.0087 5195 2011 .3984 A073 -.4212 -.1456 -.1140
1 5 -.1250 —.2462 1520 1297 1173 —-.7305 —.1789 -.7194
2 1 —.0880 -.0336 .5566 -.1703 .5851 5965 -.2489 | -.2557
2 2 —.2385 -.1575 -.1836 .0515 —-.1122 - .5729 - .2548 - .274?
2 3 —.0999 .2656 .3814 —.1636 8767 .3992 —.1412 0293
2 4 -.3108 - .0727 —-.0952 -.0771 —.0352 —-.5335 —-.3089 -.5078
2 5 ~.4701 - 4420 1318 —.0971 -.1176 -.7775 - 5727 -.7525
3 1 - .2636 —.b465 - .4960 ~.3411 —.4126 4594 -.5531 - .5784
3 2 5144 - .3061 —.3454 —.2544 -.2015 .B8655 4665 4505
3 3 -.2339 —.3087 -.3579 - .3368 —.2875 -.3382 -.3243 -.3118
3 4 .6342 -1717 -.1985 —.1899 -.0624 7127 6639 7549
3 5 A1 -1.0359 —-.6303 -.2990 —.2929 0325 2605 | 2125
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Figure 3. Impact of safety stock factor on average annual cost for twe forecasting methods

represents the average across between ten and twenty
simulated vears; that is, the rolling horizon simulation
was terminated after at most twenty consecutive years.
The X, vector was identical for all simulation runs and
consisted of the forecast for the 1990-91 fiscal year re-
peated 20 times. The initial random number seed was
identical for all runs using the same forecasting model.
Differences between minimum and maximum points for
a given forecasting method in both figures are signif-
icant at the 5% confidence level. The runs are too short,
however, to establish conclusively the significance of
the difference, either cost or fill rate, between the dif-
ferent forecasting methods.
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These preliminary simulations suggested that annual
cost could be reduced by several million dollars annual-
ly if the safety stock factor were reduced and that, pro-
vided the new Statistical Method of forecasting was
implemented and used in a timely manner to plan pro-
duction, there would be little adverse impact on customer
service by reducing safety stock. Other experiments
were run that investigated the impact of increasing ca-
pacity (adding another production line). These runs sug-
gested that it was far more important to increase fore-
casting accuracy than to increase capacity. at least for
the year under consideration. These results were suf-
ficiently intriguing to the company that management sci-
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entists within the company made extensive simulation
runs using the methodology. These runs were all greater
than 100 simulated years each with some runs exceed-
ing 240 simulated years to ensure greater statistical sig-
nificance. The internal studies confirmed the above
conclusions and verified that the forecasting methods
yielded significantly different results. We are not at lib-
erty to reveal the details of these studies. However, as
a result of these internal studies, the company made
a commitment to implement the new forecasting method
for the entire business and, simultaneously, to reduce
substantially the safety stock factor for the 1990-91 year.
After one year, the company reports that it achieved
the predicted cost savings and that customer service did
not suffer. Obviously, this experience of one year praves
nothing, especially since the extended simulations did
reveal rare years in which the simulated business ex-
perienced high costs and low customer service levels
at all safety stock levels. However, the example does
show that the methodology was effective in assisting
management (o adopt a new strategy for production man-
agement.

Conclusion

Production managers in many industries are aware
that forecast error is a major factor determining produc-
tion and distribution costs. In discussions with higher
level management, however, they are typically unable to
quantify the impact. This paper considers one approach
to subjecting the impact of forecast error on cost and
customer service to quantitative analysis. The Martin-
gale Model of Forecast Evolution is proposed as a plaus-
ible model for the evolution of forecasts. We have
demonstrated the practicability of this model in a large
scale simulation study for an operating company. The
study was effective in leading the company to imple-
ment improved forecasting techniques. Applied research
in this area is now being conducted with a company
that requires a more detailed production simulation
model and with another company for whom component
lead time is a greater concern than assembly capacity.
Theoretical research is focusing on the form of the op-
timal inventory policy under non-trivial demand mod-
els and on state-space reduction techniques to implement
the MMFE in computational dynamic programming.
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Appendix I: LP Formulation
SIMLP Formulation

Variable Definitions:

P, = the production, in cases, of product ¢ on line
J in period

O, = the overtime on line j in period £; and

X = the transshipment, in cases. of product 7 {rom
DC £ to DC { in period 1;

I, = the inventory, in cases. of product i at DC
! at the end of period 1;

B... = the backorders, in cases, of product i at DC
I at the end of period #;

S, = the shortfall below the coverage target. in
cases, of product i at DC [ at the end of pe-
ried 1;

K = total production cost (regular time and over-
time), shipping cost, and inventory holding
cost.

Index Functions:
a,; = 1 it DC [ 1is supplied by line j; O otherwise:

4, = lifr = 1;0otherwise (first period indicator):

Sets:
DC = set of DCs;
PD = set of products,
LN = set of production lines;
PL = set of production facilities (a subset of DC):

RT = set of allowed DC transshipment possibilitics
{pairs of origin DC—destination DC);

TM = set of time periods = {1,2,....Horizon}

Coefficient and Constant Definitions:

p.; = production rate in cases/hr. of product i pro-
duced on line j,

r, = regular time hours available on line j in pe-
ried 1

@, = overtime hours available on line j in current
period;

d,, = forecast demand, in cases. for product i at DC
| in period ¢ (actual demand tor period 1=1):

w;, = initial inventory less backorders, in cases, of

product ¢ at DC [ in period 0:

¢ = minimum inventory requirements, in cascs,
for product / in DC / at end of peried 1;

May 1994, lIE Transactions

Cost Coefficients:

¢; = variable cost to produce one case of product
i on line j and ship to local DC;

Xae = variable cost to ship ong case of product { from
DC & to DC L including freight rates and in
and out handling costs;

hy = variable cost to hold stock of product i in DC
[ for one period, including cost of capital and
storage cost;

v, = variable cost of running line j on overtime for
one hour in any period;

5, = penalty cost for shortage of product 7 in pe-
riod Q:

b, = penalty cost for backorder of product i in pe-
riod 0;
Ohjective Function:
Min K = ZgemEyeivEyenycyly + Lye a0,
+ Xy i e vt Xy e vy Ko X
+ Ehermzycpay oommlPola b By + 58500
Capacity Constraints:
Loempi Py —f0; = r, for jJELN, r&€TM: (1)
Overtime Limits:
0, < o, forj € LN, (2}
Muaterial Balunce Equations:
LBy =

—EZemertiXon —dy for i€ PD, 1€ DCL 1 € TM:
(3a)

Lio—= B = w, fori€PD. /& DC; (3b}

- .
i —Busi+ Zyenvans P+ Y nermiXonn

Coverage Constraints:
fi— By + S = g for i€ PD./EDC, 1 € TM: (4)
Backorder Limits:

By—Bu = difori€ePD, [€DC.r€ETM: (5)
Nonnegativity Constraints:

Poo O, X, L, B, 500 2 0

for i€PD. jJELN, AIERT. 1€ DC, r€TM;

and
fia, By = 0 for i €PD, 1€ DC. (6)

Observations Concerning SIMLP

Shipments of stock of any product are allowed in any
period between DCs. Shipments between particular pairs
of DCs can be disailowed.

Each production line consists of only one component.
Raw material availability is ignored.
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Overtime is allowed on each line in the current pe-
riod only. There is no planned overtime (overtime in
future periods).

It is possible, since production in any period is limited,
that the demand for a particular product in a particular
DC in the current period cannot be satisfied, even with
transhipments from other DCs. Shortages wouid result.
Shortages in one period must be satisfied by planned
production, or shortages, in the next period, or be left
unsatisfied at the end of the horizon. In practice, short-
ages for some products are more critical than for other
products. Since the LP solution is extreme, it may con-
centrate all the shortages in one product. We can dis-
courage shortages in some products by making the
penalty costs for shortages in those sizes to be signif-
icantly higher than those in other sizes. However, no
other attempt is made in the model to balance shortages
across products.

There is no penalty for underutilization of a line.

Coverage restrictions are typically stated in terms of
months of supply. These are translated into bounds on
inventory.

In an extreme point solution to SIMLP, we will have
Lo - Buo = 0 for all i € PD and ! € DC, because the
corresponding columns in the matrix of coefficients are
linearly dependent. This is not true in general for the
variables [, and B, because the inventory variables,
I..., do not appear in the backorder limits, constraints
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{5). Hence, care must be taken in analyzing the simula-
tion history file to interpret variables and to compute
costs in a reasonable manner, The set of backorder limits
are necessary because otherwise there are examples in
which the solution exhibits B, > d., and X, > 0;
that is, some backorders would be “*shipped’’ to other
locations.
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